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----------------------------------------------------ABSTRACT-------------------------------------------------------------------- 

The apolipoprotein A1 (APOA1) is a component of high-density lipoprotein (HDL) in plasma, playing aspecific 

role in lipid metabolism. Defects in this protein have been associated with several diseases, including familial 

HDL deficiency, familial visceral amyloidosis and increase risk of cardiovascular disorders. Among the 

possible causes of these defects are single nucleotide alterations within the coding region of the APOA1 gene, 

which could affect protein function. This study aims to analyze the possible impact of 15 variants of unknown 

significance identified within the APOA1 gene. A total of 12 in silico SNV impact prediction tools were used to 

evaluate the impact of these alterations. The predictions suggested that four of these alterations(Pro123Ser, 

Arg140Leu, Ser191Asn and Ser191Arg)could result in protein disfunction.  
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I. INTRODUCTION 
The APOA1 gene, located on chromosome 11 (11q23-q24), encodes a preproprotein which is 

proteolytically processed to generate the mature apolipoprotein A1 (APOA1), composed of 396 amino acids 

(van der Vorst, 2020). The APOA1 protein is a component of high-density lipoprotein (HDL) in plasma, playing 

a specific role in lipid metabolism (Breslow et al., 1982). HDL is a molecule that transports cholesterol and 

certain fats called phospholipids through the bloodstream from the body's tissues to the liver. Once in the liver, 

cholesterol and phospholipids are redistributed to other tissues or removed from the body(van der Vorst, 

2020).Therefore, due to its importance in the process of removing excess cholesterol from cells, defects in this 

gene are associated with HDL deficiencies, including familial HDL deficiency, familial visceral amyloidosis,  

Tangier disease, and increase risk of cardiovascular disease(Ertek, 2017). 

Several studies have shown that APOA1 dysfunction is associated with mutations in the APOA1 gene 

(Dastani et al., 2006; Franceschini, Sirtori, Gianfranceschi, & Sirtori, 1981), including mutations that lead to 

alterations in a single nucleotide in the coding region of APOA1(Ladias, Kwiterovich, Smith, Karathanasis, & 

Antonarakis, 1990; Strobl et al., 1988; Utermann, Pruin, & Steinmetz, 1979). In fact, a total of 16 missense 

variants are currently described in the Online Mendelian Inheritance in Man (OMIM) database as associated 

with APOA1 dysfunctions. 

SNVs are the most common kind of variation in the human genome. SNVs that occur in a gene's 

coding region and result in an amino acid substitution at the coded protein corresponding region are known as 

missense SNVs. In most cases, this variation is neutral or has little effect on the protein function. However, 

when this variation causes an alteration in the protein's structure, this change could also result in protein 

function alteration, which could lead to a disease (Ng & Henikoff, 2006; Yates & Sternberg, 2013). 

Several approaches have been used to study the impact of missense SNVs on a protein structure; 

however testing these impacts in a laboratory can be expensive, so analysis by computational tools has become a 

powerful and inexpensive approach for preliminary analyses (Shen, Deininger, & Zhao, 2006). As a result, a 

number of in silico tools have been developed to predict the effect of missense SNVs, including methods based 

on sequence homology (Choi, Sims, Murphy, Miller, & Chan, 2012) supervised-learning (Liu, Wang, Sun, & 

Zhao, 2014), protein-sequence (Dorn, E Silva, Buriol, & Lamb, 2014), and consensus-based(González-Pérez & 

López-Bigas, 2011). 
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The impact of many missense SNVs occurring in the APOA1 gene is currently unknown. These 

variants are classified as Variants of Unknown Significance (VUSs). In the present study, using an in silico 

approach, the impact of all APOA1 known missense SNVs classified as VUS was evaluated by a combination 

of prediction tools. 

 

II. METHODOLOGY 
 

SNV Data 

 The apolipoprotein A1 (APOA1) gene data was obtained from the National Center for Biotechnology 

Information (NCBI) (access codes: NP_001304946.1, NP_000030.1 and NP_001304950.1). The information 

about the missense SNVs was collected from the Leiden Open Variation Database (LOVD v.3.0)(Fokkema et 

al., 2011), selecting only variations classified as "VUS" in the Clinical classification column. 

 

SNV impact prediction tools 

 All selected missense SNVs were submitted to twelve protein analysis programs. The programs were 

split into three categories, each containing four programs: sequence homology-based methods, supervised 

learning methods and consensus-based methods. 

 

Sequence homology-based methods 

Disease-causing missense SNVs tend to occur at evolutionarily conserved positions that have an 

essential role in the structure and/or function of the encoded protein (Miller & Kumar, 2001). Therefore, 

information contained in multiple sequence alignments (MSAs) of homologous protein sequences can help in 

understanding contemporary deleterious variations in humans. A missense SNV can lead to an amino acid with 

altered physicochemical properties compared to the original one and this change can in turn be used to predict 

functional consequence to the protein (Ng & Henikoff, 2006). The following algorithms are based on these 

principles and combine MSAs, generated through a variety of methods, with scoring functions based on 

measures of amino acid similarity to produce functional predictions: Sorting Intolerant From Tolerant (SIFT) 

(Kumar, Henikoff, & Ng, 2009), Provean(Choi et al., 2012), MutationAssessor(Reva, Antipin, & Sander, 2011) 

and Panther (Mi et al., 2005). 

 

Supervised learning methods 

The supervised learning methods include Neural Networks: (SNAP) (Bromberg, Yachdav, & Rost, 

2008) and Support Vector Machines: (PhD-SNP) (E Capriotti, Calabrese, & Casadio, 2006), SuSPect(Yates, 

Filippis, Kelley, & Sternberg, 2014)and I-Mutant 2.0 (Emidio Capriotti, Fariselli, & Casadio, 2005). In neural 

networks and support vector machine methods, two training sets are constructed: one containing variants 

associated with disease and another without disease association. The conservation patterns and physical-

chemical properties of the variants on both sets are assessed and used to program the algorithm to “learn” the 

difference between the variants in the different sets. 

 

Consensus-based methods 

There are currently many computational tools widely employed for the prediction of the effects of 

mutations on protein function. The following softwares combine a variety of methods into a consensus 

classifier, resulting into significantly improved prediction performance: Condel(González-Pérez & López-Bigas, 

2011), PON-P2 (Niroula, Urolagin, & Vihinen, 2015) SNP-effect (De Baets et al., 2012) and SNP&GO (Emidio 

Capriotti et al., 2013). 

 

Evolutionary conservation analysis 

Consurf(Celniker et al., 2013) is a tool used to estimate the evolutionary conservation of amino acid or 

nucleic acid positions in their respective molecules based on phylogenetic relationships between homologous 

sequences. It was used to assess the conservation of amino acid residues in the APOA1 sequence. The following 

parameters were set: CSI-BLAST algorithm for the homolog search, using 3 iterations with an E-value cutoff of 

0.0001, against the UNIREF-90 protein database. 

 

III. RESULTS AND DISCUSSION 
A total of 95 unique APOA1 variants are currently displayed at the LOVD database. From these, 15 

SNVs classified as VUSs (Val10Met, Arg19Trp, Pro28Arg, Val43Met, Phe81Tyr, Pro123Ser, Arg140Leu, 

Leu41Ile, Leu150Phe, His159Arg, Glu54Gly, Met172Val, Ala79Thr, Ser191Asn and Ser191Arg) were 

retrieved for further analysis. 
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The 15 SNVs were analyzed using the prediction programs divided into three different approaches 

(sequence homology-based methods, supervised learning methods and consensus-based methods). After this 

analysis, 4 out of 15 missense SNVs were considered to be deleterious by at least three programs in each 

category: Pro123Ser, Arg140Leu, Ser191Asn and Ser191Arg (Table 1).Due to the lack of a three-dimensional 

structure representing the whole structure of the APOA1 protein, it was not possible to carry predictive analysis 

using structure-based methods, or more robust analysis, such as molecular dynamics simulations. 

Although X-ray crystallography or Magnetic Resonance are powerful tools in determining protein 3D 

structures, these methods are time-consuming and expensive, and there are limitations in the crystallization 

process of many proteins. However, the protein sequence of APOA1 is available and could be used by several 

programs in order to obtain useful information regarding the potential of the selected SNVs to cause impact on 

APOA1 structure.  

 

 

 
Table 1. Prediction results of APOA1 converging deleterious missense VUSs analyzed by 12 Bioinformatics 

tools classified in four different groups. "D" corresponds to the deleterious classification and "N" to neutral. 

 

In order to verify whether the SNVs are located in important positions for protein function, an 

evolutionary analysis based on multiple sequence alignment was carried out using the Consurf software. The 

results of this analysis showed that two of the deleterious SNVs considered to be deleterious by at least three 

programs in each category (Pro123Ser and Arg140Leu) are located in highly conserved regions of the APOA1 

protein, with conservation value of 8. The other two (Ser191Asn and Ser191Arg) showed medium level of 

conservation (value of 5) (Figure 1). 

 Thus, considering both the predictions carried out by the 12 programs and the evolutionary analysis, 

our results suggest that three missense SNVs located within the APOA1 protein could impact its function. 

Hence, these variants could be associated to diseases related to APOA1 disfunction.  

 

 

 



A preliminary Analysis of the Impact of Missense Variants of Unknown Significance in the.. 

DOI:10.9790/1813-0908014751www.theijes.com  Page 50 

 
 

Figure 1. Consurf profile of apolipoprotein A1 (APOA1). Value 1 indicates a high variability region. The value 

increases as the region becomes more conserved, up to value 9. The position values of four of the deleterious 

SNVs considered to be deleterious by at least three programs in each category (sequence homology-based 

methods, supervised learning methods and consensus-based methods) are indicated by red arrows. e – denotes 

an exposed residue according to the neural-network algorithm; b – indicates a buried residue according to the 

neural-network algorithm; f – indicates a predicted functional residue (highly conserved and exposed); s – 

indicates a predicted structural residue (highly conserved and buried). 

 

IV. CONCLUSION 
In this study, using missense SNV impact prediction programs and multiple alignment for evolutionary 

insights, we observed that four SNVs could have a harmful effect on the APOA1 protein. For this, 12 in silico 

SNV impact prediction programs were used to investigate the protein coded by the APOA1 gene. Results 

showed that from the 15 missense SNVs initially studied, four (Pro123Ser, Arg140Leu, Ser191Asn and 

Ser191Arg) were considered as deleterious by at least three programs in each category studied. Among these, 

two SNVs (Pro123Ser and Arg140Leu) are located in highly conserved regions of the APOA1 gene. 
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