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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

This paper deals with continuous-time identification of linear parameter varying systems with fractional models 

using a direct approach. Methods based on the least squares and instrumental variables approaches are firstly 

proposed. Then an optimization approach combined with the optimal instrumental variables algorithm is 

presented to identify the commensurate order of the fractional model. A numerical example is investigated in 

order to assess the consistency of the developed methods in a noisy output context and via a Monte Carlo 

simulation study. 
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I INTRODUCTION 

The non-integer order derivative has attracted a considerable attention recently. Its major characteristics 

are the ability to describe the complex behavior of many physical systems and to model high order integer 

complex systems with a reduced number of parameters. Therefore, fractional differentiation has been used in 

various fields. In biology, where macro-scale behavior are predicted from micro-scale observations using 

fractional calculus [1]. In chemical physics, it was proven that the relation between the heat flow and the 

temperature in a semi-infinite homogeneous medium depends on half-order fractional derivatives [2]. Also, it is 

a well-known tool for controller synthesis such as the fractional PID controller [3] and the CRONE controller 

[4].                 

Concerning the identification framework, fractional differentiation has been the subject of many types 

of research. Various methods based on fractional linear models have been developed. Only the Linear Time 

Invariant (LTI) context has been considered. Refer to [5, 6, 7, 8, 9, 10] for an overview. Nonetheless, linear 

models are not accurate enough for physical system modeling since, in practice, physical behaviors may present 

nonlinearity and/or a time varying nature. In [11], fractional nonlinear models based on Volterra series are 

developed and proposed for system identification. To the best of author’s knowledge, there exist no 

identification methods for fractional systems with time varying nature except the work in [12]. In the latter study, 

the authors have proved that a thermal system that exhibits a diffusive interface have a fractional comportment. 

Also, it presents nonlinear properties due to the dependency of the system dynamics on the temperature. So to 

identify this system, a fractional continuous-time linear parameter varying (LPV) model is used. 

Linear Parameter Varying systems are a class of dynamical systems whose mathematical description 

depends on an external parameter, named the scheduling variable, which change values over time. This class of 

system envelops a wide variety of systems encountered in practice [13]. 

Recently, many types of research have been interested in continuous-time (CT) and discrete-time (DT) 

LPV system identification with rational models. In the available studies, two approaches are established to 

identify a CT LPV system: the first one is the local approach where, at each working point, a local LTI model is 

identified. Then, the LPV model is obtained by interpolating the obtained linear models [14, 15]. The second 

one is the global approach where a variable scheduling parameter is considered to identify the LPV model [16, 

17,18, 19]. In this work, the global approach is considered. 

Our main contribution is to extend CT system identification methods with LPV rational models to the 

fractional case basing on a global approach. The developed methods are based on the Least Squares (LS) 

techniques and called fractional-linear parameters varying-ordinary least squares fLPV- OLS and the 

instrumental variable (IV) techniques and called fractional linear parameters varying-instrumental variable 
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fLPV-IV and fractional-linear parameters varying-simplified refined instrumental variable fLPV-SRIV. Then, a 

gradient-based approach combined to the fLPV-SRIV estimator allows the estimation of the fractional 

differentiation orders. 

This paper is outlined in the following way. The next Section details the differential equation 

representation of CT fractional LPV systems. In Section 3, 4 and 5 the proposed methods for CT fractional LPV 

systems are detailed. Their performances are analyzed in Section 6 through a Monte Carlo simulation study. 

Finally, Section 7 concludes the paper and indicates some future work. 

 

II FRACTIONAL LPV SYSTEMS 

1.1. MATHEMATICAL BACKGROUND 

The SISO LPV system input ( )u t  and the noise-free output 0y ( )t are related by the following fractional 

differential equation:  

0 0

1 0

( ) ( ) ( )  ( ) ( )n m

N M

n t m t

n m

y t a p y t b p u t
  

 

                                                  (1) 

where p  is the time-domain differential operator (also denoted D ), 
d

p D
dt

   and the differentiation 

orders       

1 2 0 1;N M             

 

are allowed to be non-integer positive numbers and ordered for identifiability purposes. 

:t  P  (the compact 
n

 PP denotes the scheduling space) is the scheduling variable, ( )t t  . 

The coefficients of the fractional differential equation ( )n ta   and ( )tmb  are functions with static dependence 

on the scheduling variable t at time t , i.e dependence only on the instantaneous value of t  at time t . 

To compute fractional derivatives of a continuous time function, different definitions are developed [20, 21, 22, 

5]. The  -order fractional derivative of a continuous-time function ( )f t , relaxed at 0t  , i.e. ( ) 0f t  for 

0t  , is numerically evaluated using the Grünwald approximation [23]: 
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For fractional LPV systems time-domain simulation, the Grünwald approximation (equation (2)) is used. 

 

1.2. PROBLEM STATEMENT 

 

Consider the noisy fractional LPV SISO system described by Figure 1. 
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Figure 1: Fractional LPV system in a noisy output context. 

The continuous-time fractional system H , in a noisy output context, is  described by the following LPV input-

output representation with a static scheduling dependence: 

 

0

0 0

( , ) ( ) ( , ) ( )

( ) ( ) ( )

t t

k k k

A p y t B p u t

y t y t e t

 


 
                                                                     (4) 

 

where t =k kh  ( k ). y(t )k  is the measured output signal and 0e (t )k  is its additive noise. 

The ρt dependent polynomials A and B are defined by: 
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where an(ρt) and) are parameterized as: 
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are assumed to be a priori known meromorphic function ( f  is called a meromorphic  

function if it takes the form 

1

f



  with  and 1 are analytic functions and 1 0  .). This class of functions 

contains the common functional dependencies that result during LPV modeling of physical systems [16]. 

For simplification, ( )n ta  and ( )tmB  are supposed to be function of the same t -function lf  defined as 

follows: 

 ( ) , 0, ,l

l t tf l L                                                                                 (7) 

A polynomial dependence on t for the coefficients is considered: 
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Let θ, the parameters vector containing the coefficients of the fractional differential equation: 

 θ = [a1,··· ,aN, b0,··· ,bM]
T                                                                                                                               

(9) 

with 

an = [an,0,an,1,··· ,an,L]; n = 1,··· ,N 

       (10) 

bm = [bm,0,bm,1,··· ,bm,L]; m = 0,··· ,M 

0{ ( ), ( ), ( )} t

t

N

N k k k kD y t u t t   (
t

N  is the number of samples) denotes a set of available data sampled with a 

sampling period h. 

H 

ρ ( t ) 
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e 0 ( t k ) y ( t k ) 

y 0 ( t ) 

y 0 ( t k ) 
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Our objective is to estimate θ using DNt. Firstly the fractional orders are fixed a priori and only the fractional 

differential equation coefficients are estimated. Then, the case of unknown fractional orders and the differential 

equation coefficients is treated. 

 

III IDENTIFICATION METHODS FOR FRACTIONAL LPV SYSTEMS 

3.1. SVF BASED METHODS 

The estimated output signal ˆ( )ky t  is written in a linear regression form: 

 ˆ( ) ( )T

k ky t t   (11) 

where the regression vector ( )T

kt is defined by: 

 ( ) ( )T

k kt t F    (12) 

 denotes the kronecker product (or tensor product), F is defined by: 

F = [1, f1(ρ),··· ,fL(ρ)] (13) 

and ( )T

kt is given by: 

 01( ) ( ), , ( ), ( ), , ( )N MT

k k k k kt p y t p y t p u t p u t
          (14) 

The regression vector defined by (14) contains fractional derivatives of the input and the noisy output signals. 

Note that fractional differentiation is characterized by a long memory. Also, the use of the Grünwald 

approximation (equation (2)), to compute the fractional differentiation, amplifies the additive noise effect. To 

solve this problem, the use of a low pass filter is proposed. The filter differentiates signals at low frequencies and 

filter high frequencies. An extension of the State Variable Filter (SVF) approach for fractional derivatives is 

proposed in [21, 24] and used in this work. 

The transfer function of the fractional SVF Fυ(s) is defined by the following expression: 
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where s is the Laplace variable, λ is the cut-off frequency and ⌊ .⌋  stands for the floor operator. 

Thus, the regression vector (14) can be rewritten as: 
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where p
αn

yf(tk) and p
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uf(tk) are the fractional filtered derivatives of the input and the measured output signals: 
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The main  idea is to use the filtered signals instead of noisy ones to estimate the parameters vector. 

3.1.1. FRACTIONAL-LINEAR PARAMETER VARYING-ORDINARY LEAST SQUARES ALGORITHM (FLPV-OLS) 

This method is inspired by the work developed for DT LPV system identification with rational models [17] and 

extended in this section for fractional models. 

The fLPV-OLS estimator is given by: 

ˆ arg min ( , )
n tfLPV OLS NV D


 





                                        (18) 

where nθ is the number of parameters to be estimated and the cost function V (DNt,θ) is defined as: 
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and  based on the equation error: 

 eθ(tk) = yf(tk) − Φf
T 

(tk)θ (20) 

Then, the optimal estimator is given by: 
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This estimator is unbiased and consistent if: 

 0lim
tN

e 


 (22) 
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In the noisy framework, the fLPV-OLS estimator gives biased parameters. Particularly in the case of fractional 

LPV system identification, fractional derivatives take into account the whole past of the noisy output and the 

linear parameters variation. To obtain an unbiased estimation of the parameters vector, an instrumental variable 

approach is proposed and presented in the next section. 

3.1.2. FRACTIONAL-LINEAR PARAMETER VARYING-INSTRUMENTAL VARIABLE ALGORITHM (FLPV-IV) 

The DT LPV system identification with rational models, developed in [25] is extended for CT LPV system 

identification with fractional models in this section. 

It is based on an auxiliary model obtained by computing an estimation using the ordinary least squares algorithm. 

It consists in introducing a new vector ζ(tk) called the instrument. ζ(tk) must be correlated with the regression 

vector Φ(tk), defined by (12) and decorrelated with the additive noise. 

Then, the IV estimator based on the fractional SVF approach is given by: 

  (23) 

The IV vector ζf  is defined by: 

 ( )T

f k ft F    (24) 

with 

01( ) ( ), , ( ), ( ), , ( )N MT
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       (25) 
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   and n

fp u


are respectively the fractional filtered derivatives of the auxiliary model output and 

the input signals. 

Two conditions must be fulfilled to guarantee the convergence of this algorithm: 
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where E [.] denotes the mathematical expectation. 

Note that, the IV algorithm typically gives unbiased estimates with a large estimate variance [25]. Next, to 

ameliorate these results, iterative techniques are proposed. 

3.2. FRACTIONAL-LINEAR PARAMETER VARYING- SIMPLIFIED REFINED INSTRUMENTAL VARIABLE ALGORITHM 

(FLPV-SRIV) 

The simplified refined instrumental variable approach (SRIV) is developed to identify a CT rational LPV 

systems [19] and for CT LTI system identification with fractional models [26]. 

A generalization of the SRIV approach for CT fractional LPV systems identification is proposed [27]. 

Substituting the linear parameters by their expressions given by (5) and (6) in the fractional LPV system 

(equation (4)) yields to: 
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Equation (27) can be rewritten as: 
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where 
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Equation (27) can be rewritten as follows: 
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Then, the new estimated output can be written as: 

  (32) 

The regression vector is defined as: 
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,m l

fu


and
,n l

fy


 are the fractional derivatives of the filtered input and output signals. 

Let 0 ( )iQ s  denotes the filter transfer function which depends on the estimates at the iteration i. 
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By assuming this problem reformulation, the fLPV-SRIV estimator is defined by: 

ˆ arg min ( , )
n t

i i

fLPV SRIV NV D
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where V 
i
(DNt,θ) is the cost function minimized at each iteration: 
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( )i

ke t  is the equation error. 

Then, the optimal solution is given by: 
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The fLPV-SRIV algorithm is summarized by: 

Step 1: i = 0 

Compute the first estimate by applying the fLPV-IV estimator (equation (23)). 

 
0 ˆ ˆ fLPV SRIV fLPV IV     

Step 2: i=i+1 

compute ( )ky t the output signal using the obtained model at the previous iteration. 

Step 3:  

compute the estimated continuous-time filter : 
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and generate the filtered fractional derivatives of the input and the output signals u
β

f
m,l 

and ˜  . 
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Step 4: built the filtered regression vector ϕf(tk) and the filtered instrumental vector ζf(tk): 

1 1

0 0

,1 ,,1 ,

,1 ,,1 ,

( ) ( ), , ( ), , ( ), , ( ),

( ), , ( ), , ( ), , ( )

N N

M M

LLT

f k f k f k f k f k

L L

f k f k f k f k

t y t y t y t y t

u t u t u t u t

  

  

     




  

  
                            (39) 

1 1

0 0

,1 ,,1 ,

,1 ,,1 ,

( ) ( ), , ( ), , ( ), , ( ),

( ), , ( ), , ( ), , ( )

N N

M M

LLT

f k f k f k f k f k

L L

f k f k f k f k

t y t y t y t y t

u t u t u t u t

  

  

     




     

  
                           (40) 

and compute the fLPV-SRIV estimate  using equation (37); 

 

Step 5:  

if convergence occurs according to a specified convergence criterion 
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 ò  ;where 

510ò  − − 

or a maximum number of iterations is reached, then stop, else go to step2. 

 

IV COMMENSURATE FRACTIONAL ORDER AND LINEAR COEFFICIENTS ESTIMATION 

In this section, the fractional orders of the LPV model are assumed unknown. An algorithm called order 

optimization-fLPV-SRIV (OO-fLPVSRIV) is proposed to compute both coefficients and fractional orders 

estimates. The new estimated parameters vector is given by: 

 Θ = [θ,η]
T 

(41) 

where 

θ = [a1,··· ,aN,b0,··· ,bM] 

(42) 

η = [α1,··· ,αN,β0,··· ,βM] 

The number of the parameters to be estimated is (L + 2)(N + M + 1). To be reduced, considering a 

commensurate order model described by: 
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where υ is the commensurate order (the commensurate order υ is the biggest real number such that all 

differentiation orders are integer multiples of υ. υ exist assuming that all differential orders are rational (in 
* ) 

and where
NN




  and ' MM




  are integers. 

Thus, the new parameters vector is given by: 

 Θ = [a1,··· ,aN,b0,··· ,bM,υ]
T 

(44) 

So, the commensurate order is estimated by minimizing the following quadratic criterion: 

 
21ˆ( )

2
J    (45) 

where   is the output error given by:  

ˆ( ) ( ) ( )k k kt y t y t    (46) 

 

The quadratic criterion (equation (45)) is nonlinear to Θ. Then a nonlinear optimization technique is required to 

iteratively estimate Θ. The Gauss-Newton algorithm is chosen in this work. 

The optimization order-fLPV-SRIV algorithm (OO-fLPV-SRIV) is summarized as follows: 

Step 1: i = 0 Initialization  

initialize υ = υ
0 
and estimate the fractional differential equation coefficients using the fLPV-SRIV algorithm. 

Step 2: GAUSS-NEWTON OPTIMIZATION METHOD 

do 
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Set λ = Λ (λ is a positive real constant) 

 do 

 refine the new commensurate order: 
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                                   (48)  

 compute the fractional differential equation coefficients via the fLPVSRIV algorithm. 

 evaluate J
i+1

 

 λ = λ/2 

while J
i+1 

> J
i  

i = i + 1 

while 
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510ò or a maximum number of iteration is not reached. 

 

V NUMERICAL EXAMPLE 

In the first part of this section, the fractional orders are fixed a priori and only the coefficients are estimated. In 

the second part, the commensurate order is assumed unknown and estimated along with the coefficients. 

 

Considering the following fractional LPV model: 
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where 
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 (50) 

and the scheduling signal t is defined by: 

 
2

( ) sin( )
100

t t t


    (51) 

The sampling period h = 0.1 sec. The input signal ( 1,1)U  is a uniformly distributed sequence (Figure 2). The 

measured output signal is corrupted by an additive noise (Figure 2). 
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Figure 2: Input, noisy output and scheduling variable signals zoomed between t = 0 and 200 sec 

(SNR = 25 dB). 

5.1. KNOWN ORDER 

In this section, the fractional commensurate order is a priori fixed to υ = 0.75. The parameters vector is defined 

by: 

 θ0 = [1,−1,2,1,2,1]
T 

(52) 

First, the choice of the SVF cut-off frequency and the number of data samples are studied with the help of Monte 

Carlo simulation. Secondly, a comparison study is made between the developed methods. Thirdly, the SNR 

(Signal to Noise Ratio) influence on the fLPV-SRIV quality of estimation is analyzed. Finally, the choice of the 

fractional order is discussed. 

 

5.1.1. CHOICE OF THE SVF CUT-OFF FREQUENCY 

To study the influence of the cut-off frequency λ on the quality of estimation, λ is chosen between 0.1 

rad/sec and 60 rad/sec. For each value of λ, the three developed algorithms are applied. Nt = 4000 is the number 

of samples and Nmc = 300 runs of Monte Carlo simulations (SNR = 20 dB) are applied.  

The normalized relative quadratic error (NRQE) defined by: 

 

2

0

2
1 0

ˆ
1 mcN

i

imc

NRQE
N

 




   (53) 

is plotted in Figure 3. Note that the fLPV-OLS is the most influenced by the choice of λ. For the next, λopt = 20 

rad/sec will be considered. 

 
Figure 3: Evolution of the NRQE according to the SVF cut-off frequency λ. 
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5.1.2. COMPARATIVE STUDY 

In this part, a comparative study between the developed identification estimators is analyzed.  

Nt = 4000 samples are collected. The filter cut-off frequency is set to λ = 20 rad/sec. Nmc = 300 runs of Monte 

Carlo simulation with different white noise realizations for SNR = 20 dB are considered. 

For each Monte Carlo run, the fLPV-OLS, the fLPV-IV and fLPV-SRIV algorithms are applied. Table 1 illustrates 

the mean, the standard deviation (std) of each estimated parameter and the NRQE.  

From the obtained results it can be noticed that the fLPV-OLS algorithm gives biased estimates unlike the fLPV-

IV and the fLPV-SRIV algorithms. 

 

Table 1: Monte Carlo simulation results for SNR = 20 dB: Comparative study. 

Method fLPV-OLS fLPV-IV fLPV-SRIV 

Parameter Mean std NRQE Mean std NRQE Mean std NRQE 

0

1 1a   
-0.2813 0.0065  

 

 

 

 

0.8013 

1.0206 0.0499  

 

 

 

 

0.0329 

0.9996 0.0115  

 

 

 

 

0.01889 

1

1 1a    
-0.2885 0.0083 -1.0223 0.0609 -0.9946 0.0136 

0

2 2a   
0.5450 0.0063 2.0009 0.0303 1.9966 0.0073 

0

2 1a   
0.3674 0.0144 0.9648 0.0341 0.9982 0.0109 

0

0 2b   
0.4324 0.0085 1.9969 0.0455 1.9974 0.0069 

1

0 1b   
0.2375 0.0145 0.9612 0.0511 0.9979 0.0087 

 

 

Also, the fLPV-SRIV estimator provides more consistent estimates with a minimal variance. 

 

The histograms of the fLPV-IV and fLPV-SRIV estimates are depicted in Figure 4. 

 

 
(a) fLPV-IV 

  

 
(b) fLPV-SRIV 

Figure 4: Distribution of estimates for SNR = 20 dB: Comparison study. 
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The fLPV-SRIV estimates are around the true values, which prove their efficiency. For the rest of the study, only 

the fLPV-SRIV will be considered. 

 

5.1.3. SNR INFLUENCE 

Different white noise realizations are considered (SNR = 10 dB) with Nmc = 300. Simulation results of the fLPV-

SRIV are illustrated in the Table 2. 

 

Table 2: Simulation results for SNR = 10 Db 

Parameter Mean std NRQE 

0

1 1a   
0.9945 0.0217  

 

 

 

 

0.0259 

1

1 1a    
-1.0261 0.0252 

0

2 2a   
2.0039 0.0160 

0

2 1a   
0.9916 0.0212 

0

0 2b   
1.9970 0.0111 

1

0 1b   
0.9903 0.0134 

 

Figure 5 illustrates the histograms of the fLPV-SRIV estimates. Even, in the case of a high level noisy context the 

fLPV-SRIV algorithm still gives unbiased estimates, which improve the effectiveness of the developed estimator. 

 
Figure 5: Distribution of fLPV-SRIV estimates SNR = 10 dB. 

 

5.1.4. CHOICE OF THE FRACTIONAL ORDER 

The l2-norm (in dB) of the normalized output error is defined by: 

 

2

2

ˆ
10logdB

y y
J

y

 
  

 
 

                                                            (54) 

where y  and ŷ  are, respectively, the measured and the estimated output. 

The l2-norm (in dB) is evaluated for different values of the commensurate order [0,1.2[  and plotted in 

Figure 6. By applying the fLPV-SRIV algorithm, the optimal value of JdB is found at 0.75  and the criterion 

at the optimum is close to −SNR ( JdB ≃ −20 dB). 
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Figure 6: Criterion versus commensurate fractional order. 

5.2. ESTIMATION OF THE COMMENSURATE ORDER 

In this section, assuming an unknown commensurate order. The model structure is set to equation (49), 

with an unknown commensurate order υ. 

The initial commensurate order is set to be integer υ
0 

= 1. Nmc = 300 runs of Monte Carlo simulation are 

considered with SNR = 20 dB. The estimation results are summarized in table 3. 

 

Table 3: Estimation of the commensurate order. 

Parameter Mean std NRQE 

0

1 1a   
1.0309 0.0607  

 

 

 

 

0.0267 

1

1 1a    
-1.0070 0.0813 

0

2 2a   
1.9942 0.0208 

0

2 1a   
1.0044 0.0266 

0

0 2b   
2.0122 0.0391 

1

0 1b   
1.0026 0.0483 

 

 

0.75   0.7522 -  

Figure 7 presents the histograms of the OO-fLPV-SRIV estimates. 

 

 
Figure 7: Distribution of OO-fLPV-SRIV estimates 
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All the estimates converge to the true ones with a minimum value of NRQE 

 

VI CONCLUSION 

In this paper, three new methods are developed to deal with the fractional LPV system identification 

using a direct approach. All the estimators are based on a global approach using the input, the output and the 

scheduling variable signals. In the case of unknown coefficients and differentiation orders, a nonlinear 

optimization algorithm is combined with the optimal instrumental variable method to estimate both of them. The 

efficiency of the proposed estimators is analyzed through a numerical example via Monte Carlo simulations and 

under given conditions. Results have shown that the fLPV-SRIV is the best estimator. Its performances have 

demonstrated that it is robust to noise. An interesting perspective is the extension of the proposed methods for 

error in variable context. 
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