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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 
The absolute motion of an arbitrary asymmetric rigid body is studied. This motion is determined after its 
relative motion has been obtained. The most important peculiarity in this dynamical rigid body model is that the 
selected pole does not coincide with its mass center. Seven new kinematic characteristics have been defined. 
The first ones are the following vectors: real absolute, transmisive and relative generalized velocities. The 
second ones are the vectors-real absolute, transmisive, relative and Coriolisian generalized accelerations. Two 
new theorems are formulated. The first one is for summation the vectors of real generalized velocities. The 
second one is for summation the vectors of real generalized accelerations. The system of differential equations 
describing the rigid body relative motion in matrix form is determined. The algorithm for obtaining the rigid 
body absolute motion is described. 
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I. INTRODUCTION 
This article represents an extension of the ideas described in the work [1]. If the investigations on the 

rigid body general motions are traced in historical plan, it will be ascertained that at the beginning of Mechanics 
development, the rigid bodies have been assumed as symmetrical, [2, 3]. This statement has its own 
explanations. Then there were no computational tools and the solutions were mostly analytical, [4, 5, 6]. 
However, with development of mathematics and numerical methods, the researches were gradually exploring 
the three-dimensional rigid body motions of not only symmetrical but also asymmetric bodies. 

This complication of the dynamic model coincides with the development of matrices and matrix 
calculations, [7]. In these cases, the initial point of body-related coordinate systems, called shortly pole, is 
chosen to coincide with the rigid body mass center. This leads to significant advantages and simplifies mainly in 
the type of differential equations describing three-dimensional rigid body motions, [8, 9, 10, 11]. 

In the present work, the most complex dynamic model is used – an asymmetric rigid body with a pole 
that does not coincide with its mass center. Description of this most complex dynamic model requires the using 
of new additional kinematic and dynamic characteristics as well as new theorems in rigid body Kinematics and 
Dynamics, [1, 12, 13]. 

The study of the relative and absolute motion of a material point is described in many Mechanics 
books, for example [14, 15]. Theoretical matrix study of relative and absolute motion of an asymmetric rigid 
body with a pole that does not coincide with its mass center is a very important problem for the engineering 
practice. That is why, this actual task is precisely studied in this work. 
 

II. STATEMENT OF THE PROBLEM 
The general motion of a free asymmetric rigid body marked with the letter L  is studied, (Fig.1). 
The body A  is called absolutely body. It is assumed absolutely immovable. 
The coordinate system ζηξN  defined with unit vectors λ , μ  and ν  is fixedly connected to this body 

A . It is called absolutely coordinate system. All vectors and matrices counted to the coordinate system ζηξN  
or any other coordinate system which is moving translational to the coordinate system ζηξN  are denoted by a 
lower index A . 

The body B  is called transmission body. It is making a general absolutely motion towards body A . 
An arbitrary point 1O  from the body B  is chosen. This point is called shortly pole. Its position in the 

space of coordinate system ζηξN  is defined by absolutely radius-vector 
1Oρ . 

Two coordinate systems are put in the pole 1O . 

The first coordinate system 1111 ζηξO  is moving translational towards the coordinate system ζηξN . 
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The second coordinate system 1111 zyxO  is fixedly connected to the body B  and it is defined by unit 
vectors 

1xe , 
1ye  and 

1ze . The orientation of the axes of the coordinate system 1111 zyxO  towards the 

coordinate system 1111 ζηξO  is set by three Cardan angles eψ , eθ  and eϕ . All vectors and matrices counted 
to the coordinate system 1111 zyxO  are denoted by a lower index B . All vectors and matrices counted to the 
coordinate system 1111 ζηξO  are denoted by a lower index A . 

 
Fig. 1  Dynamics of rigid body absolute motion. 

Between the coordinate systems ζηξN  and 1111 zyxO , or between the coordinate systems 

1111 ζηξO  and 1111 zyxO , the following transition matrices are introduced: 

 T
ABBA ,, UU =  ,          T

BAAB ,, UU =  . (1) 
The main kinematic characteristics for body B  are the following. 
Absolutely velocity of the pole 1O : 
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Body L  is called relative body. It is making absolutely motion towards body A  and at the same time it 
is making relative motion towards body B . For a pole of body L  is chosen an arbitrary point O , which do not 
coincide with rigid body mass center C . The pole O  is defined by absolutely radius-vector Oρ  and by relative 
radius-vector Oδ . The mass center C  is defined by absolutely radius-vector Cρ , by the relative radius-vector 

Cδ , and the radius-vector Cr . 
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Three coordinate systems are put in the pole O . 
The first coordinate system ZYXO  is moving translational to the coordinate system ζηξN . The 

second coordinate system 111 ZYXO  is moving translational to the coordinate system 1111 zyxO . The third 
coordinate system zyxO  is fixedly connected to this body L  and it is defined by unit vectors i , j  and k . 
The orientation of the axes of the coordinate system zyxO  towards the coordinate system 1111 zyxO  is set by 
three Cardan angles rψ , rθ  and rϕ . The orientation of the axes of the coordinate system zyxO  towards the 
coordinate system ZYXO  is set by three Cardan angles aψ , aθ  and aϕ . All vectors and matrices counted to 
the coordinate system zyxO  are denoted by a lower index L . 

Between the coordinate systems zyxO  and 111 ZYXO , or between the coordinate systems zyxO  
and 1111 zyxO , the following transition matrices are introduced: 

 T
BLLB ,, UU =  ,          T

LBBL ,, UU =  . (5) 
Between the coordinate systems zyxO  and ZYXO , or between the coordinate systems zyxO  and 

ζηξN , the following transition matrices are introduced: 
 T

ALLBBALA ,,,, . UUUU ==  ,          T
LAABBLAL ,,,, . UUUU ==  . (6) 

The main kinematic characteristics for body B  are the following. 
Relative velocity of the pole O : 

 =)(
,
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ZOYOXO ,,, δδδ &&&  . (7) 

Vector-relative angle velocity: 
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Matrix- relative angle velocity: 
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Using the kinematic characteristics defined above, the velocity of the pole O  is determined by the 
formula: 
 )(

,
)(

,
)(
,

)(
, .

1

r
AO

e
A

T
AO

a
AO

a
AO vvv ++= ωΔ  . (10) 

The following new matrix is introduced in expression (10), namely: 
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III. NEW GENERALIZED KINEMATIC CHARACTERISTICS 

The following new generalized kinematic characteristics are defined. 
Vector-real absolute generalized velocity at the pole O : 
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Vector-real absolute generalized velocity at the pole 1O : 
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Vector-real relative generalized velocity at the pole O : 
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Using the theorem for summation of angle velocities: 
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for the vector-real absolute generalized velocity at the pole O  can be composed the following formula: 
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 [ ]31diagE =  . (17) 

The matrix 0  is a zero matrix, which has dimension 33× . 
Now, the following matrix is introduced: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

E0
E

Y
T

AO
AO

,
,

Δ
 . (18) 

Then formula (16) is written in a compact form as follows: 
 )(

,
)(
,,

)(
, 1

. r
AO

a
AOAO

a
AO uuYu +=  . (19) 

A vector-real transmissive generalized velocity at the pole O  is defined: 
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Using the theorem for summation of linear velocities: 
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and the theorem for summation of angle velocities, formula (15), a new theorem for summation of rigid body 
generalized velocities at the pole O  is defined, namely: 
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This theorem, described by equation (22), is talked by the following manner: “The vector-real absolute 
generalized velocity at the pole O  is a vector sum of the vector-real transmissive generalized velocity and the 
vector-real relative generalized velocity determined at the same pole.” 

For six-dimensional vectors and matrices, analogous six-dimensional block diagonal transition matrices 
are constructed: 
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Using the theorem for summation of angle velocities, formula (15), the matrix-absolute angle velocity 

)( e
AΩ  is determined as follows: 
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The matrix )( a
AΦ  has a block diagonal structure and it is composed by the formulas: 
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The formula (22) is differentiated towards the time: 

 ( ) ( ) ( ))(
,

)(
,

)(
,

r
AO

e
AO

a
AO td

d
td

d
td

d uuu +=  , (29) 

 ( ) ( ) ( ))(
,

)(
,,

)(
, 1

. r
AO

a
AOAO

a
AO td

d
td

d
td

d uuYu +=  . (30) 

The first derivative on the right-hand side of equation (30) has the following form: 
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The second derivative on the right-hand side of equation (30) has the following form: 
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The four new generalized kinematic characteristics are defined. 
The first one is the vector-real absolute generalized acceleration at the pole O : 
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The second one is the vector-real transmissive generalized acceleration at the pole O : 
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The third one is the vector-real relative generalized acceleration at the pole O : 
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The forth one is a vector, which plays the same role as the Coriolis acceleration when the relative 

motion of a material point is studied, [2, 3, 4, 5]. This new generalized kinematic characteristic will be named 
the vector-real Coriolisian generalized acceleration at the pole O  and it has the following form: 
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Taking into account all equations from (29) till (36), a new theorem for summation of rigid body 
generalized acceleration at the pole O  is defined, namely: 
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This theorem, described by equation (37), is talked by the following manner: “The vector-real absolute 
generalized acceleration at the pole O  is a vector sum of the vector-real transmissive generalized acceleration, 
the vector-real relative generalized acceleration and the vector-real Coriolisian generalized acceleration 
determined at the same pole.” 
 

IV. PURPOSE OF THE STUDY 
The main purpose of this study is: 
• Through the new theorem for summation of rigid body generalized velocities at the pole O , 
• Through the new theorem for summation of rigid body generalized acceleration at the pole O , 
• Through the differential equations, which have been obtained in previous author’s articles, 

describing the absolute general motion of a rigid body, 
to be obtained in matrix form the differential equations describing the relative motion of investigated 
asymmetrical rigid body at a pole, which do not coincide with its mass center, and then the rigid body absolute 
generalized coordinates to be obtained. 
 

V.   EQUATIONS OF RIGID BODY ABSOLUTE MOTION 
The following system of differential equations, which is described the absolute general motion of an 

arbitrary asymmetrical rigid body at the pole O , is obtained in the article [11, 12], namely: 
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The matrix AO ,A  has the following block diagonal structure: 
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The matrix M  is a diagonal and it is composed by the body mass m , namely: 
 [ ]3mdiagM =  . (40) 

The matrix AO ,J  is presented the rigid body inertia tensor for the pole O  towards the coordinate 
system ZYXO , namely: 
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The matrix AC ,A  has also the block diagonal structure as follows: 
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The matrix AC ,J  is presented the rigid body inertia tensor for the mass center C  towards the 
coordinate system 222 ZYXC , which is not shown in the Fig. 1. This coordinate system has initial point the 
rigid body mass center C  and its axis are parallel to the coordinate systems ZYXO  and ζηξN . 

The matrix AC ,S  is presented the rigid body static tensor for the pole O  towards the coordinate system 
ZYXO , namely: 

 ACAC m ,, .RS =  , (43) 
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The matrices AO ,T , AC ,K  and AO ,B  have the following structure: 
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The vector AO ,Q  is presented a vector-real generalized force of the rigid body for a pole O  towards 
the coordinate system ZYXO  and it contains the main force AF  and the main moment AO ,M , determined by 
the reduction of all outer forces applying on the rigid body for that pole, namely: 
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The formulas (22) and (37) are substituted in the differential equation (38), and then the following 
equation is obtained: 
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Now, the formula (49) is substituted in the equation (50) as follows: 
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The matrix AO ,T  is presented as follows: 
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The formula (52) is differentiated towards the time as follows: 
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The second derivative in the end of equation (54) is determined as follows: 
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 ++= ABBLLOLBBAABBOBA ,,,,,,,, ...... WWTWWWTW &&   

 =++= ABBOBAABBLLOLBBAABBLLOLBBA ,,,,,,,,,,,,, .......... WTWWWTWWWWTWW &&&   

 ++= ABBLLO
r

LLBBAABBO
e

BBA ,,,
)(

,,,,
)(

, ........ WWTWWWTW ΦΦ   

 =−−+ )(
,,,,

)(
,,,,, ........ e

AABBOBAAB
r

BBLLOLBBAAO ΦΦ WTWWWTWWT&   

 =−−++= )(
,

)(
,,,

)(
,

)( .... e
AAO

r
AAOAOAO

r
AAO

e
A ΦΦΦΦ TTTTT &   

 ( ) ( ) AO
e

A
r

AAOAO
r

A
e

A ,
)()(

,,
)()( .. TTT &++−+= ΦΦΦΦ  . (55) 

The formula (55) is substituted in formula (54) and finally the following result is obtained: 

 ( ) ( ) AO
e

A
r

AAOAO
r

A
e

AAOAO ,
)()(

,,
)()(

,, ..
1

TTTTT &&& ++−++= ΦΦΦΦ  . (56) 

Now, the formula (56) is substituted in the equation (51) as follows: 
 ( ) ( ) ( ) −+++++ )(

,
)(
,,

)()()(
,

)(
,

)(
,, ... r

AO
e

AOAO
r

A
e

A
c

AO
r

AO
e

AOAO uuBA ΦΦααα   

 ( ) ( ) ( ) +++++− )(
,

)(
,,,,

)(
,

)(
,

)()(
, .....

1

r
AO

e
AOACACAO

r
AO

e
AO

r
A

e
AAO uuKATuuB &ΦΦ   

 ( ) ( ) −+++ )(
,

)(
,,,,

)()( .... r
AO

e
AOACACAO

r
A

e
A uuKATΦΦ   

 ( ) ( ) +++− )(
,

)(
,,,

)()(
, .... r

AO
e

AOACAC
e

A
r

AAO uuKAT ΦΦ   

 ( ) AO
r

AO
e

AOACACAO ,
)(
,

)(
,,,, ... QuuKAT =++ &  . (57) 

The resulting system of differential equations (57) contains the unknown functions XO ,δ , YO ,δ , ZO ,δ , 

rψ , rθ , rϕ ; XO ,δ& , YO ,δ& , ZO ,δ& , rψ& , rθ& , rϕ& ; XO ,δ&& , YO ,δ&& , ZO ,δ&& , rψ&& , rθ&&  and rϕ&& . This system can be 
integrated numerically at corresponding initial conditions by appropriate mathematical programs, for example 
MatLab. Its integration in the time area gives us the law of relative motion of the studied rigid body L , namely 

XO ,δ , YO ,δ , ZO ,δ , rψ , rθ  and rϕ . 

After determining of the vector-real relative generalized velocity, namely )(
,

r
AOu , using the formula 

(21), the vector-real absolute generalized velocity )(
,

a
AOu  can be obtained. 

To find the law of absolute motion of the body L  the following differential equation have to be solved: 
 )(

,
)(. a

AO
a uqH =&  , (58) 
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T

aaaOOO
a ϕθψζηξ=)(q  , (59) 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

H0
0E

H  , (60) 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψθψ
ψθ−ψ

θ
=

aaa

aaa

a

cos.cossin0
sin.coscos0

sin01
H  . (61) 

 
VI. CONCLUSION 

Seven new additional kinematic characteristics are defined, namely, vectors-real generalized absolute, 
transmissive and relative velocity, vectors-real generalized absolute, transmissive, relative and Coriolisian 
acceleration. With these new additional kinematic characteristics, two new theorems are defined: the first one is 
for summation of the real generalized rigid body velocities, and the second one is for summation of the real 
generalized rigid body acceleration is formulated. A system of differential equations (57) in a matrix form is 
obtained, which serves to find the law of rigid body relative motion. Then, by means of other system of 
differential equations (58), the law of rigid body absolute motion is determined. 
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