ISSN (e): 2319-1813 ISSN (p): 23-19 - 1805

Root Multiplicity for Some GKM Algebras of Order 4

Uthra G^{1}, Priyanka M^{2}
${ }^{1}$ Department of Mathematics, Pachaiyappa's College, Chennai
${ }^{2}$ Department of Mathematics, Pachaiyappa's College, Chennai
Corresponding Author: Priyanka M

ABSTRACT

In this paper, we consider the generalized Kac-Moody algebras associated with Generalized Generalized Cartan matrices of finite A_{4} family. The root multiplicity of all roots is determined using Witt partition function.
KEYWORDS - Cartan matrix, Dimension, Hyperbolic, Partition function, Root Multiplicities.

I. INTRODUCTION

Borcherds introduced the notion of generalized Kac-Moody algebras (GKM algebras) in [2]. Determining the multiplicities for imaginary roots is still an open problem. Kim and Shin, computed the recursion dimension formula for all graded Lie algebras in [5]. A closed form root multiplicity formula for all the roots of GKM algebras were derived by Kang in [6] and [7]. Root multiplicities of the indefinite kac-Moody algebras $\mathrm{HD}_{4}{ }^{(3)}, \mathrm{HG}_{2}{ }^{(1)}$ and $\mathrm{HD}_{\mathrm{n}}{ }^{(1)}$ were determined in [3] and [4]. The classification of purely imaginary, Strictly imaginary and special imaginary roots were given in [8] - [12]. The EB_{2} family was studied in [13] and [14]. In this paper, we consider the finite A_{4} family and compute the root multiplicities for the Generalized KacMoody algebras.

II. PRELIMINARIES

The definitions and notations are used as in [1], [15] and [16]. Let $\mathrm{I}=\{1,2,3, \ldots\}$ be a finite or countably infinite index set and $A=\left(a_{i, j}\right)_{i, j)} \in I$ be a real matrix satisfying the following conditions:

1. either $a_{i i}=2$ or $a_{i i} \leq 0 \forall i \in I_{\text {; }}$
2. $a_{i j} \leq 0$ if $i \neq j$ and $a_{i j} \in \mathbb{Z}$ if $a_{i j}=2$;
3. $a_{i j}=0$ implies $a_{i j}=0$.

A is called a generalized generalized Cartan matrix (abbreviated as GGCM) and the Lie algebra $g(A)$ associated with A is called the generalized Kac-Moody algebra. We assume that a GGCM A is symmetrizable if \exists a diagonal matrix $D=\operatorname{diag}\left(s_{i} \mid i \in I\right)$ with $s_{i}>0(i \in I)$ such that DA is symmetric.

Let $I^{r e}=\left\{i \in I \mid a_{i i}=2\right\}, I^{i m}=\left\{i \in I \mid a_{i i} \leq 0\right\}$, and let $\underline{m}=\left(m_{i} \in \mathbb{Z}_{>0} \| i \in I\right)$ be a collectioon of positive integers such that $m_{\mathrm{i}}=1$ for all $i \in I^{r e}$.

The GKM algebra $g=g(A, \underline{m})$ associated with a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ of charge $\underline{m}=\left(m_{i} \mid i \in I\right)$ is the Lie algebra generated by the elements $h_{i}, d_{i}(i \in I), e_{i k}, f_{i k}\left(i \in I, k=1 \cdots, m_{i}\right)$ with the defining relations:

$$
\begin{aligned}
& {\left[h_{\mathrm{i}}, h_{j}\right]=\left[d_{\mathrm{i}}, d_{j}\right]=\left[h_{\mathrm{i}}, d_{j}\right]=0 \text {, }} \\
& {\left[h_{i}, e_{j i}\right]=a_{i j} e_{j p},\left[h_{i}, f_{j 1}\right]=-a_{i j} f_{j 1} x} \\
& {\left[d_{i}, e_{j i}\right]=\delta_{i j} e_{j 1},\left[d_{i}, f_{j i}\right]=-\delta_{i j} f_{j 1} x} \\
& {\left[e_{i k}, f_{i 1}\right]=\delta_{i j} \delta_{k i} h_{i x}\left(a d e_{i k}\right)^{1-d_{i j}}\left(e_{j i}\right)=\left(a d f_{i k}\right)^{1-a_{i j}}\left(f_{j 1}\right)=0 \text { if } a_{i i}=2, i \neq j \text {, }} \\
& {\left[e_{i k}, e_{j i}\right]=\left[f_{i} k_{n}, f_{j 1}=0 \text { if } a_{i j}=0\right.} \\
& \text { where, }\left(i, j \in I, k=1, \cdots, m_{\mathrm{i}}, l=1, \cdots, m_{j}\right) \text {. }
\end{aligned}
$$

Let $P^{+}=\left\{\lambda \in h^{*} \mid \lambda\left(h_{i}\right) \geq 0\right.$ for all $i \in I, \lambda\left(h_{i}\right) \in \mathbb{Z}_{z} 0$ if $\left.a_{i i}=2\right\}$, and let $V(\lambda)$ be the irreducible highest weight module over g with highest weight λ.

Let $W_{J}=\left\langle r_{j} \mid j \in J\right\rangle$ be the subgroup of W generated by the simple reflections $r_{j}(j \in J)$ and let $W(J)=\left\{w \in W \mid w \Delta^{-} \cap \Delta^{+} \subset \Delta^{+}(J)\right\}$. Then W_{J} is the Weyl group of the Kac-Moody algebra $g_{0}^{(J)}$ and $W(J)$ be the set of right coset representatives of W_{J} in W.

Proposition:[2]: $H_{K}^{(D)}=\underset{\substack{w \in W(\mathbb{W} \\ F \subset T \\ \mathbb{I}(w)+|F|=k}}{\oplus} \quad V_{T}(w(\rho-s(F))-\rho) \mathrm{w}$
here $V_{J}(\mu)$ denotes the irreducible highest weight module over $g_{0}^{(P)}$ with heighest weight μ and F runs over all the finite subsets of T such that any two elements in F are mutually perpendicular. Here we denote by $\|F\|$, the number of elements in F and $s(F)$, the sum of elements in F.

Define the homology space $H^{(D)}$ of $g^{(D)}$ to be

$$
H^{(D)}=\sum_{k=1}^{\infty}(-1)^{k+1} H_{k}^{(D)}=\sum_{\substack{w \in W(M) \\ F \subset T \\ \mathbb{l}(w)+|F| \succeq 1}}(-1)^{1(w)+|F|+1} V_{J}(w(\rho-s(F))-\rho) .
$$

Let
$P\left(H^{(D)}\right)=\left\{\alpha \in Q^{-}(J) \mid \operatorname{dim} H_{\alpha}^{(D)} \neq 0\right\}=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \cdots\right\}$ and $d(i)=\operatorname{din} H_{\tau_{i}}^{(D)}$ for $\mathrm{i}=1,2,3, \ldots$
For $\tau \in Q^{-}(D)$, we denote by $T^{(D)}(\tau)$ the set of all partitions of τ into a sum of $\tau_{\mathrm{i}^{\prime} S}$,
(i.e)., $T^{(0)}(\tau)=\left\{n=\left(n_{\mathrm{i}}\right)_{\mathrm{i} \geq 1} \mid n_{\mathrm{i}} \in \mathbb{Z}_{20}, \sum n_{\mathrm{i}} \tau_{\mathrm{i}}=\tau\right\}$.

For $n \in T^{(\mathcal{D}}(\tau)$, we will use the notaion $|n|=\sum n_{\mathrm{i}}$ and $n!=\Pi \quad n_{\mathrm{i}}!$. Now, for $\tau \in Q^{-}(\Omega)$, we define a function

$$
W^{(D)}(\tau)=\sum_{n \in T}()_{(\tau)} \frac{(n|x|-1)!}{n!} \Pi d(i)^{n_{i}}
$$

The function $W^{(D)}(\tau)$ is called the Witt partition function.
Theorem 1.1[2]: Let $\alpha \in \Delta^{-}(J)$ be a root of a symmetrizable GKM algebra g. Then we have

$$
\begin{aligned}
& \operatorname{dim}_{g_{\alpha}}=\Sigma_{d \mid \alpha} \frac{1}{d} \mu(d) W(J)\left(\frac{\alpha}{d}\right) \\
& \left.=\Sigma_{d \mid \alpha} \frac{1}{d} \mu(d) \Sigma_{n \in T} 0_{(} \frac{\pi}{d}\right) \frac{(|n|-1)!}{n!} \Pi d(i)^{n_{i}}
\end{aligned}
$$

where μ is the classical Mobius function.

III. ROOT MULTIPLICITY OF A GKM ALGEBRAS OF FINITE A TYPE

In this section, we explicitly determine the root multiplicities of GKM algebra associated with the GGCM which is an extension of finite A_{4}. Consider the GKM algebra of finite A_{4} type associated with the Generalized Generalized Cartan Matrix (GGCM)

$$
\begin{gathered}
\left(\begin{array}{ccccc}
-k & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right) \\
\text { of charge } \underline{m}=(s, 1,1,1,1) \text { where } k, s \in \mathbb{Z}_{>0} .
\end{gathered}
$$

Let $l=\{1,2,3,4,5\}$ be the index set for the simple roots of g. Then, α_{1} is the imaginary simple root with multiplicity $r \geq 1$ and $\alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{5} are the real simple roots.

Then we have
$T=\left\{\alpha_{1}, a_{1}, \cdots, a_{1}\right\}$ counted s times.

Since $\left(\alpha_{1}, \alpha_{1}\right)=-k<0, F$ can be either empty or $\left\{\alpha_{1}\right\}$.
If we take $l=\{2,3,4,5\}$, then

$$
\begin{aligned}
& \quad g_{0}^{(j)}=g_{0} \oplus \mathbb{C} h_{1}, \\
& \text { where } g_{0}=\left\langle e_{2}, f_{2}, h_{2}, e_{2}, f_{3}, h_{2}, e_{4}, f_{4}, h_{4}, e_{5}, f_{5}, h_{5}\right\rangle \\
& \text { and } W(J)=\{1\} \\
& \text { By proposition, we have } \\
& \\
& \quad H_{1}^{(j)}=V_{J}\left(-\alpha_{1}\right) \oplus \cdots \oplus V_{T}\left(-\alpha_{1}\right)(s \text { copies }) \\
& \\
& H_{2}^{(J)}=0 \\
& \\
& \vdots \\
& \\
& H_{k}^{(N)}=0 \text { for } k \geq 2 .
\end{aligned}
$$

Therefore we get

$$
H^{\mathbb{O}}=V_{I}\left(-\alpha_{1}\right) \oplus \cdots \oplus V_{I}\left(-\alpha_{1}\right)(s \text { copies })
$$

where $V_{J}\left(-a_{1}\right)$ is the standard representation.
By identifying $-l_{1} \alpha_{1}-l_{2} \alpha_{2}-l_{3} \alpha_{2}-l_{4} \alpha_{4}-l_{5} \alpha_{5} \in Q^{-}$with
$\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right) \in \mathbb{Z}_{20} \times \mathbb{Z}_{20} \times \mathbb{Z}_{\mathrm{z} 0} \times \mathbb{Z}_{\mathrm{z} 0} \times \mathbb{Z}_{20}$ we have
$P\left(H^{(D)}\right)=\{(1,0,0,0,0),(1,1,0,0,0),(1,1,1,0,0),(1,1,1,1,0),(1,1,1,1,1)\}$, where
$\operatorname{dim} H_{(1,0,0,0,0)}^{(D)}=\operatorname{dim} H_{(1,1,1,0,0,0)}^{(D)}=\operatorname{dim} H_{(1,1,1,0,0)}^{(D)}=\operatorname{dim} H_{(1,1,1,1,0)}^{(D)}=\operatorname{dim} H_{(1,1,1,1,1)}^{(D)}=s$.
For $l_{1}, l_{2}, l_{3}, l_{4}, l_{5} \in \mathbb{Z}_{20^{x}}$ the only partition of $\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)$ into a sum of
$(1,0,0,0,0),(1,1,0,0,0),(1,1,1,0,0),(1,1,1,1,0),(1,1,1,1,1)$ is

$$
\begin{aligned}
T^{(D)}(\tau)= & \left\{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=n_{1}(1,0,0,0,0)+n_{2}(1,1,0,0,0)+\right. \\
& \left.n_{a}(1,1,1,0,0)+n_{4}(1,1,1,1,0)+n_{5}(1,1,1,1,1)=\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)\right\}
\end{aligned}
$$

Therefore, by solving the above condition we get,

$$
\begin{aligned}
\left(l_{1}, l_{2}, l_{a}, l_{4}, l_{5}\right)= & \left(l_{1}-l_{2}\right)(1,0,0,0,0)+\left(k_{2}-k_{a}\right)(1,1,0,0,0)+ \\
& \left(k_{a}-k_{4}\right)(1,1,1,0,0)+\left(k_{4}-k_{5}\right)(1,1,1,1,0)+k_{5}(1,1,1,1,1) .
\end{aligned}
$$

Thus the Witt partition function (1) becomes

$$
W^{(J)}\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)=\frac{\left(l_{1}-1\right)!}{\left(l_{1}-l_{2}\right)!\left(l_{2}-l_{3}\right)!\left(l_{3}-l_{4}\right)!\left(l_{4}-l_{5}\right)!l_{5}!} r^{l_{1}}
$$

Therefore, by the Theorem (1), we obtain the following proposition:
Proposition 3.1: Let $g=g(A, \underline{m})$ be the GKM algebra associated with the GGCM

$$
A=\left(\begin{array}{ccccc}
-k & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

of charge $\underline{m}=(s, 1,1,1,1)$ with $k, s \in \mathbb{Z}_{>0}$.
Thus, for the root $\alpha=-l_{1} \alpha_{1}-l_{2} \alpha_{2}-l_{a} \alpha_{a}-l_{4} \alpha_{4}-l_{5} \alpha_{5}$ with $l_{1}, l_{2}, l_{3}, l_{4}, l_{5} \in \mathbb{Z}_{20}$, we have

$$
\begin{equation*}
\left.\left.\operatorname{dim} g\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)=\frac{1}{k_{1}} \sum_{d\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)} \mu\right) d\right) \frac{\left(\frac{l_{1}-1}{d}\right)!}{\left(\frac{l_{1}-l_{2}}{d}\right):\left(\frac{l_{2}-l_{3}}{d}\right)!\left(\frac{l_{3}-l_{4}}{d}\right)!\left(\frac{l_{4}-l_{5}}{d}\right)!\left(\frac{l_{5}}{d}\right)!} r^{\frac{l_{1}}{d}} \tag{2}
\end{equation*}
$$

Some special cases:

1. If $l_{5}>l_{1}$ or $l_{4}>l_{2}$ or $l_{a}>l_{2}$ or $l_{2}>l_{1}$,

$$
\text { then dimg } \quad\left(l_{1} l_{2} l_{3} \lambda_{4} \lambda_{5}\right)=0
$$

2. If $l_{1}=l_{2}=l_{a}=l_{4}=l_{5}$,
then dimg $\left(l_{1} l_{1} l_{1} l_{1} l_{1}\right)=\frac{1}{k_{1}} \sum_{d \mid l_{1}} \mu(d) r^{\frac{k_{1}}{d}}$.

Example:

(i) For the root (6,5,4,3,2), using the formula (2), we have
$\operatorname{dim} g_{(6,5,4,3,2)}=\frac{1}{6} \times \frac{6!}{4!2!} \times \frac{4!}{3!1!} \times \frac{3!}{2!1!} \times \frac{2!}{1!!!} r^{6}=60 r^{6}$
In particular when $\mathrm{r}=2$, we get dimg ${ }_{(6,5,4,3,2)}=1920$
(ii) For the root (10,8,6,4,2), using the formula (2), we have

$$
\operatorname{dim} g_{(10,8,6,4,2)}=11340 r^{10}-12 r^{5}
$$

In particular when $\mathrm{r}=2$, we get $\operatorname{dim} g_{(10,8,6,4,2)}=11611776$
(iii) For the root ($3,3,3,3,3$), using the formula (2), we have

$$
\operatorname{dim} g_{(3,3,3,3,3)}=\frac{r^{3}-r}{3}
$$

In particular when $\mathrm{r}=3$, we get $\operatorname{dim} g_{(3,3,3,3,3)}=8$
(iv) For the root (5,4,3,2,1), using the formula (2), we have
$\operatorname{dim} g_{(3,3,3,3,3)}=12 r^{5}$
In particular when $\mathrm{r}=5$, we get $\operatorname{dim} g_{(3,3,3,3,3)}=37500$

IV. CONCLUSION

Thus, we have delimited the root multiplicity for the finite type of GKM algebras A_{4}. Similarly we can explicitly find the root multiplicity for other families of finite, affine and hyperbolic type of GKM algebras.

REFERENCES

[1]. G.M. Benkart, S.J. Kang and K.C. Misra, Graded Lie algebras of Kac-Moody type, Adv, Math., 97, 1993, 154-190.
[2]. R.E. Borcheds, Generalized Kac-Moody algebras, J.Algebra, 115, 1988, 501-512.
[3]. J. Hontz and K. C. Misra, Root multiplicities of the indefinite Kac-Moody algebras $\mathrm{HD}_{4}{ }^{(3)}$ and $\mathrm{HG}_{2}{ }^{(1)}$, Communication in Algebra, 30, 2002, 2941-2959.
[4]. Kailash C. Misra, and Evan A. Wilson, Root Multiplicities of the Indefinite Kac-Moody Algebra $\mathrm{HD}_{\mathrm{n}}{ }^{(1)}$, Communications in Algebra, 44 (4), 2015, 1599-1614
[5]. K. Kim and D. U. Shin, The Recursive dimension formula for graded Lie algebras and its applications, Communication in Algebra, 27, 1999, 2627-2652.
[6]. S. J. Kang, Generalized Kac-Moody algebras and the modular function j, Math. Ann., 298, 1994, 373-384.
[7]. S. J. Kang, Root multiplicities of graded Lie algebras, in : Lie algebras and their representations, S. J. Kang, M. H. Kim, I.S. Lee (Eds), Contemp. Math, 194, 1996, 161-176.
[8]. N. Sthanumoorthy and P.L. Lilly, On the root systems of generalized Kac-Moody algebras, J.Madras University (WMY-2000 special issue) Section B:Sciences, 52, 2000, 81-103.
[9]. N. Sthanumoorthy and P.L. Lilly, Special imaginary roots of generalized Kac-Moody algebras, Communication in Algebra, 30, 2002, 4771-4787.
[10]. N. Sthanumoorthy and P.L. Lilly, A note on purely imaginary roots of generalized Kac-Moody algebras, Communication in Algebra, 31, 2003, 5467-5480.
[11]. N. Sthanumoorthy and P.L. Lilly, On some classes of root systems of generalized Kac-Moody algebras, Contemporary in Mathematics, AMS, 343, 2004, 289-313.
[12]. N. Sthanumoorthy and P.L. Lilly, Complete classifications of Generalized Kac-Moody algebras possessing special imaginary roots and strictly imaginary property, Communications in algebra (USA), 35 (8), 2007, 2450-2471.
[13]. Xinfang Song and Yinglin Guo, Root Multiplicity of a Special Generalized Kac- Moody Algebra EB ${ }_{2}$, Mathematical Computation, 3 (3), 2014, 76-82.
[14]. Xinfang Song and Xiaoxi Wang Yinglin Guo, Root Structure of a Special generalized Kac-Moody algebras, Mathematical Computation, 3 (3), 2014, 83-88.
[15]. V.G. Kac, Infinite Dimensional Lie Algebra, 3rd ed. Cambridge : Cambridge University Press, 1990.
[16]. Wan Zhe-Xian, Introduction to Kac-Moody Algebra, Singapore: World Scientific Publishing Co. Pvt. Ltd., 1991.

[^0]
[^0]: Priyanka M "Root Multiplicity for Some Gum Algebras of Order 4. "The International Journal of Engineering and Science (IJES) 7.8 (2018): 57-61

