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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

The combined effect of Coriolis force due to rotation and magnetic field dependent (MFD) viscosity on the onset 

of Bénard-Marangoni convection in a horizontal layer of ferrofluid is investigated theoretically. The lower 

boundary is taken to be rigid with fixed temperature, while the upper free boundary at which temperature-

dependent surface tension effect is considered is non-deformable and subject to a general thermal condition. 

The Rayleigh-Ritz’s method is employed to extract the critical stability parameters numerically with thermal 

Rayleigh number tR  or Marangoni number Ma  as the eigenvalue. The results reveal that, the Taylor number 

,Ta  Biot number Bi  and MFD viscosity parameter reduces the intensity of Bénard-Marangoni 

ferroconvection, while an increase in the magnetic Rayleigh number mR  and the non-linearity of fluid 

magnetization parameter 3M  is to hasten the onset of ferroconvection in a rotating ferrofluid layer. Further 

the effect of increase in Ta  and Bi  as well as decrease in 3M  and mR
 
is to increase the critical wave 

number and hence their effect is to decrease the dimension of convection cells. 

KEYWORDS:  Ferrofluid, Bénard-Marangoni convection, MFD viscosity, Coriolis force, Rayleigh-Ritz 

technique. 
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I. INTRODUCTION 

Thermogravitational convection in a layer of ferrofluid in the presence of a uniform magnetic field, 

known as ferroconvection, is analogous to classical Bénard convection and has received due attention in the 

literature because of promising potential in heat transfer applications. An extensive literature pertaining to this 

field is given in the books by Rosensweig [1], Berkovsky et al. [2] and Hergt et al. [3]. Ganguly et al. [4] have 

given an overview of prior research on heat transfer in ferrofluid flows and also discussed the heat transfer 

augmentation due to the thermomagnetic convection. In his review article, Odenbach [5] has focused on recent 

developments in the field of ferrofluids and their importance for the general treatment of ferrofluids. 

Nanjundappa and Shivakumara [6] have considered variety of velocity and temperature boundary conditions on 

the onset of ferroconvection in an initially quiescent ferrofluid layer. Kaloni and Mahajan [7] have studied the 

asymptotic stability of both equilibrium and arbitrary flows of ferrofluids. Shivakumara et al. [8] have 

investigated the onset of thermogravitational convection in a horizontal ferrofluid layer with viscosity depending 

exponentially on temperature.  

A limited number of studies have addressed the effect of surface tension forces on ferroconvection in a 

horizontal ferrofluid layer. Linear and non-linear stability of combined buoyancy-surface tension effects in a 

ferrofluid layer heated from below is considered by Qin and Kaloni [9]. The coupling between Marangoni and 

Rosensweig instabilities by considering two semi-infinite incompressible and immiscible viscous fluids of 

infinite lateral extent in which one of them is ferromagnetic and the other is a usual Newtonian liquid is studied 

by Weiplepp et al. [10]. Shivakumara et al. [11] have investigated the effect of different forms of basic 

temperature gradients on the onset of ferroconvection driven by combined surface tension and buoyancy forces 

with an idea of understanding control of ferroconvection. The Rayleigh-Bénard-Marangoni instability in a 

ferrofluid layer in the presence of weak vertical magnetic field normal to the boundaries has been discussed by 

Hennenberg et al. [12]. The onset of Marangoni ferroconvection with different initial temperature gradients is 

analyzed by Shivakumara and Nanjundappa [13]. Shivakumara et al. [14] have investigated the onset of 

Brinkman-Benard-Marangoni convection in an initially quiescent magnetized ferrofluid saturated horizontal 

layer of a very coarse porous medium in the presence of a uniform vertical magnetic field. Nanjundappa et al. 

[15] have investigated the onset of Bénard-Marangoni ferroconvection with Internal Heat Generation in the 

ca
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presence of a uniform vertical magnetic field. The same authors[16] have studied effect of the temperature 

dependent viscosity on the Onset of Marangoni- Bénard ferroconvection in presence of a vertical magnetic field. 

Recently, Nanjundappa and Arunkumar [17] have studied the effects of cubic temperature profiles on 

ferroconvection in Brinkman porous medium. 

The study of fluids in rotation is in itself an interesting topic for research. Ferrofluids are known to 

exhibit peculiar characteristics when they are set to rotation. Venkatasubramanian and Kaloni [18] have 

discussed the effect of rotation on thermo-convective instability of a horizontal layer of ferrofluid confined 

between stress-free, rigid-paramagnetic and rigid-ferromagnetic boundaries. Thermal convection in a rotating 

layer of a magnetic fluid is discussed by Auernhammer and Brand [19]. The weakly nonlinear instability of a 

rotating ferromagnetic fluid layer heated from below is studied by Kaloni and Lou [20]. Shivakumara and 

Nanjundappa [21] have studied the effects of Coriolis force and different basic temperature gradients on 

Marangoni ferroconvection. Shivakumara et al. [22] have investigated the onset of coupled Bénard-Marangoni 

convection in a rotating ferrofluid layer. Mahajan and Arora [23] have investigated the effect of rotation for 

convective instability in a thin layer of a magnetic nanofluid.  

In view of the fact that rotation gives rise to interesting practical situations, the object of this paper is to 

study the combined effect of rotation and surface tension effects on the linear stability of Bénard-Marangoni 

ferroconvection. In this study, the lower rigid boundary is considered to be isothermal and the upper non-

deformable free boundary is insulating to temperature perturbations. The resulting eigenvalue problem is solved 

numerically by employing the Galerkin technique with modified Chebyshev polynomials as trail functions. A 

comparative study is conducted to analyze on the onset of convection and also with the other works under the 

limiting conditions. 

 

II. MATHEMATICAL FORMULATION 

The physical configuration considered is as shown in Fig. 1. We consider an infinite horizontal layer of an 

electrically non-conducting Boussinesq ferromagnetic fluid of depth d permeated by uniform applied magnetic 

field 0H acting in the vertical direction. The layer is rotating uniformly about its vertical axis with angular 

velocity ˆ,k


which is bounded below by a rigid-isothermal surface and above by a non-deformable free-

insulating surface. A temperature drop T is acting across the boundaries and a Cartesian co-ordinate system 

 , ,x y z is used with the origin at the bottom of the surface and z-axis vertically upwards.  The surface tension 

  is assumed to vary linearly with temperature as 0 ,T T     where 0  is the unperturbed value and 

T  is the rate of change of surface tension with temperature. The momentum equation is containing viscous 

force 2 [  ]D  , where [ ( ) ]/ 2TD q q   
 

 is the rate of strain tensor and ( , , )q u v w


 is the 

velocity. The fluid is assumed to be incompressible having variable viscosity, given by (1 )0 B    
 

, 

where 


 is the variation coefficient of magnetic field dependent viscosity and is considered to be isotropic 

(Vaidyanathan et al. [24]), 0  is taken as viscosity of the fluid when the applied magnetic field is absent and 

( , , )x y zB B B B


 is the magnetic induction. Experimentally, it has been demonstrated that the magnetic 

viscosity has got exponential variation with respect to magnetic field (Rosenswieg [25]). As a first 

approximation for small field variation, linear variation of magnetic viscosity has been used. 

 

The basic governing equations for the flow of an incompressible ferrofluid are:  

 0q 


                                                                                                                    (1) 
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0( )B M H 
  

                                                                    (5) 

( , )
H

M M H T
H






                                                           (6) 

0 0
( ) ( )M M H H K T T                              (7) 

where,  p is the pressure, T is the temperature,  t is the time, B


 is the magnetic induction, H


 is the intensity of 

magnetic field. M


 is the magnetization, 0  is the reference density, t is the thermal expansion coefficient,   

0μ  is the magnetic permeability of vacuum, tk  is the thermal conductivity, 0 1( ) / 2T T T   is the average 

temperature, ,
0 0

( / )H TM H     is the magnetic susceptibility,  
0 0

( / ) ,H TK M T     is the  

pyromagnetic co-efficient, ,V HC is the specific heat capacity at constant volume and magnetic field per unit 

mass, 0 0( , )M M H T  is the saturation magnetization, HH


  and MM


 . The fluid is assumed to be 

incompressible having variable viscosity. 

 

The undisturbed basic quiescent state is given as follows:  

 0,q 


 ( ),bp p z  ( ),b z   0 ,b

T
T T z

d
 

 
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To study the stability of the system, we perturb all the variables in the form  

[ , , , , , ] [ , ( ) ', ( ) ', ( ) , ( ) , ( ) ]b b b b bq p T H M q p z p z T z T H z H M z M            
     

  
(10)                                                                                                 

where, q


, p ,  'η , T  , H 


 and M 


are perturbed variables and are assumed to be small. 

 

Taking curl of Eq. (2), using Eq. (10) and linearizing, the z-component of resulting equation is (after neglecting 

primes)   

 

2
0 02

w

t z


   

 
   

 
                                          (11) 

which is the vorticity transport equation, where y/ux/vξ   is the z-component of vorticity. 

Substituting Eq. (10) in Eq. (2), on taking curl twice, linearizing and together with ,H  


  the z-component 

of the resulting equation can be written as (after neglecting the primes)  

2
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t
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t z z

 
       



   
                    

      (12) 

where,
2 2 2 2 2

1 / /x y      
 
is the horizontal Laplacian operator.  

 

As before, Substituting Eq. (10) in Eq. (3) and linearizing, we obtain(neglecting primes) 

2
20 0

0 0 0 0 0 0
(1 )

t

K TT
C K T C w k T

t t z
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   
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Equations (4), after substituting Eq. (10), may be written as (after dropping the primes) 

2
2

0
1 2

0

1  (1 ) 0
M T

K
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 
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.                                               (14) 

 

As is customary in convective instability analysis we assume the normal mode hypothesis or separation of 

variables. Each variable is expanded in the form   
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( )
( , , , ) ( , )

i l x m y
f x y z t f z t e


                                                         (15) 

where l and m are wave numbers in the x and y directions respectively. 

Substituting Eq. (15) into Eqs. (11)-(14), we get  
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Thus, Eqs. (16)-(19) are governing linearized perturbation equations. The form of above equations are 

simplified by introducing the following non-dimensionalized quantities  
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2

( *, *, *) , , ,     * (1 ) , * ,    * d,  t* ,
x y z d

x y z H w w a a t
d d d d


  



 
       
 

   

          
 2

2

1  
* , * ,     *  

     

d

d K d

 
     

    


   .                             (20) 

Thus Eqs. (16)-(19) become (after neglecting the asterisks) 
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2 2
3(D ) 0a M D    .                                                      (24) 

 

Here, Ta  is the Taylor number, tR
 
the thermal Rayleigh number, mR  the magnetic Rayleigh number, 3M  the 

measure of nonlinearity of magnetization, Pr  the Prandtl number,   the non dimensional magnetic field 

dependent viscosity parameter, 2M  the non-dimensional parameter and is neglected in the subsequent analysis 

since its value is negligible. 

 

All the above parameters affect the stability of the system in one way or the other, as the subsequent analysis 

only deals with the dimensionless variables. We set 

    t
ezzzzWtzw


 )(),(),(),(),(,,,                                 (25) 

where,   is the real or complex. 

 

Using Eq. (25), Eqs. (21)-(24) can be written as   

1/ 2 2 22 2 2 2
t(1 )(D ) (D ) W  ( D )ma a Ta D R a R a            

 
        (26) 

2 2(D ) a Pr W                                                                               (27) 
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2 2
3(D ) 0a M D                                                    (28) 

1/ 22 2(1 )( )D a Ta DW      
 

.                                               (29) 

The corresponding boundary conditions for the perturbed non-dimensional variables take the form  

W = DW = 0     at  z = 0                                                   (30) 

2 2(1 ) 0aW D W M a D D Bi D           at z = 1,              (31) 

where, /TMa T d     is the Marangoni number and tk/dhBi   is the Biot number. 

 

III. METHOD OF SOLUTION 

The Eqs.(26)-(29) together with the boundary conditions (30) and (31) constitute an eigenvalue 

problem with tR or Ma  as an eigenvalue. To solve the resulting eigenvalue problem, Rayleigh-Ritz method is 

used. Accordingly, the variables are written in a series of basis functions as  
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where, the trial functions )(zWi , )(zi , )(zi  and ( )i z  will be generally chosen in such a way that they 

satisfy the respective boundary conditions and iA , ,iC iD  and iE  are constants. 

Substituting Eq. (32) into Eqs. (26)-(29), multiplying the resulting momentum Eq. (26) by )(zW j  energy Eq. 

(27) by ( ),j z  magnetic potential Eq. (28) by ( )j z  and vorticity Eq. (29) by )(zj , performing the 

integration by parts with respect to z between  z = 0 and z = 1 and using the boundary conditions, we obtain the 

following system of linear homogeneous algebraic equations: 

  0 ijiijiijiiji EFDECDAC                           

(33) 

  0 ijiiji CHAG                        

(34) 

  0 ijiiji DJCI                             

(35) 

  0 ijiiji ELAK .                       

(36) 

 

The coefficients ji jiC L  involve the inner products of the basis functions and are given by 
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where, the inner product is defined as  
1

0

.)( dz  

The above set of homogeneous algebraic equations can have a non-trivial solution if and only if
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                  (37)   

 

The eigenvalues have to be extracted from the above characteristic equation. For this, we select the trial 

functions as 
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where,
*
iT s are the modified Chebyshev polynomials such that they satisfy all the corresponding boundary 

conditions except the one, namely  
2 2 0D W Ma a D Bi      at z = 1 but the residual from this 

equation is included as a residual from the differential equation.  

 

  At this juncture, it would be instructive to look at the results for 1 ji and for this order 

Eq. (37) gives the following characteristic equation  
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a W

 
  

  

   
         

     

  

                                                                                                                                                             (39) 

where,  
2

1
2 5 15 / 4a Bi    ,  

2

2
( ) 42 131 ( )a    ,  

4 2

3
( 28 4201 )( )a a     ,   

2

4
14 a     and       

2

35
1342 aM . 

To examine the stability of the system, we take i   in Eq. (39) and clear the complex quantities, we 

obtain,  

2

1 2

2 2 2

2

5

2
1 3 4

147 ( 26 )1
2( 2 )

1575 2( 169 )

63
2( )

2

m
m t

Ta Pr
Ma Pr
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R W D
R R W i

 
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 




 
   
     

  
       

         (40) 

where, 
2 1

2 2 2
2

3 1 4

147 (2 13 )1
2(2 )

1575 2( 169 )

Ta Pr
Pr

a W

 
 

 

 
    

    

.                        

Since Ma  is a physical quantity it must be real, so that it implies either 0  or 0   (i.e. 0  ) and 

accordingly the condition for steady and oscillatory onset is obtained.  

 

The steady onset is governed by 0  and it occurs at ,sMa Ma  where  

1

3
52

2

63147
2 2( ) .

2 21575

s m
m t

R W DTa
Ma R R W

a W




 

   
       

 
    

         

                                                                                                                                                              (41) 

The oscillatory convection occurs at
0 ,Ma Ma  where 
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0
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Here,  
2

1 1 2 2

26

169
a Pr    ,    

2
2 1 3 4 2

2 147

169 26
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      3 4
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1 4 3
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1 2

2
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Pr
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
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The corresponding frequency of oscillations is given by  

 

      

2
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where, 

2
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For the occurrence of oscillatory onset 
2
 should be positive and the necessary conditions for the same are 

   

2

2
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(1 )( 3.23)

a Bi
Pr
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  
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(44) 

It is thus evident that for the oscillatory onset to exist the Prandtl number Pr  should be less than unity as 

observed in the classical viscous liquids. But for most of the ferrofluids, whether it is water based or any other 

organic liquid based, Prandtl number is greater than unity and hence the overstability is not a preferred mode of 

instability. In what follows we restrict ourselves to the case of steady onset and put 0  in Eq. (37). A 

nontrivial solution to the system requires the characteristic determinant of the coefficient matrix must vanish and 

this leads to a relation involving the parameters ,tR  ,Ma mR , 1M ,  3M , , ,Bi Ta  and a  in the form 

 1 3( , , , , , , , , ) 0t mf R Ma R M M Bi Ta a  .                                                              (45)             

The critical values of tcR or cMa   are found as a function of wave number a  for various values of physical 

parameters. The results presented here are for 8 ji  the order at which the convergence is achieved, in 

general. 

 

IV. RESULTS AND DISCUSSIONS 

The linear stability theory is used to investigate the effects of Coriolis force and MFD viscosity on 

coupled Bénard-Marangoni ferroconvection in a ferrofluid layer rotating about the vertical axis.  The fluid layer 

is heated from below and its upper surface is subjected to a surface tension decreasing with temperature. The 

resulting eigenvalue problem is solved by employing Rayleigh-Ritz’s method with either thermal Rayleigh 

number ( tR ) or Marangoni number ( Ma ) as the eigenvalue. Computations reveal that the convergence in 

finding cMa  crucially depends on the value of Ta , and for higher value of Ta  more number of terms in the 

expansion of dependent variables were found to be required. The results presented here are for i = j = 8 the order 

at which the convergence is achieved, in general. The critical Marangoni number is determined as a function of 

wave number by taking all the other parameters as given. The results thus obtained for different values of 

physical parameters are presented in Tables 1- 3 and graphically in Figs.2-8. 

 

In order to validate the numerical solution procedure used, first the critical values ),( cc aMa  

obtained from the present study under the limiting conditions are compared with the previously published results 

of  Vidal and Acrivos [26] in Table 1. The results tabulated in Table 1 for different values of Ta are for 

0t mBi R R      (i.e., classical Marangoni convection for non-ferrofluids). In order to compare the 

results of the present analysis with those of Qin and Kaloni [9] obtained numerically a new magnetic parameter 

S was introduced in the analysis. The critical values obtained for different values of cMa  with values of  

4( 10 )S   
and ( 0, 10)Bi   

are exhibited in Table 2. From the values presented in Tables 1 and 2, it is 

evident that there is an excellent agreement between the results of the present study and the previously published 
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ones. This verifies the applicability and accuracy of the method used in solving the convective instability 

problem considered. 

 

The tight coupling between buoyancy, surface tension, magnetic and Coriolis forces is exhibited 

quantitatively by tabulating the values of triplets ( tcR , cMa , mcR ) for different values of Ta  with 0.2   

and 2Bi  in Table 3. From the table, it can be seen that an increase in 3M  is to decrease mcR but only 

marginally and thus it has a destabilizing effect on the stability of the system. This may be due to the fact that 

the application of magnetic field makes the ferrofluid to acquire larger magnetization which in turn interacts 

with the imposed magnetic field and releases more energy to drive the flow faster. Hence, the system becomes 

unstable with a smaller temperature gradient as the value of 3M  increases. From the Table 3, we note that an 

increase in 3M  is to increase ca  and hence its effect is to decrease the dimension of convection cells. Besides, 

as 3M  increases, mcR decreases and the results reduce to that of classical Bénard-Marangoni problem for 

ordinary viscous fluids as 3M  . That is, mc tcR R  as 3M  . 

The salient characteristics of these physical parameters are exhibited graphically in Figs.2-8 for various values 

of Taylor number .Ta Figs. 2(a)-4(a) show the locus of the critical Marangoni number cMa  and thermal 

Rayleigh number tcR
 
for different  , Bi and 1M respectively. From these figures, it is obvious that the curves 

are slightly convex and there is a strong coupling between the critical thermal Rayleigh and the Marangoni 

numbers, and an increase in the thermal Rayleigh number has a destabilizing effect on the system. Thus, when 

the buoyancy force is predominant, the surface tension force becomes negligible and vice-versa.  

 

The effects of both buoyancy and surface tension forces are considered together on the onset of 

ferroconvection in a rotating ferrofluid layer. Fig. 2(a) shows the locus of cMa and tcR for different values of 

Ta  with two values of   (= 0 and 0.5) when 13 M , 1 2M   and 2Bi  . From the figure, the extent to 

which the surface tension effect is diminished due to tcR  however, depends on the strength of rotation and also 

the viscosity variation with respect to magnetic field dependent viscosity parameter  . The critical thermal 

Rayleigh number tcR and Marangoni number cMa  increase with an increase in the Taylor number and this 

indicates the presence of Coriolis force due to rotation is to suppress the Bénard-Marangoni ferroconvection. 

For Taylor number 
310Ta , the effect of Coriolis force is not so significant, while for 

310Ta  a rapid 

increase in the critical thermal Rayleigh number and Marangoni number could be seen. As Ta , the 

Bénard-Marangoni ferroconvection ceases to exist and the corresponding tcR  and cMa become infinite. 

Besides, from Fig. 2(a), it is seen that tcR and cMa increase with an increase in the MFD viscosity parameter 

  and thus it has a stabilizing effect on the system. That is, the effect of increasing  is to delay the onset of 

Bénard-Marangoni ferroconvection. From Fig. 2(b), we note that increase in the value of   is to decrease the 

critical wave number ca and thus to widen the size of convection cells and opposite is the case with an 

increasing in the value of Taylor number Ta . 

 

The plots in Fig. 3(a) represents the locus of cMa  and tcR  for different values of Ta  with two values 

of Biot number Bi  (= 1 and 2) when 0.2  , 3 1M  , 1 2M  . From the figure it is evident that an increase 

in the value of heat transfer coefficient Bi  (i.e., Biot number) is to increase tcR as well as cMa  and thus its 

effect is to delay the onset of Bénard-Marangoni ferroconvection. This may be attributed to the fact that with 

increasing Bi , the thermal disturbances can easily dissipate into the ambient surrounding due to a better 

convective heat transfer coefficient at the top surface and hence higher heating is required to make the system 

unstable. Fig. 3(b) represents the corresponding critical wave number ca and it indicates that increase in the 

value of Bi  and tR  is to increase ca  and thus their effect is to reduce the size of convection cells.  

 

The locus of tcR  and cMa  is shown in Fig. 4(a) for different values of Ta  with two values of 1M  (= 0 and 1) 

when 3 1,M  2Bi  , 0.2  . It is observed that an increase in the value of 1M  (i.e., increase in the 
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destabilizing magnetic force) is to decrease the values of ,tcR cMa and makes the system more unstable due to 

an increase in the destabilizing magnetic force. That is to say that the buoyancy and magnetic forces are 

complementary to each other. Fig. 4(b) illustrates that increase in the value of 1M  is to decrease the critical 

wave number ca
 
slightly and thus to increase the size of convection cells. 

 

Figures 5-8 show the critical values cMa  and tcR  as well as corresponding ca  for different values of Ta , ,Bi

mR and 3M  respectively as a function of MFD viscosity parameterΛ . From the figures, it is seen that 

c tcMa R  and the effect of increasing   is to delay the onset of Bénard/Marangoni ferroconvection. Further, 

increase in Ta  (Fig. 5a) and Bi  (Fig. 6a), and decrease in mR (Fig. 7a) and 3M (Fig. 8a) is to increase the 

critical thermal Rayleigh/Marangoni number and hence has a stabilizing effect on the system. Moreover, 

increase in Ta  (Fig. 5b), Bi (Fig. 6b), mR  (Fig. 7b) and 3M (Fig. 8b) is to decrease the width of convection 

cells. The critical wave numbers ca  for Bénard ferroconvection are always found to be higher than those of 

pure Marangoni ferroconvection (see Figs. 5(b)-8(b)). Further inspection of these figures reveals that an 

increasing the values of  is to decrease the critical wave number ca  and thus to increase the size of 

convection cells. 

 

V. CONCLUSIONS 

The combined effect of Coriolis force due to rotation and magnetic field dependent (MFD) viscosity on 

the onset of Bénard-Marangoni convection in a horizontal layer of ferrofluid is investigated theoretically. The 

lower boundary is taken to be rigid with fixed temperature, while the upper free boundary at which temperature-

dependent surface tension effect is considered is non-deformable and subject to a general thermal condition. The 

Rayleigh-Ritz’s method is employed to extract the critical stability parameters numerically with thermal 

Rayleigh number tR  or Marangoni number Ma  as the eigenvalue. Comparisons with previously published 

works are performed and excellent agreement between the results is obtained. From the foregoing study, the 

following conclusions may be drawn: 

 

1. The critical thermal Rayleigh number tcR and Marangoni number cMa increases with an increase in the 

Taylor number Ta  and this indicates the presence of Coriolis force due to rotation is to reduce the intensity 

of Bénard-Marangoni ferroconvection. 

2. The critical thermal Rayleigh number tcR  increases with an increase in the value of Biot number Bi  and 

MFD viscosity parameter  and thus their effect is to delay the onset of Bénard-Marangoni 

ferroconvection. 

3. The effect of increasing the value of magnetic Rayleigh number mR  and the             non-linearity of fluid 

magnetization parameter 3M  is to hasten the onset of             ferroconvection in a rotating ferrofluid layer. 

4. The buoyancy force and surface tension force complement with each other and it is always found that 

c tcMa R ; a result in accordance with ordinary viscous fluids. 

5. As 3M  , the results reduce to that of the Bénard-Marangoni convection problem for ordinary viscous 

fluids. 

6. The effect of increase in Ta  and Bi  as well as decrease in 3M  and mR
 
is to increase the critical wave 

number and hence their effect is to decrease the dimension of convection cells. 

  

ca



Effect Of MFD Viscosity On Bénard-Marangoni Ferroconvection In A Rotating Ferrofluid Layer 

DOI:10.9790/1813-07070188106                                          www.theijes.com                                          Page 97 

Table  1 Comparison of cMa and ac for different values of Ta  when 0,mR  0   and 0.tR   

 Ta  

 Vidal and Acrivos [26]            

  cMa                    ca      

     Present study 

    cMa            ca      

0    80                        2.0   79.61             1.99 

102    92                        2.2   91.31             2.17 

103    164                      3.0   163.11           2.97 

104    457                      5.0   456.21           4.99 

105    1400                    8.6   1400.45         8.82 

 

Table   2 Comparison of critical values of tcR   and mcR  for different values of Ma  and Bi     when 0, 

3 1,M   0Ta   and 4
.10S 

  
 

 

Bi  

 

Ma  

Present Analysis Qin and Kaloni [9] 

tcR  mcR
 tcR  mcR  

 

 

 

 

 

0 

0 637.875 40.688 652.87 42.624 

10 566.418 32.083 572.11 32.731 

20 492.593 24.265 493.33 24.426 

30 416.358 17.335 414.72 17.199 

40 337.656 11.401 335.98 11.255 

50 256.414 6.575 254.06 6.455 

60 172.539 2.977 171.44 2.939 

70 85.9213 0.738 85.67 0.734 

79.61 0.000 0.000 0.000 0.000 

 

 

 

 

 

 

10 

0 

 
934.009 87.237 892.06 79.577 

50 843.914 71.219 809.25 65.489 

100 748.641 56.046 721.01 51.981 

150 647.822 41.967 628.88 39.298 

200 540.996 29.268 526.21 27.690 

250 427.582 18.283 418.23 17.492 

300 306.831 9.414 301.89 9.114 

350 177.771 3.160 176.10 3.101 

413.44 0.000 0.000 0.000 0.000 
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Table  3 Critical instability parameters tcR  and mcR  for different values of Ma  and Ta  

when  =0.2 and 2.Bi   

 
 

 
Fig. 1. Physical configuration 
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Fig. 2 Plots of (a) cMa verses tcR and (b) ca  verses tR for different values of Ta  with two 

values of when 3 1,M  1 2M   and 2.Bi   
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Fig. 3  Plots of (a) cMa verses tcR and (b) ca  verses tR for different values of Ta  with two 

values of Bi when 3 1,M  1 2M   and 0.2.  
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Fig. 4  Plots of (a) cMa verses tcR
 
and (b) ca  verses tR for different values of Ta  with two values of 1M

when 3 1,M  2Bi   and 0.2.  
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Fig. 5  Variations of (a) cMa and tcR  and (b) ca  as a function of  for different values of  Ta  when 

3 1,M  100mR   and 2.Bi   
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Fig. 6  Variations of (a) cMa and tcR  and (b) ca  as a function of  for different values of Bi  when 

3 1,M  100mR   and 
210 .Ta   
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Fig. 7  Variations of (a) cMa and tcR  and (b) ca  as a function of  for different values of mR  when 

3 1,M  2Bi   and 
210 .Ta   
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Fig. 8 Variations of (a) cMa and tcR  and (b) ca  as a function of  for different values of 3M   when 

600,mR  2Bi   and 
210 .Ta   
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