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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

The paper  treats the control of production process with production delay. A simple production system with 

delay is analyzed, where the production of a single product is continuously performed. The Lambert functions 

are used to solve the governing delayed differential equation of the production process in an analytical form. In 

the paper, the stability of the production system control is investigated and an analytical stability bound is 

obtained, whichdecides if the production process can be controlled in the stable area. Analytical results of 

production process with delay of various size are computed, which reveal an aperiodic or oscillatory character 

of actual inventory, respectively.Results, obtained by using Lambert function are compared with solutions, 

computed by Runge-Kutta numerical integration. All comparisons show a perfect  matching of both solutions. 

Key words:production system with delay, Lambert functions, stability bound, oscillatory and aperiodic 

response.   
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I. INTRODUCTION 
This paper treats a production process with its inherent property that every production demands some time and 

introduces some time delay. Time delays, of course, appear also in many physical and engineering systems, for 

example in the control of nuclear reactors, as transport delays in combustion processes, in the control of robots 

and manipulators, in chemical reactions and so on. However, while time delays in physics and engineering often 

can be neglected by compelling reasons, this cannot be applied in the case of the production processes. Ignoring 

the time delays in production would lead to oversimplification, where the most important phenomena are 

overlooked. The presence of  time delays is the cause of many phenomena, which cannot be expected in systems 

without delays.The evolution of systems with time delays can be described in the form of delayed differential 

equations (DDE's). The systems of DDE's in general can be nonlinear (NDDE's) or linear (LDDE's), where the 

later will be exclusively treated in this paper. For nonlinear systems is advantageous, if the problem at hand can 

be linearized and methods of solving LDDE's can be applied. If this is not the case, the system ofNDDE's must 

be solved numerically. Often the integration of  NDDE's is performed by Runge-Kutta methods, which is 

applied also in this paper for the sake of comparisons with analytical solutions. Albeit numerical methods of 

solving DDE's can be applied in nonlinear as well as in linear systems, this advantage goes on the cost of 

generality of solutions. Numerical solutions can be obtained only for specified values of parameters. To 

overcome this deficiency, analytical methods for solving LDDE's are developed in the past two decades, which 

offer a systematic exploration of the properties of delayed systems.  

Among analytical methods of solving LDDE's, the method of Lambert functions [1], [7] has been enforced, 

which is presented in this paper. In the proposed method, the solution of the system of LDDE's is sought in the 

form of linear combination of Lambert  oscillation modes [1]. Besides the method of Lambert functions, the 

well knownanalytical method of steps [7] and the classical Laplace transform method are applicable. The 

deficiency of the method of steps is the lack of transparency and the complex computing, when the number of 

steps increases. The applicability of the Laplace transform method is limited by implementation of the inverse 

transformation. For solving LDDE's, various combinations of analytical and numerical methods can be 

alternatively used, where is characteristic that  the original problem is reduced on the numerical solving of the 

some (easier) algebraic problem.  Among these methods the least squares method [7], the Pade approximation 

[10], the homotopic perturbation method [6], the Adomian decomposition method [5], the conversion on the 

nonlinear (transcendental) eigenvalue problem [11] and the use of the equivalent integral equations with delay 

[2] are often applied. Due to the production delays, the inventory can have an oscillatory character, which 

adversely affects the variable costs of production. The purpose of this paper is to analyze the inventory 

oscillations in an analytical form, to conquer an in-depth understanding about the control of the production 

process with delay and to investigate its stability. 
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II. A SYSTEM APPROACH TO THE CONTROL OF THE PRODUCTION PROCESS 

WITH DELAY 
Time delays are the characteristic property of each production process and the cause of many phenomena, which 

cannot be expected in processes without delays. In this paper, the simple production process with the time delay 

is treated, which can be described in the form of LDDE. The governing LDDE of production process will be 

solved by using Lambert functions [1], [4], [8]. In derivation of the governing LDDE is assumed, that the 

production consists of manufacturing a single product, which is continuosly produced. The production is 

managed in such a way that the optimal quantity of product is manufactured.The production is carried out in 

accordance with the standard regulations and then stored until it is sent to the customers on the basis of their 

orders. The control of the quantity of the product, which must be daily produced (or must be produced in the 

other appropriate time unit) is performed by means of production orders.  

The goal of the control of production system is the reduction of production costs in the selected time period on 

the minimum. The variable part of production costs depends on variations of quantity of production as well as 

on the inventory level of finished products. Production costs per unit of finished product increases if the quantity 

of production varies in comparison with costs of the constant quantity of production. On the other side, the 

transport costs increase when the inventory level of finished products increases and the reduction of the stock 

level of manufactured products belowa certain limit causes a delay in the performance of orders.In order that the 

production can be controlled, functions of variations of production quantity and the stock level of finished 

products are introduced. The block diagram of the control of the production system based on the system analysis 

is shown in Fig. 1. 

 
Figure 1. Thesystem approach to the control of production process with time delay 

 

The input variable ofthe controlled production system depicted in the Fig. 1 is the desired quantity of inventory 

θi(t), which is assumed to be optimal. The actual quantity of inventory of finished products θo(t) represents the 

output variable of the production system. It is assumed that the actual quantity of inventory of finished products 

can take positive as well as negative values. The negative inventory level in the fact represents unsatisfied or 

retained orders of customers, respectively.The control of the quantity of the production is based on the 

comparison of the optimal quantity of inventory θi(t) with the actual inventory level θo(t), which is expressed by 

means of positive (or negative) deviation of inventory or so called control error ε(t):  

      i ot t t     (1) 

Customer orders per unit of time are treated as the load of the production process and are denoted by θL(t). The 

initial quantity of inventory of finished products at the beginning of the production process in Fig. 1 is denoted 

as θo(0) and is in the rule equal to zero.   

The production system can be completely described by means of two additional variables x(t) and y(t), 

respectively, where x(t) represents the new planned production per unit of time and y(t) represents the actual 

production per unit of time. The new planned production is determined on the basis of production orders, where 

it is assumed, that production orders are issued continuously.  If the control error ε(t) is positive, the production 

order must ensure the increase of the new planned production for the amount K1ε(t). In addition, the proportional 

rate K2θL(t) must be considered with which new orders of customers are taken into account. Accordingly, the 

new planned production is described by the relationship:  

  (2) 

When the daily production order about the new planned production is issued, some time elapses before the 

required quantity of products is manufactured. The elapsed time represents the delay T  between the output of 

the production order for the new planned production and their realization. The time delay T can be variable in 

the general setting, however due to the simplicity, it will be considered as constant  during the whole production 

     1 2 Lx t K t K t  
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process. The actual production per the time unit takes this delay into account and is expressed by means of the 

delayed new planned production as:   

  (3) 

The status of the actual inventory θo(t) in the warehouse is represented by means of the accumulated quantity of 

products less the accumulated amount of customer orders and is expressed in a mathematical form by the 

following integral:  

        
0

0 d

t

o o Lt y           
, (4) 

where the initial status of inventory in the time t=0 is considered as θo(0). By means of Eqs. (1)-(4) the complete 

block diagram of the control of production process with delay is drawn up, where the links between particular 

intermediate variables are determined via transfer functions as are usually used in the control engineering. For 

example, transfer functions K1 and K2 correspond to two proportional controllers, the transfer function e
-Ts

 

represents the Laplace transform of the delay block with the time delay T, the transfer function 1/s is the Laplace 

transform of an integrator, which corresponds to the relation (4) and s is the Laplace variable in the complex 

domain. The block diagram of the control of the production process with delay, which is described by means of 

input-output relations (1)-(4) is shown in the Fig. 2.  

 
Figure 2. The feedback control of the production process with delay according to the input-output relations (1)-

(4). 

The accumulation of the inventory in the warehouse, which is expressed by means of the definite integral (4) 

can be transformed by differentiation on the time t into the more convenient form of differential equation:  
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  , (5) 

By elimination of intermediate variables ε(t), x(t) and y(t)  from the sytem of equations (1), (2), (3) and (5), the 

governing nonhomogenous LDDE of the production control with delay T is derived:   

        1 1 2

d

d

o
o i L LK t T K t T K t T t

t


          , (6) 

where K1 denotes the rate of planned new production based on the information about control error ε(t) and K2 

denotes the rate of planned new production considering the information about customer orders.  In solving 

LDDE (6), without loss of generality can be assumed, that the optimal quantity of inventory θi(t-T) on the 

preshape time interval [-T,0] is equal zero, θi(t-T)=0, because it appears additively in Eq. (6). By considering 

this simplification, the following LDDE  is obtained:  

      1 2

d

d
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       . (7) 

This type of the LDDE is solved in the sequel, where θL(t) is the loading of the system, which is assumed to be 

known on the time interval [0,t), where the solution of the actual inventory of products θo(t) is sought, as well as 

is prescribed on the preshape interval [-T,0] in the form of the time dependent function θL(t-T).   

 

III. SOLVING THE PROBLEM OF THE CONTROL OF PRODUCTION PROCESS 

WITH DELAY BY MEANS OF LAMBERT FUNCTIONS 
When are solving LDDE (7), similarly as in the case of ordinary linear differential equations (OLDE's) at first 

must be solved the corresponding homogeneous equation. In the case of the control of the production process 

with delay as is described in the previous section, the homogeneous LDDE of the first order reads as follows:  
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where the time course of the actual inventory θo(t) on the preshape interval [-T,0] is prescribed as the known 

function θo(t) = (t),  t[-T,0].  From the behaviour of ordinary differential equations  (ODE's) is known, that 

the solution of Eq. (8), when the time delay T is equal zero, T=0, can exponentially grow or can decay. It is 

usually not expected, that the solution of Eq. (8) can have an oscillatory character or is even unstable at delays, 

which are great enough, T0 . It will be shown later, that the nature of the particular solution is strongly 

dependent on the relationship between values of parameters K1 and T as well as of the prescribed function (t) 

on the preshape interval.  

The ansatz for solution of Eq. (8) has the same form θo(t) =Ce
st
 as for ODE's. By substitution of the ansatz into 

Eq. (8), one obtains the nonlinear transcendental characteristic equation:  

   1 0
sT

F s se K    (9) 

The difficulty to obtain an analytical solution of LDDE originates from the fact, that an analytical method of 

solving of the transcendental equation is needed.   

With the purpose to solve Eq. (9), a new approach is presented, which is based on the special function W(s), 

which is called the Lambert function. On the basis of definition [4], the Lambert function is called such a 

function, which satisfies the equation  

  
 W s

W s e s , (10) 

 

This definition can be used for solving the Eq. (9), which is at first rewritten in the form:  

 1
s T

s T e K T  , (11) 

and then Eq. (10) is used on the argument –K1T :  

  
 1

1 1

W K T
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   . (12) 

Equation (11) now can be written as follows:  

  
 1

1

W K TsT
sT e W K T e


  , (13) 

which holds only then, when it holds: 

  1sT W K T  . (14) 

From Eq. (14) one obtains the equation, which can be applied for computing roots of the characteristic Eq. (9): 

  1

1
s W K T

T
  , (15) 

where individual roots are expressed in terms of Lambert function.  

Lambert function in general is a complex function, which has an infinite number of branches. The  branches of 

Lambert function are denoted as Wk(s), where the index k takes the values k= -∞,…,-2,-1,0,1,2,…,+∞. The index 

k=0  belongs to the fundamental branch of the Lambert function, which is denoted as W0(s). The fundamental 

branch takes real values on the interval [-1/e,+∞), while it is complex outside this interval.  The fundamental 

branch of Lambert function is computed  by means of the series:  

  (16) 

(Caratheodory [3]). Outside of the interval [-1/e,+∞) the Lambert function W0(s) is complex. The branch W-1(s) 

with index k = -1 is real valued on the interval [-1/e,0), but complex outside of this interval. All other branches 

Wk(s) of Lambert function, where the index k takes values k = -∞,…,-2 or k = 1,2,…,+∞, respectively, are 

complex on the whole domain of the argument s and can be computed by means of the formula [3]: 

 , (17) 

The function lnk(s)=ln(s)+2πik is the k-th logarithmic branch, where  is the imaginary unit and Clm are 

coefficients, which means Stirling cyclic numbers:  

  (18) 

Lambert functions do not belong to the standard functions and thus cannot be computed by scientific calculators. 

However, various software developers recognized the meaning of Lambert functions in different areas, what led 

to the implementation of symbolic computation of Lambert functions at arbitrary values of the argument swithin 
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programming environments such as Maple, Mathematica and Matlab, respectively. Moreover, all these 

programming systems allow the execution of various symbolic operations with Lambert functions, such as 

differentiation or integration, etc. In the programming system Matlab, the Lambert function can be computed by 

the function call named LambertW, while in Mathematica the same task can be done by the function call of 

ProductLog[k,s], where  index k denotes the branch of Lambert function and the symbol s means their argument. 

For example, in the programming system Mathematica one computes and shows easily the course of the 

fundamental branch of Lambert function W0(s) for real values of the argument s in the interval [-1/e,+∞) as well 

as the course of the branch W-1(s) for real values of the argument s in the interval [-1/e,0), respectively, by 

means of the following program: 

 

 
The result of computation is depicted in Fig. 3: 

 

 
Figure 3. Plot of real valued parts of branches W0(s) and W-1(s). 

 

From the above diagram it can be seen, that fundamental branch of Lambert function satisfies inequality -1 ≤ 

W0(s) on the entire interval -1/e ≤ s< +∞ , while the branch W-1(s) satisfies the inequality W-1(s) ≤ -1 on the 

interval -1/e ≤ s< 0.  

As an example we look on the computation of first 31 roots of the characteristic equation (9), if values of 

parameters K1=T=1 are chosen. These roots are computed by means of Eq. (15). The equation is for the chosen 

data K1=T=1 reduced on equation sk=1×Wk(-1)=Wk(-1), where the index k takes integer values from -15 until 

+15. The position of the first 31 characteristic roots in the complex (Gauss) plane shows the Fig. 4.  

 

 
Figure 4. The position of roots of the transcendental characteristic equation in the complex plane.  

 

As we can see on this plot, all roots Wk(-1), k=-15,…,15 are complex and have besides nonzero real part also an 

imaginary part. This property is the consequence of the fact, that the argument s = -1 of Lambert function is less 

than -1/e = -0.367879, which is the value of lower bound of the interval, where Lambert functions W0 and W-1 

are real valued. Roots W-1(-1) and W0(-1) in the above diagram have smallest imaginary part among  all roots, 

which are shown in the Fig. 4 and are complex conjugate to each other: W-1(-1) = -0.318132-1.33724i, W0(-1) =-

0 .318132+1.33724i. Roots W-1(-1) and W0(-1) lie in the Gauss plane at smallest distance to the imaginary axis 

and determine the stability of the system. If we would have characteristic roots W0(·) in W-1(·) with positive real 

parts, the system would be unstable. From this it follows, that the bound between stable and unstable area is 

graph1 Plot ProductLog 0, x , x, 1 E, 1 ;

graph2 Plot ProductLog 1, x , x, 1 E, 0 , PlotStyle RGBColor 1, 0, 0 , Dashed ;

Show graph1, graph2, PlotRange All, AxesLabel s, " W0 s , W 1 s "
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determined by means of characteristic roots W0(·) and W-1(·), which have their real part equal zero and at the 

same time a nonzero imaginary part. As can be seen in the Fig. 3, the fundamental branch W0(·) has the value 

W0(0) = 0 at the coordinate origin, that is for the value of the argument s = 0. The value W0(0) = 0 cannot be 

taken into account for determination of stability bound, because doesn't satisfy the condition, that characteristic 

root must have a zero real part and at the same time a nonzero imaginary part.  

By solving Eq. (15) in programming envinronment Mathematica (for example, by  using the command 

FindRoot[Re[ProductLog[0,-KT]],{ KT,1/E}], where the index 1 in K1 is omitted due to the syntax rules), we can 

find the solution K1T =π/2. The obtained solution represents an equation of hyperbola, which determines the 

bound between stable and unstable area, when parameters K1 and T vary. The obtained bound is based on the 

stability criterium of the branch W0(-K1T).  In a similar way we can seek the value K1T of the branch W-1(·), 

where the Lambert function W-1(·) is pure imaginary and its argument lies outside the interval [-1/e,0), as is 

clear from the Fig.3. To solve this task, we apply commands FindRoot[Re[ProductLog[-1, -KT]],{ KT,1/E}] and 

FindRoot[Re[ProductLog[-1,- KT]],{ KT,tol}], respectively, where tol denotes a small positive number. Both 

commands return the same value K1T =π/2 as is obtained earlier at the branch W0(·). Values of product K1T  for 

other roots of Eq. (15), which have the real part equal zero and at the same time the nonzero imaginary part, 

however differ from the value of π/2. For example, we obtain the value K1T =5π/2 for branches W-2(·) and W1(·), 

the value K1T =9π/2 for branches  W-3(·) in W2 (·) , and so on. Hyperbolic courses at first three pure imaginary 

roots of Eq. (15) with indexes k=0,1 and 2  (what means that each root has a zero real part and at the same time 

the nonzero imaginary part) are shown in the Fig. 5. Hyperbola, which corresponds to the branch W0(-K1T), 

represents the stability bound of the system, which is not destroyed by other hyperbolas. Bellow the hyperbola 

of the branch W0(-K1T) with the pure imaginary root is the stable area and above the hyperbola is the unstable 

area. From the diagram on the Fig. 5 it follows, that at fixed value of the time delay T we can pass from the 

stable area into unstable area only by increasing the parameter K1. Similarly, at fixed value of parameter K1 we 

can pass from  the stable area into unstable area only by increasing the time delay T.  

 

 
Figure 5. Stability bounds of several branches of Lambert function in the control of production system with 

delay 

 

The general solution of homogeneous Eq. (8) with computed roots of Eq. (15) can now be written in the form: 
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where Ck are coefficients, which are determined by means of the prescribed function (t) on the preshape 

interval [-T,0]. Functions 
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are named Lambert oscillation modes and coefficients Ck are called Lambert coefficients. For practical 

computing one consider a finite number of dominant Lambert oscillation modes, which is high enough and 

approximate the infinite series in Eq. (19) by the truncated series: 
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homogeneous Eq. (8), index l must be equal to l = −(N+1) in the case of asymmetric numbering of branches of 

Lambert function and to l = −N at symmetric numbering of branches, respectively. Asymmetric numbering of 

branches of Lambert function must be applied in the case of the negative argument of Lambert function, that is, 

when –K1T< 0. From the Fig. 3 it is evident, that in the case of the negative argument in addition to the 

fundamental branch W0(−K1T) also the branch W-1(−K1T) must be taken into account in the series (21), while in 

the case of the positive argument only the branch W0(−K1T) must be considered. That explains the difference in 

choosing of counter l at asymmetric and symmetric numbering of branches.   

 

3.1. Determination of coefficients Ck  in the general solution of the homogeneous equation 

In common an arbitrary given continuous function can be expressed in the form of series (19). Thus, by 

appropriate choice of Lambert coefficients Ck and corresponding Lambert oscillation modes ξk(t) we can express 

the prescribed function  (t) on the preshape interval [-T,0] in the form: 

 . (22) 

From the practical reasons, the infinite series in Eq. (22) must be truncated also in this case and replaced by the 

finite series: 

 . (23) 

In similar way as in the case of ordinary differential equations, we can use Eq. (23) in the reverse sense to 

determine unknown Lambert coefficients Ck  by the help of known values of  function (t).  The number of 

unknown coefficients Ck  is equal to 2N+1 in the case of symmetric numbering of branches of Lambert function 

and to 2N+2 in the case of asymmetric numbering. Accordingly, the entire interval [−T,0] is divided into M=2N 

subintervals of equal length at symmetric numbering or M=2N+1 subintervals of equal length at asymmetric 

numbering, respectively. By using such a division of the interval [−T,0], the prescribed function (t) as well as 

Lambert oscillation modes ξk(t) are sampled at time instants , where 

corresponds to each sample an equation of the form: 

  (24) 

The number of Eqs. (24), which are created in such manner, is equal to M+1 and corresponds to 2N+1 

coefficients at symmetric numbering of branches, or corresponds to 2N+2 coefficients in the case of asymmetric 

numbering. The system of equations (24) is conveniently written in the matrix form as follows: 

  (25) 

Under assumption, that inverse matrix of Lambert oscillation modes Ξ
-1 

exists, we can compute the unknown 

vector of Lambert coefficients C by means of equation C= Ξ
-1

·Ξ. An individual Lambert coefficient Ck can be 

obtained by scalar multiplication of the k-th row of matrix Ξ
-1

 with the vector Ξ: 

 . (26) 

By applying Eq. (26), we can write solution (21) of the homogeneous LDDE in the following form: 
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3.2. The formation of complete solution of nonhomogeneousLDDE  

Now return to the formation of the complete solution of nonhomogeneous differential equation of first order 

with delay, that is to the solving of Eq. (7).  The complete solution of nonhomogeneous LDDE is obtained by 

adding some particular solution to the solution of homogeneous differential equation with delay, derived in this 

paperin the form of Eq. (21) and then by considering the practical aspects of computation in the form of Eq. 

(27).Computing of the particular solution of LDDE can be performed on many different ways so that the 

interested reader is advised on the furtherreferences [1], [2],[7], [9].In this paper, the particular solution of Eq. 

(7) is sought in the form of integral equation: 
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where ψ(t,ζ) is the kernel of integral equation, bu(ζ) is ageneralized form of the right hand side of Eq. (7) and 
P
kC are unknown coefficients of the particular solution.The complete solution of nonhomogeneous equation (7) 

then can be written in the following form: 
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where unknown coefficients 
P
kC of the particular solution are determined by means of the Laplace 

transformation and theory of residues in the compact form: 
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IV. RESULTS AND DISCUSSION 
Now look on the solution of the control of production process with delay in which retained orders of customers 

are taken into account. In other words, we look on the evolution of the actual inventory θo(t) in the warehouse as 

is described by Eq. (7). For the sake of simplicity, we assume parameter valuesK1=K2=1 and the time delay T=1, 

respectively, and choose the time course of customer orders in the form of step function, what means, that 

customer orders are constant for all times t>0 .Solving of the possed problem in the programming envinronment 

Mathematica doesn't represent any difficulties, just the function of the system loading b⁎u(t)=b⁎UnitStep[t] 

must be replaced in Eq. (29) by the function b1⁎u(t)+ b2⁎u(t−T) = b1⁎UnitStep[t] +b2⁎UnitStep[t-T], where b1 

= −K1= −1 and b2 = K2 = 1.The solution by using only 2 branches of Lambert function is shown in Fig. 6, where 

2  branches corresponds to the number N=0.Despite such a rough approximation a pretty good match with a 

numerical solution by using Runge-Kutta method can be seen in Fig. 6 on the whole time interval [−T,10]. The 

response θo(t) shows an oscillatory character with positive and negative half-periods on the interval [0,10], 

where negative values have meaning of unsatisfied orders and positive values correspond to the amount of 

actual inventory. Oscillation amplitudes of actual inventory gradually decrease on the whole interval [0,10] 

against the zero value.Of course  is zero value of actual inventory theoretically reached after an infinite time, but 

this stationary state is important, because it can be interpreted as a state when unsatisfied orders are abolished 

and actualy inventory disappear.The stationary value of actual inventory can be analytically calculated, if the 

limit value is taken into account in Eq. (7) and notation 

is used in what follows.Then Eq. (7) goes over on the form: 

 , (31) 

from where the stationary value is calculated 
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which confirms expectation in the Fig.6 if the time t increases tot→∞.  

 
Figure 6.Comparison of the analytical solution of the control of production process with retained orders using 2 

branches of Lambert function with the numerical solution using Runge-Kutta method.  Computation for 

parameter values T=1, b1=−K1=−1, b2=K2=1  and N=0. 
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On the Fig. 7, the solution with 8 branches of Lambert function is shown. Note, that 8 branchescorresponds to 

the number N=3.By the help of Fig. 7 we can see, that solution computed by using Lambert function on the 

whole interval [−T,10] almost perfectly matcheswith the numerical solution using Runge-Kutta method.  

 

 
Figure 7.Comparison of the analytical solution of the control of production process with retained orders using 8 

branches of Lambert function with the numerical solution using Runge-Kutta method.  Computation for 

parameter values T=1, b1=−K1=−1, b2=K2=1  and N=3. 

 

From the diagram in the Fig. 5 it followswith no doubt, that production system with the production delay T=1 

and the rate K1=1 of planned new production based on the information about control error ε(t) is located in the 

stable area. With other words, it is located bellow the hyperbola, which indicates the stability boundof the 

branch W0(-K1T). Consequently, the stable control of the production process results in the zero valued steady-

state control error,    lim lim 0
S Si o

t t

t  
   

   . However, if the value of the constant K1 is increased 

enough at the unchanged value of the time delay T, the production process can fall into unstable area.  The 

unstable productionfor example happens (in accordance with the diagram in Fig. 5), if the constant K1 at the 

unchanged value T=1 increases to K1=2. When the production is unstable, this means practically, that the control 

of the production process doesn't work and oscillation amplitudes of actual inventory show an unlimited 

increase.Such a behaviour is produced by means of solution of Eq. (7) as is shown in the Fig. 8.  

 

 
Figure 8.The comparison of the unstable analytical solution of production process with retained orders using 8 

branches of Lambert function with the numerical solution using Runge-Kutta method. Computation for 

parameter values T=1, b1=−K1=−2, b2=K2=2  and N=3. 

 

The comparison of results with numerical solution using Runge-Kutta method presents also in this case an 

almost perfect matching. The obtained result is surprising, because it proves, that the selected production delay 

causes an instability of the system, although orders do not oscillate at all, but are constant in the accordance with 

the assumption! 
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As the final example, let again the value K1= 1 of the rate of planned new production based on the information 

about control error, but choose a smaller time delay T=0.3. The solution of Eq. (7) in this case is plotted in Fig. 

9, where an aperiodic time response of  actual inventory is obtained. The aperiodic behaviour is explained 

through an impact of the production delay producing an initial disturbance of the actual inventory level, which 

completely disappear as the time increases. The comparsion of obtained result by using 8 branches of Lambert 

function with numerical solution using Runge-Kutta method again shows an excellent agreement. 

 

 
Figure 9. The comparison of aperiodic solution of production process with retained orders using 8 branches of 

Lambert function with the numerical solution using Runge-Kutta method. Computation for parameter values 

T=0.3, b1=−K1=−1, b2=K2=1  and N=3. 

 

Remark. As we said in introduction, the delays are inherent property of every production process. Thus, the 

assumption that delay may be equal zero, T=0, is unrealistic and must be considered in theoretical sense as a 

limit case. Assuming the zero delay causes conversion of Eq. (7) into an ordinary differential equation. In 

addition,the prescribed function (t)on the preshape interval is reduced into an initial condition θo(0) at the time 

instant t=0. Considering the initial condition θo(0) = 0 and above selected values of parameters K1 = K2 =1, it is 

easy to show, that the initial disturbance in the time response of the actual inventory disappear. The actual 

inventory in such a case is equal zero, θo(t) ≡0 for all times t ≥ 0, as expected. 

 

V.   CONCLUSIONS 
In this paper, an analytical method of solving the problem of the control of the production system with delay. 

For solving the governing linear differential equation with delay, Lambert functions are applied. The obtained 

solutions reveal, that production delay can cause an oscillatory or aperiodic time response of actual inventory in 

dependence on its extent. By means of Lambert function, an analytical stability bound of the production system 

is derived. By using the control of the production process, inventory oscillations are successfully damped, if the 

time delay and the rate of planned new production based on the information about the control error are located 

in the stable area. When both parameters lie in the unstable area, the control of the production system fails 

causing an unlimited increase of oscillation amplitudes of actual inventory regardless on the supposed constant 

loading of the system (the constant level of orders).  
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