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ABSTRACT-
Facial beautification enhancement is a widely used function in image processing, often requiring manual
parameter adjustment to achieve optimal results. To provide a more intelligent and automated solution, this study
proposes an enhanced facial beautification system based on generative adversarial networks (GANs). While the
Cycle-Consistent Generative Adversarial Network (CycleGAN) effectively performs unpaired image-to-image
translation, it suffers from contour and detail loss. To address this limitation, we propose a Modified CycleGAN
(MCycleGAN) that integrates the advantages of both CycleGAN and PairedCycleGAN while maintaining the
unpaired training framework. The proposed MCycleGAN employs combinations of Sobel, Gaussian, and
Bilateral filters to extract edge-aware image features, leading to improved preservation of facial contours and
skin texture. Experimental results show that MCycleGAN improves the average intersection-over-union (I0U) by
7% compared to CycleGAN, and subjective human evaluation indicates a 16.5% higher preference for
MCycleGAN-generated images.
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I. INTRODUCTION

Facial image beautificationhas been an important topic in computer vision and image processing in
recent years. Traditional methods typically rely on filters or pixel value manipulation to enhance facial
appearance. However, such approaches often suffer from poor generalization when fixed parameters cannot adapt
to different facial structures and lighting conditions. With the rapid advancement of artificial intelligence (Al),
intelligent facial image beautificationsystems can now leverage machine learning to achieve more natural and
adaptive enhancement. Since the introduction of generative adversarial networks (GANs) by Goodfellow et al.
[1], GANs have become powerful tools for solving complex image translation tasks, including style transfer,
super-resolution, and realistic image synthesis. Among them, the cycle-consistent generative adversarial network
(CycleGAN) proposed by [2-3] enables unpaired image-to-image translation and has been successfully applied to
facial beautification. However, CycleGAN often produces blurred edges and loss of fine details, as shown in Fig.
1, where freckles are removed but contours such as eyelids and teeth appear blurred.

To overcome these challenges without increasing computational complexity, we propose a modified
CycleGAN (MCycleGAN) that incorporates Sobel, Gaussian, and Bilateral filtering into the loss function to
improve edge preservation and maintain visual fidelity in beautified results.

The remainder of this paper is organized as follows. In Section II we briefly review background and
related works. Section III elaborates the proposed Modified CycleGAN Method. The experimental results are
presented in Section IV. Finally, Section V summa'rizes our conclusions.

Fig.1Comparison of unsupervised learning (a) original image (b)facial enhancementusingCycleGAN.

DOI: 10.9790/1813-15012129 www.theijes.com Page 21



Intelligent Facial Beautification System Using Modified CycleGAN

II. BACKGROUND AND RELATED WORKS

Image-to-image translation is a fundamental problem in visual computing, and numerous methods have
been developed to address the issue [2—6]. After the introduction of GANs in 2014, a wide range of algorithms
emerged for style transfer, image synthesis, and even direct generation of images in specified styles. Among these
methods, the image style transfer framework of CycleGAN proposed by Zhu et al. [2] represented a significant
improvement, particularly in applications such as intelligent beauty enhancement.

2.1 Architectureof CycleGAN system

The generator architecture of CycleGAN is based on the network design proposed by Johnson et al. [5],
which has demonstrated strong performance in image translation and super-resolution tasks. The generator
consists of two convolutional layers with stride 2, several residual blocks, and two convolutional layers with stride
1/2. For input images with a resolution of 256256, nine residual blocks are used, whereas six blocks are applied
for 128x128 inputs.The purpose of the discriminator is to distinguish generated images from real ones, which
essentially corresponds to a classification task. Therefore, CycleGAN adopts the 70x70 PatchGAN discriminator
introduced in [6], which is constructed using a simple five-layer convolutional architecture. PatchGAN is
designed to classify whether each 70x70 receptive field (RF) within an image is real or fake, and due to its fully
convolutional structure, it can operate on images of arbitrary resolution.

The choice of the 70x70 receptive field is based on empirical findings from Isola et al. [6], showing that
this receptive field size is most effective for capturing and distinguishing crucial information such as texture,
color, and edge characteristics within the image.Image-to-image translation involves learning a mapping between
two different domains. Suppose we have two domains, A and B, with training samples {a;})-; where each a;in
a; € A, and similarly {b]-}?’=1 where each b; € B.These data distributions for two domains can be expressed as
a~Paata(@)and b~pgq4:q(b), respectively. The goal of training a CycleGAN model is to learn a bidirectional
mapping between these two domains. This involves two generators,G,5 and Gg,, Which learn to map samples
from one domain to the other. In other words, these two mappings are G,z : A = Band Gy, : B — A, respectively.

In addition, two discriminators,D,zand Dg,, are trained simultaneously. The discriminator D,p learns to
classify real samples from domain {a}and generated samplesG,p while {G45(a)} learns to classify real samples
from domain {b}and generated samples {Gp,(b)}. Their adversaries, the generators G,gand G4, use the feedback
from the discriminators to improve the realism of the generated outputs, making {G,5 (a)}and {Gg4(b)}
increasingly closer to the target domains.The overall training framework of CycleGAN is illustrated in Fig. 2, and
the associated loss function can be expressed as follows:

Lean(Gag, Dap, A, B) = Ep-paata) [logD4p(b)] + [Ea~Pdata(a)[1 - lOgDAB(GAB (a))] ()

Lgan(Gpa, Dpa, B, A) = Ep~pdaata(a) [logDga(a)] + Eo~pdatap) [1—1logDp4(Gpa(h))] 2
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Fig.2Training frameworkof CycleGAN.

2.2 Cycle-consistency loss

From the previous discussion, the goal of the generators G,z and Ggy4 is to transform input samples into
their corresponding target-domain representations, namely G,z(a) and Gg,(b). If the generated samples are fed
back into the opposite generator to produce reconstructed samples, these reconstructions should ideally match the
original inputs.For example, consider an input sample a € A . After being translated by generator G5, the output
becomes G,z (a) € B. When this generated output is further processed by the opposite generator Gg,, it produces
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a reconstructed sample Gg,(Gyp(a)) € A. Theoretically, this reconstructed sample should be identical to the
original input a,but discrepancies often exist in practice. The conceptual illustration of this process is shown in
Fig. 3.

Based on this principle, the cycle-consistency loss (L) is introduced to perform the reconstruction to
be as close as possible to the original input. Its formulation is given as follows:

Leyc(Gap, Gpa) = ]Ea~Pdata(a)[||GBA (GAB (a)) - a||1] + [Eb~Pdata(b)[”GAB (GBA(b)) - b||1] 3

where Gg4(G45(a)) denotes the reconstructed image in domain A, anda represents the real image from domain A.
Similarly, G45(Gg4 (b)) and b refer to the reconstructed image and the real image in domain B, respectively. The
Leyc is defined as the Lynorm difference between the reconstructed images and their corresponding real images.

Gup Gga
D4 Dy A N
Gyp - N "
W TN [ a b a b a b
N N
A B Gga Gap
~_ 7
Gga A . B B
< Al

| | |k

Cycle loss Cycle loss ’I

Fig. 3 The conceptual illustration of mapping process.

2.3 Objective function of CycleGAN
By combining the adversarial loss of the generative adversarial network with the cycle-consistency loss,
the full objective function of CycleGAN can be expressed as follows:

L(Gap, GparDap, Dpa) = Lgan(Gap, Dag, A, B)+Lgan(Gpas Dpa, B, A)+ALcyc(Gap, Gpa) (4)

wherel controls the relative importance of two objects. With the full objective defined, the remaining task is to
resolve the differing optimization goals of the generator and the discriminator. The corresponding training
objectives can be expressed mathematically as follows:

Gip, Gga = arg min  max L(Gap, Gga, Dap, Dpa)(5)
GaB,.GBADABDBA

whereG,p and Gg, denote the two GAN models corresponding to the bidirectional mappings. The generators
Gugand G, are trained to minimize the objective function, whereas the discriminators are trained to maximize it.

To ensure a more stable training process, produce higher-quality results, and enable each model to
effectively achieve its respective objective. The overall objective function is decomposed into the following loss
components:

loss Gup=Eq-paata(a) [(DAB (GAB (a)) - 1)2] (6)
1055 Dap=Ep-paataw)[(Das (b) = 1?1 + Ea-paata(a)[Pas (Gap(@))?] (7)
loss Gpa=Eppaatap) [(DBA(GBA(b)) - 1)2] ®)

loss DBA:Ea~Pdata(a)[(DBA (a) — 1)2] + IEb~1>czata(b)[DBA (Gpa (a))z] )

With the individual loss functions defined, each component of the modelor each networkcan be trained to fulfill its
corresponding objective.
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To implement an intelligent enhancement system using the CycleGAN framework, it is essential to
define the styles represented by domains A and B. In this work, we design domain A as facial images with
freckles, while domain B corresponds to aesthetically enhanced facial images. Figure 4 illustrates the beautified
results of domain-A images produced by CycleGAN under these definitions. As observed, the model successfully
removes freckles,but it also introduces noticeable loss of edge details such as blurring around the teeth,
double-eyelid folds, and other fine structural boundaries.

Fig. 4(a) Original facial image with freckles.(b)Beautified facial image generated by CycleGAN.
(¢) Comparison of fine image details between the original image and generated results.

1. PROPOSED METHOD

To address the limitations encountered when applying CycleGAN to intelligent facial enhancement, we
propose a modified CycleGAN (MCycleGAN). In addition to preserving the unpaired training paradigm, the
proposed MCycleGAN incorporates Sobel, Gaussian, and Bilateral filters [7] to extract image features and
construct positive samples. These filtered representations are integrated into the loss function to alleviate the issue
of edge-detail degradation commonly observed in conventional CycleGAN-based enhancement.

3.1 Incorporating SobelandGaussian filters

The Sobel operator extracts gradient-based edge features that emphasize intensity transitions. In contrast,
the Gaussian filter is applied to obtain a smoothed version of the image, suppressing high-frequency noise while
retaining essential structural information. By incorporating both filtered outputs into the loss function, the model
is guided to maintain visually important contours and textures in the generated results. Therefore, the proposed
MCycleGAN combined the Sobel and Gaussian filters (MCycle SGGAN) to enhance edge preservation and
reduce detail blurring during image translation. On the other hand, the MCycle SGGAN introduces additional
loss terms derived from Sobel and Gaussian filtered representations.

To preserve edge information while simultaneously suppressing freckle-related features,
MCycle SGGANcan enhance the freckle-removal capability of CycleGAN. Specifically, for each input image a,
b and their corresponding generated outputs G,z(a)and Gg,(b), Sobel and Gaussian filters are applied to extract
target features. The filtered results of (a, G45(a)) and (b,Gg4(b)) are then compared using the L, norm, and the
resulting differences are included as additional losses during network training. The Sobel and Gaussian filtering
operations are denoted asFg,pe; and Fgayssian > respectively. Figures 5 and 6 show the processes of loss
computation using Sobel filter and Gaussian filter in CycleGAN,respectively.The corresponding loss
functionsLg,pe;and Lggyssianare defined as follows:

LSobel(GAB' GBA) = [Ea~Pdata(a) [l |FSobel(GAB (a)) - FSobel (a) | |1]
+Ep-paataw) ||| Fsovet (Gsa () — Fsoper (b)111](10)

LGaussian (GAB' GBA) = IEzz~-szzt.‘c¢(¢7L) [l |FGaussian(GAB (a)) - FGaussian (a) | |1]
+IEb~Pdata(b) [l |FGaussian(GBA (b)) - FGaussian (b)l |1] (1 1)
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Fig. SIllustration of edge feature extraction for loss computation.
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Fig. 6 Illustration of removing non-target features using Gaussian filtering for loss computation.

The loss function of proposed MCycle SGGANcan be incorporated into the training process in parallel
with the edge-based and smooth-based loss functions from Egs. (4), (10) and (11). Therefore,the overall loss
function is accordingly reformulated as follows:

L(Gap,GparDap, Dpa) = Lgan(Gap, Dap, A, B)+Lgan(Gpa, Dpa, B, A)+2A1Lcyc(Gap, Gpa)
+22Lsobet (Gapr Gpa)tA3Lgaussian (Gap, Gga) (12)

whereA,; controls the relative importance of two objects,A,controls the contribution of Sobel loss,andA;controls
the contribution of Gaussian loss.

It can be observed when only incorporating the Sobel-based lossinto the CycleGAN framework
significantly enhances its ability to preserve edge details. This improvement arises from the explicit reinforcement
of high-frequency features introduced by the Sobel loss, which mitigates the tendency of unsupervised, unpaired
training to bias the network toward learning non-target features. However, this modification also leads to a slight
degradation in the freckle removal capability. Therefore, a Gaussian filter is further introduced to alleviate the
interference between edge-detail features and the high-frequency characteristics of freckles.

3.2 Incorporating Sobeland Bilateralfilters

To preserve edge information while suppressing freckle-related features, we further take the replacement
of the Gaussian filter with a Bilateral filter [8] in the MCycle SGGAN, as called MCycle SBGAN. However,
directly incorporating the Bilateral filter into the loss function significantly increases computational complexity.
This is because the Bilateral filter considers both spatial proximity and intensity similarity, requiring dynamic
weight computation for every convolution operation. To avoid such computational overhead, the Bilateral
filtering process is moved to the preprocessing stage.

Before training process, each freckled-face image in domain A is preprocessed using a Bilateral filter to
generate a third domain C denoted as {c;})_, where ¢; € C. The filtered images in domain C serve as
edge-preserving, freckle-reduced reference targets. During training, the difference between images aand cis
computed using the L;norm and incorporated as an additional loss term. This Bilateral filtering loss is denoted as
Lgitateral- The corresponding training objective can be mathematically expressed as follows:
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LBilateral(GABv GBA) = IE:a~Pdalta(a.)[| |GAB (a) - Cl |1] (13)

Therefore, the total loss function is modified as follows:

L(Gup, Gpar Dag, Dga) = Lgan(Gapr Dap, A, B) +Lgan(Gpa, Dgas B, A)+2A1Leyc(Gap, Gpa)
+22Lsober(Gap) Gpa) tA3Lpiaterai (Gag, Gpa) (14)

where A;controls the relative contribution of Bilateral-filter-based loss within the overall objective loss. Using
this enhanced loss function, we retrain the model and evaluate its performance.

IV.  EXPERIMENTAL RESULTS

The dataset used in this work was collected from Google Images and Shutterstock. Using both Chinese and
English keywords—freckle face and pretty face—we constructed a Female Face Dataset (FFD). The FFD consists
of two training subsets representing two distinct domains, each containing 215 images with a resolution of 128 x
128. In addition, a test set of the same resolution was prepared, comprising 16 images belonging to Domain A.

All experiments were conducted using Python as the implementation environment [9-10]. Both
CycleGAN and the proposed MCycleGAN were trained and evaluated on the FFD to ensure consistent
benchmarking. Furthermore, we employed an objective semantic segmentation network to assess edge-detail
preservation, complemented by subjective human perceptual evaluations to measure the overall beautification
quality.

To quantitatively evaluate the preservation of facial structure and edge details after image translation, we
employ a pretrained BiSeNet(Bilateral Segmentation Network) [11] to analyze both the original and the generated
images. The segmentation results are assessed using three widely adopted metrics: intersection over union (IOU),
per-pixel accuracy, and per-class accuracy. The corresponding metricsare defined as follows:

_ Py
10U = PiUPj(lS)

per-pixel acc = %(16)
i

X _ 1 i
per-pixel class = o X > (17)

where P; denotes the semantic segmentation result of the original image produced by BiSeNet, P; denotes the
semantic segmentation result of the generated image, and P;; represents the intersection of P; and P;.

Table 1 shows the experimental results on the FFD dataset under different configurations of the
loss-function parameters A,and A;whend, = 10. From the experimental results, we observe that setting A, = 1 in
MCycleGAN already leads to a significant improvement in the preservation of edge contours. Increasing 4,
beyond this value does not yield further performance gains. Consequently, 4, is fixed at 1 in subsequent
experiments, while A3 is varied to investigate its impact on the generated results. The results indicate that
MCycle SGGAN achieves an average IOU improvement of 0.07, while MCycle SBGAN improves the average
IOU by 0.06. These resultsin Tablel demonstrate that the proposed MCycleGAN produces facial image
beautification results with lower distortion. Moreover, the IOU increases as A;becomes larger.

Table 1. Quantitative results of semantic segmentation.

Wt“ per-pixel acce per-pixel clasge IOU- (A:.42)
CycleGAN- 093¢ 0.100 0.84 None«
MCycle SGGAN- 0.95¢ 0.11¢ 0.900 (1,1)»
MCycle SGGAN- 0.95¢ 0.11¢ 0.92¢ (1.20)2
MCycle SBGAN« 0.95+ 011+ 0.89+ (1.1)¢
MCycle SBGAN< 0.96+ 011+ 091+ (1,20)+
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The corresponding visual resultsof MCycle SGGANusingthe contributionparameters with (1,=1, 4,=1,
A5=10) are shown in Fig. 7. As observed in Fig. 7(b) and 7(c), we can find that MCycle SGGANdemonstrate a
strong capability to preserve edge details than the CycleGAN. Moreover, From Fig. 7(d), we observe that the
MCycle SGGAN freckle removal performance shows no significant degradation when compared with the
CycleGAN.

(d)e |

Fig. 7 (a) Original images. (b) Images byCycleGAN.(c) Images by MCycle SGGAN.
(d) Comparison of edge details and freckle removal.

On the other hand, the corresponding visual results of MCycle SBGAN using the same contribution
parameters as MCycle SGGAN are shown in Fig. 8. As observed in Fig. 8(a), the edge contour features in the eye
and nose regions partially overlap with freckle-related featuresin the left original image. From Fig. 8(b), we can
find that slight loss of edge information can be observed when a basic Gaussian filter is applied to remove freckle
features. Whereas such degradation does not occur when a Bilateral filter is employed, as shown in Fig. 8(c).
Finally, we observe that the MCycle SBGAN achieves superior beautification performance in these overlapping
feature regions as compared with MCycle SGGAN.

(clf,j (cﬁ"]

(c)«

E}Y
ﬂ .

(O]
Fig. 8. (a) Original image. (b) Images by CycleGAN. (¢) Images by MCycle SGGAN. (d) Images by
MCycle_SBGAN. (e) Comparison of results obtained by different methods.
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We additionally invited a total of 34 image processing experts to participate in a preference-ranking survey
conducted via the Survey Cake online platform [12]. Two subjective evaluation methods were designed as
follows.

Method 1 assumes that users have access to the original image and subsequently apply an intelligent facial
beautification system. As shown in Fig. 9, the statistical results indicate that the percentage of cases in which
MCycleGAN was ranked first is 16.5% higher than that of CycleGAN on average. This demonstrates that, when
the original image is available for reference, the facialimage beautification results produced by MCycleGAN are
consistently preferred over those generated by CycleGAN.

Method 2 simulates a scenario in which MCycleGAN is embedded in a camera system, such that
intelligent facial beautification is performed immediately after image capture. As shown in Fig. 10, under this
setting, MCycleGAN achieves a first-place ranking rate that is 16% higher than CycleGANon average. These
results further confirm that, even when only the beautified outputs are compared, MCycleGAN remains more
visually appealing to human observers than CycleGAN.

Based on the comparative results of the objective and subjective evaluations, it is evident that different
parameter configurations lead to variations in beautification performance. To better accommodate user
preferences, we recommend the following parameter settings for the intelligent facial image beautification
system.For Method 1, the optimal facial beautification results for MCycle SBGAN and MCycle SGGANare
achieved using (A, =10, A4, =1, 13 =20). For Method 2, the recommended parameter configurations for
MCycle SBGAN and MCycle SGGANare(4,=10, 4,=1, 43=1) and (1,=10, A,=1, 43=20), respectively. These
configurations provide the most visually satisfactory facial image beautification outcomes under their respective
evaluation scenarios.

MCycle_SBGAN , (A2,A3)=(1,20)

2

oy ssoan, 029)-0.1 R oz
e sceaN, 022320 o e N
oy seoan, o2si11) | 55

Cycle, (AlA2)=None

20%

0% 1% 20% 30% 40% 5S0% 60% 70% BO%  90% 100%

mlstrank m2strank m3strank 4strank m5strank

Fig.9 Results of human subjective perception evaluation using Method 1.
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mcyclessan, 0253101 | S 2%
My sceaN, 1223120 T T
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Fig.10Results of human subjective perception evaluation using Method 2.

DOI: 10.9790/1813-15012129 www.theijes.com Page 28



Intelligent Facial Beautification System Using Modified CycleGAN

V. CONCLUSION

Although CycleGAN has demonstrated remarkable success in image-to-image translation and has been
widely applied across various domains, its reliance on unsupervised learning without explicit human annotation
limits its ability to effectively distinguish between low-frequency and high-frequency features during feature
mapping. As a result, the generated images often suffer from blurring artifacts. This limitation significantly affects
the performance of CycleGAN when applied to facial image beautification tasks.

The main contributions of this work are twofold. First, edge features are explicitly extracted and
incorporated into the loss function to enhance the network’s capability to learn and preserve contour information.
Second, two low-frequency filtering strategies are introduced to suppress non-target features. Therefore, these
improvements enable the proposed method to reduce visual distortion in the translated images and achieve higher
subjective preference scores in human perceptual evaluations.

Based on the semantic segmentation results obtained using BiSeNet, the proposed MCycleGAN
consistently outperforms the original CycleGAN. Specifically, the average IOU is improved by 0.0575 and 0.065
on the two test sets, respectively. These objective improvements are further corroborated by subjective perceptual
evaluations. When the original images are available for reference, MCycleGAN achieves a 16.5% higher
first-place preference rate than CycleGAN. Even when only the generated results are compared without reference
images, MCycleGAN still surpasses CycleGAN by an average margin of 16% in first-place preference.
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