
The International Journal of Engineering and Science (IJES) 

|| Volume || 14 || Issue 6 || June || Pages || PP 80-123 || 2025 || 

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 

 

DOI: 10.9790/1813-140680123                                    www.theijes.com                                                     Page 80 

Ore Modeling and Reserve Evaluation Using Isometric 

Log-Ratio Transformation and Sequential Gaussian Co-

Simulation – Application on The ONUPI Coal Field, Kogi 

State, Nigeria. 
 

Gafar O. Oniyide1*, Zack A. Asitonka1 
1Federal University of Technology Akure, Akure, Nigeria. 

 

--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

Mineral reserve evaluation is an extremely important stage mineral exploration and exploitation as it directly 

affects the economy of the mineral reserve. The Nigerian mining and quarrying sector is under performing, as a 

result, the benefits (such as rapid industrialization, technological innovation, raw material provision for the 

manufacturing industry etc.) associated with a well performing mining sector is denied the Nigerian populace. 

The major cause of this under performance by the sector has been attributed to lack of local and foreign 

investment in the mining sector, and one of the chief causes of this lack of investment is the absence of mineral 

reserve reports that meet international specifications, that clearly shows the profitability or non-profitability of 

mineral reserves in Nigeria. This researchprovides a mineral (coal) reserve report, using geological models and 

sequential Gaussian co-simulation of isometric log-ratio (ilr) transformed compositions, of coal proximate 

analysis results from the Onupi coal field. Compositional data analysis and geostatistical studies reveals 

significant spatial correlation among the ilr balances as indicated by the cross-semi-variograms.Geostatistical 

resource estimation results using simple co-kriging and co-simulation in SGeMs and Surpac computer 

programmes gave an estimated coal resource of 2,147,270 cm3 in volume and a tonnage of 2,791,451 Mt. From 

resource classification, approximately 2,708, 250 Mt is classed as measured and indicated reserve, while 

83,200 Mt is classified as inferred. Application of the simulated maps to the study area, delineates the coal 

boundary, and shows that high quality coals are found at the north-eastern and southern parts of the deposit, 

while low grade coals are concentered at the central part of the deposit. 

KEYWORDS: Geologic Ore Modeling; Resource Estimation; Compositional Data Analysis; Geostatistics; 

Sequential Gaussian Simulation; Simple Kriging. 
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I. INTRODUCTION 
Different researchers [1],[2],[3],[4],and[5] at different times, using various schemes and classifications 

have described the mineral coal, to satisfactorily fit their description within the scope for which it was defined. 

However, coal in its simplest form is a sedimentary combustible rock composed mainly of organic matter 

(inorganic elements present in varying quantities) formed from the burial and decomposition of plant remains by 

heat and pressure over a long period of time (between 25 million and 300 million years). As a source of energy, 

coal is extensively being used in electric power stations, and as a fuel to drive turbines and power plants for 

industrial purposes. [6],discussed that coal will likely remain an important input for the global cement industry 

for many years to come as it is essentially used to power the high temperature kiln used to mix cement raw 

materials into clinker. It can also be converted through various chemical processes into gaseous or liquid fuels, 

called synthetic fuels. 

Proximate analysis is the least detailed method of coal chemical analysis when compared to other 

methods, but at the same time it analyzes all possible components. The four components in a proximate analysis 

namely, moisture (inherent water), volatile matter, ash and fixed carbon are usually reported in weight 

percentage. Moisture is determined by drying pulverized coal at about 38°C. As ‘received moisture’ is the 

percentage weight loss relative to the original weight. Inherent moisture is obtained by applying empirical 

corrections to the “as received moisture”. Volatile matter (comprises primarily hydrocarbons, sulfur and carbon 

dioxide) refers to the additional components freed after rising the temperature to about 482°C in the absence of 

air. Ash is the solid residue left after complete combustion of the coal. Finally, fixed coal is not directly 

measured; it is the difference to 100% of the sum of the other three components[7].  
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Proximate analysis provides the contribution to a total of the four partial components, hence, the four 

parts fall in the category of compositional data [8]. In variable space, drill cores have 4 components with all of 

the parts having a numerical value that defines a vector mathematically. In this project our interest is in the 

geographical (spatial) variation of the components, each one of them is a regionalized variable, which is best 

modeled using geostatistics ([9], [10]). The combine use of compositional data analysis and geostatistics for coal 

resource evaluation have been around for decades – [11]dealt with coal reserve evaluation in Parvadah IV coal 

deposit, Cental Iran; [12] dealt with mapping coal ultimate analysis data of Springfield coal deposit, Indiana 

USA; and [13]dealt with coal quality mapping of Texas lignite. These combined methods have not been applied 

to Nigerian coal reserve evaluations. The most comprehensive literature on the coal resources of Nigeria by 

[14],indicate the methods used was non-geostatistics but the polygon method of estimation. 

 

 The aim is to apply these methods (compositional data analysis and geostatistics) to a Nigerian coal 

deposit, and in the future on other mineral deposits with compositional nature. Theobjectives of the study are to; 

(a) create a geologic model of the coal deposit within the study area; (b) model the spatial fluctuations in the 

coal proximate analysis components using isometric log ratio transformation in compositional data analysis and 

stochastic (random) stimulation in geostatistics; (c) use the results to understand and map trends and uncertainty 

separately for each component, and by combining the components, adequately delineate high and low quality 

coal within the deposit; and (d) evaluate and classify the coal reserve into measured (proven) and inferred from 

block models created from the geologic model.  

  

II. MATERIALS AND METHODS 
The materials used in this work are; GeoviaTM Surpac Software,Global Mapper,Surfer13,Google 

Earth,Global Positioning System (GPS),Measuring Tape, Rule, Field Note book,Microsoft Excel Spread 

Sheet,Stanford Geostatistical Modeling Software (SGeMS), Compositional Data Analysis Software (CoDa 

Pack), andGeostatistical Software Library Computer Programme(GSLIB). 

 

Geologic Ore Modeling  

 

To create an accurate and useful geologic model of the ore, an understanding of the general geology 

and specific geolgy of the study area is requred, this was achieved through field investigation and data 

acquisition from the mining company.The geology of Nigerian coals, their origin and major subdivisions into 

lower and upper coal measures have been discussed by [15];[16], [17], [18],[19], and [20].Figure 1is the 

modified geologic map showing the location of lower and upper coal measures, the Mamu formation, and other 

lithologic units of the Anambra Basin in the Lower Benue Trough that hosts most of the economic coal 

deposits.[14]gave a detailed discussion on the general characteristics and petrology of Nigerian coals, 

classifying them as sub-bituminous.[21]gave a report on coal occurrences and their estimated reserves at 

different locations in Nigeria (Table 1). Figure 2 gives the modified map of coal occurrences in southeastern 

Nigeria, showing the location and their estimates.  

 

 

Table 1: Coal reserves of Nigeria (from Minerals and Industry in Nigeria, GSN, 1987, after [21]) 
COAL 

Locality Geologic Unit State Reserves (tonnes) 

 Enugu   Mamu Formation   Enugu          42,760,000  

 Ezimo   Mamu Formation   Enugu          29,470,000  

 Owukpa   Mamu Formation   Enugu          50,800,000  

 Inyi   Nsukka Formation   Enugu          10,160,000  

 Okaba   Mamu Formation   Kogi          61,200,000  

 Ogboyoga & 

Odokpono  

 Mamu Formation   Kogi          83,320,000  

 Lafia - Obi   Augu Formation   
Nassar

awa  

        32,000,000  

 
 Total        309,710,000  

 LIGNITE  

 Obomkpa   Ogwashi-Asaba 
Formation  

 Delta          10,160,000  

 Ogwashi-

Asaba  

 Ogwashi-Asaba 

Formation  

 Delta          60,960,000  

 
 Total          71,120,000  
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Figure 1:Geologic Map of the Mamu Formation and Upper and Lower Coal Measures in the eastern part of the 

Anambra Basin (Adopted from [20]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Map showing the location of coal occurrences in southeastern Nigeria and their estimates. 

Data from Minerals and Industry in Nigeria, GSN, 1987. (Adopted from[21])
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Geology of the Study Area - Onupi (Ankpa-Okaba) 

From the investigation of the Onupi coal mine, Okaba and Ankpa are very geologically similar (both 

are of the Mamu Formation). Field investigations which include geologic observation, and mapping of the 

lithological units to ascertain the stratigraphy of the mine from open cast pits and drill cores was carried out. 

Figure 3 and Figure 4 shows the lithology and environmental interpretationof the rock profile exposed at an 

open cast pit at Onupi. 

 

In 2006, the Dangote Coal Mine Company started exploration (core drilling) and survey at Onupi, 

about 1.2 km south of Awo-Akpali where the company has already started coal production. At Onupi, 38 

exploration holes were drilled for coring at an average drill hole spacing of 100 m. The drilling pattern is 

irregular (not along grid) as a result of the hilly nature of the terrain. The explored area is bounded by 

coordinates, Latitude: 823860 and 824777, and Longitude: 362524 and 362923 (not the exact coordinates, real 

coordinates are with-held because of company policy) using the Universal Transverse Mercator (UTM) 

coordinate system. 

The area of the field investigation is approximately 367,717 m2, and out of the 38 holes drilled 32 holes 

intersected coal, while five (5) holes ONPE-02, ONPE-10, ONPE-17, ONPE-20 and ONPO-03 did not intersect 

coal, and ONPE-22 experienced rod jam during drilling. Table 2 gives the summary of the field investigation 

report carried out at the study area (ONPE – Onupi Extension hole and ONPO – Onupi Old hole). Figure 5 gives 

the satellite map of the study area and the area bounding the drilling programme. Figure 6 shows the couture 

map of the study area with the drill hole locations, holes marked NC (No coal) are the holes that did not 

intersect coal. 

 

The Onupi Coal Seam 

The Onupi Coal Seam is normally overlain by shale, carbonaceous shale or sandy shale, but sometimes 

sandstone rests directly on the coal. The upper junction is normally sharp and at the base the seam grades into 

carbonaceous shale through a layer of shaly coal from 0.5 m to 6.49 m thick. The band of carbonaceous shale is 

usually thin and is underlain by sandstone or shale. Two thin coal seams are present 0.55 m and 0.51 m above 

the main seam in borehole ONPE-25 and ONPE-30. The undivided section of the Onupi seam is from 0.2 m to 

2.5 m thick, and has an average thickness of 1.7 m.  

At Onupi, from the observation of already mined (not yet reclaimed) pits, the upper coal graded into 

the intervening sandstone observed from pit 1 (pit 1 is about 160 m North of pit 2), while the lower coal seam 

could be traced into pits 2 and 3 which are about 400 m apart (Figure 5). At pit 3, the coal seam deviated North-

East wards where present investigation drilling is being carried out to determine its path. This bearing if traced, 

is the same direction of that of the pit presently mined at Awo-Akpali.       

 

 
Figure 3: The stratigraphy of the sturdy 

area at an exposed pit. 

 

Figure 4: Lithology of the Mamu Formation (section exposed at Onupi Opencast 

coal mine), and environmental interpretation. (Adopted from [20]and [21]) 
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Table 2: Summary of the Field Investigation Report. 

 
BOREHOLES DETAILS FOR ONUPI EXTENSION PITS 

BH NO. Coordinates Coal Intersection 

(m)  

Coal 

Thicknes

s 

(m) 

Drilled 

Depth  

(m) 

Coal 

Roof 

RLs 

Remarks 

Easting Northin

g  

Eleva

tion 

(GL) 

From To 

ONPE-01 362744.98 824777.

11 

285.6

6 

17. 50 18. 80 1. 30 21. 00 268.16 
 

ONPE-02 362670.09 824798.

41 

276.2

9 

0.00 0.00 0. 00 21. 00 0.00 No Coal 

ONPE-03 362742.21 824738.

64 

287.6

3 

18. 50 20. 10 1. 60 24. 00 269.13 
 

ONPE-04 362770.96 824726.

69 

290.7

7 

23. 10 24. 80 1. 00 36. 10 267.67 
 

Onupi 
Awo-Akpali 

P

i

t

 

3 

P

i

t

 

2 

P

i

t

 

1 

Figure 5: Satellite Image of the study area and the area 

bounding the drilling programme at Onupi. Awo-Akpali is 

about 1 km North (using mine coordinate) of Onupi. 

Figure 6: Couture map of the study area with the drill hole locations, holes marked NC 

(No coal) are the holes that did not intersect coal. 
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ONPE-05 362763.56 824676.

70 

291.7

5 

23. 30 25. 30 2. 00 27. 00 268.45 
 

ONPE-06 362753.14 824639.

71 

292.1

4 

23. 00 25. 5 2. 50 33. 00 269.14 
 

ONPE-07 362791.07 824700.

42 

301.0

5 

34.7 36. 00 1. 30 39.00 266.35 
 

ONPE-08 362749.00 824473.

00 

295.8

1 

29.5 32.05 2.55 33. 00 266.31 
 

ONPE-09 362736.00 824560.

00 

292.6

7 

22.8 25. 10 2. 30 27. 00 269.87 
 

ONPE-10 362710.00 824587.

00 

291.0

5 

0.00 0.00 0. 00 30. 00 0.00 No Coal 

ONPE-11 362733.00 824581.

00 

291.9

5 

22. 30 24. 00 1. 70 27. 00 269.65 
 

ONPE-12 362592.00 824618.

00 

286.6

5 

21. 00 21. 20 0. 20 33. 00 265.65 
 

ONPE-13 362609.00 824574.

00 

289.1

5 

21. 80 24. 00 2.2 27. 00 267.35 
 

ONPE-14 362601.00 824607.

00 

287. 

40 

21. 00 21. 30 0. 30 27. 00 266. 60 
 

ONPE-15 362602.00 824590.

00 

288. 

10 

21. 50 21. 80 0. 30 27. 00 267.45 
 

ONPE-16 362657.00 824566.

00 

290.6

5 

23. 20 25. 40 2. 20 27. 00 267.45 
 

ONPE-17 362693.00 824554.

00 

291. 

90 

0.00 0.00 0. 00 27. 00 0.00 No Coal 

ONPE-18 362711.00 824526.

00 

293.1

5 

26. 90 28. 40 1. 50 30. 00 266.25 
 

ONPE-19 362565.00 824582.

00 

287.1

5 

20. 70 21. 00 0. 30 24. 00 266.45 
 

ONPE-20 362532.00 824566.

00 

286.5

5 

0.00 0.00 0. 00 27. 00 0.00 No Coal 

ONPE-21 362784.00 824383.

00 

300.2

5 

33. 80 35. 80 2. 00 39. 00 266.45 
 

ONPE-22 362870.00 824319.

00 

305. 

30 

0.00 0.00 0. 00 39. 00 0.00 Rod Jam 

ONPE-23 362538.00 824516.

00 

289.2

5 

21. 30 23. 60 2.3 30. 00 267.95 
 

ONPE-24 362524.00 824474.

00 

290.0

5 

23. 60 25. 60 2. 00 27. 00 266.45 
 

ONPE-25 362531. 00 824394.

00 

291.1

5 

24. 50 26.57 2.07 27. 00 266.65 
 

ONPE-26 362563. 00 824300.

00 

290.6

5 

22.75 24.98 2.23 27. 00 267. 90 
 

ONPE-27 362581. 00 824221.

00 

289.6

5 

22.64 24.84 2. 20 27. 00 267.01 
 

ONPE-28 362542. 00 823898.

00 

304. 

20 

38.87 39.42 0.55 42. 00 265.33 
 

40.18 41. 60 1.42 
 

ONPE-29 362774. 00 823919.

00 

302. 

90 

41. 50 42. 70 1. 20 45. 00 261. 40 
 

ONPE-30 362713. 00 823860.

00 

302.2

5 

38.15 38.56 0.51 45. 00 264.1 
 

39.46 40. 90 1.44 
 

ONPE-31 362737. 00 824058.

00 

302.2

5 

38.23 40.23 2. 00 42. 00 264.02 
 

ONPO-03 362661.32 824772.

52 

292.4

4 

0. 00 0. 00 0. 00 28. 00 0. 00 No Coal 

ONPO-09 362602.18 824559.

62 

296.2

5 

22. 30 24. 60 2. 30 28. 00 273.95 
 

ONPO-10 362562.95 824093.

90 

300.0

3 

26. 50 28.58 2.08 31. 00 273.53 
 

ONPO-12 362925.29 824442.

99 

312.4

3 

43. 50 45.56 1.96 47. 50 273.83 
 

ONPO-17 362923.15 824220.

32 

315.1

7 

46. 00 48.01 2.01 61. 00 269.17 
 

ONPO-38 362811.38 824609.

48 

305.7

5 

31. 00 33.05 2.05 39. 00 274.75 
 

ONPO-56 362496. 00 824276.

00 

291.4

1 

18. 50 20. 00 2. 30 23. 00 272.91 
 

 

 

 

 

Table 3: The Survey Table 
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HOLE ID DEPTH  

(M) 

DIP 

(DEGREES) 

ORIG_ 

AZIMUTH 

(DEGREES) 

ONPE-01 21 -90 0 

ONPE-02 21 -90 0 

ONPE-03 24 -90 0 

ONPE-04 36 -90 0 

ONPE-05 27 -90 0 

ONPE-06 33 -90 0 

ONPE-07 39 -90 0 

ONPE-08 33 -90 0 

ONPE-09 27 -90 0 

ONPE-10 30 -90 0 

ONPE-11 27 -90 0 

ONPE-12 33 -90 0 

ONPE-13 27 -90 0 

ONPE-14 27 -90 0 

ONPE-15 27 -90 0 

ONPE-16 27 -90 0 

ONPE-17 27 -90 0 

ONPE-18 30 -90 0 

ONPE-19 24 -90 0 

ONPE-20 27 -90 0 

ONPE-21 39 -90 0 

ONPE-22 39 -90 0 

ONPE-23 30 -90 0 

ONPE-24 27 -90 0 

ONPE-25 27 -90 0 

ONPE-26 27 -90 0 

ONPE-27 27 -90 0 

ONPE-28 42 -90 0 

ONPE-29 45 -90 0 

ONPE-30 45 -90 0 

ONPE-31 42 -90 0 

ONPO-03 28 -90 0 

ONPO-09 28 -90 0 

ONPO-10 31 -90 0 

ONPO-12 47 -90 0 

ONPO-17 61 -90 0 

ONPO-38 39 -90 0 

ONPO-56 23 -90 0 
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Data Acquisition and Processing 

 

Various data which comprise drill hole survay, drill 

core(Figure 7) and proximate analysis, were obtained from the 

the mining company. The data obtatined were used to create 

the different data tables in microsoft excel spreadsheet for the 

creation of a database that was used in the various computer 

tools namely, Geovia Surpac (for geologic model, block 

model, geostatistical studies and resource estimation), 

Stanford Geostatistical Modeling Software (SGeMS), 

Compositional Data Analysis Software (CoDa Pack) – (for 

compositional data analysis),Surfer13 (map creation) and 

GSLIB (geostatistical analysis – simulation). 

 

 The survey table (Table 3) was constructed from the downhole survey data, the geology table 

(surmmary is in Table 4, complete data is in Appendix B) was constructed from the drill core log analysis report 

(Appendix A), the collartable (Table 5) was created from the core drill and survey reports, and the assaytable 

(Table 6) was constructed from the coal proximate analysis report (Table 7). 

 

Table 4: The Geology Table 

 
HOLE 

ID 

DEPTH_ 

FROM 

(M) 

DEPTH_ 

TO (M) 

LITHOLOGY 

CODE 

ONPE-01 0 2 GL 

ONPE-01 2 3.5 GL 

ONPE-01 3.5 4 CLY 

ONPE-01 4 7 CLY 

ONPE-01 7 8 CLY-SDST 

ONPE-01 8 11 CLY-SDST 

ONPE-01 11 14 SDST 

ONPE-01 14 16 SDST 

ONPE-01 16 17.5 SHL 

ONPE-01 17.5 18.8 C 

ONPE-01 18.8 20.3 SHL 

ONPE-01 20.3 21 SDST 

ONPE-02 0 2 CLY-SDST 

ONPE-02 2 3.5 SDST 

ONPE-02 3.5 4 SHL 

ONPE-02 4 7 SDST 

ONPE-02 7 8 SHL 

ONPE-02 8 11 SDST 

ONPE-02 11 12.6 SHL 

ONPE-02 12.6 14.6 SDST 

ONPE-02 14.6 16 CLY-SDST 

ONPE-02 16 17 SHL-SDST 

ONPE-02 17 18.5 SDST 

ONPE-02 18.5 20 SHL 

ONPE-02 20 21 SHL 

ONPE-03 0 2.4 SHL-SDST 

ONPE-03 2.4 5.4 SHL-SDST 

ONPE-03 5.4 8.8 SDST 

ONPE-03 8.8 10.8 SDST 

ONPE-03 10.8 12.4 SHL-SDST 

ONPE-03 12.4 15.1 SHL 

ONPE-03 15.1 16.7 SHL-SDST 

ONPE-03 16.7 18.3 SHL 

ONPE-03 18.3 20.1 C 

ONPE-03 20.1 20.6 SHL-C 

ONPE-03 20.6 22.6 SHL 

ONPE-03 22.6 24 SHL-SDST 

ONPE-04 0 3 SHL-SDST 

ONPE-04 3 6.5 SDST 

ONPE-04 6.5 9.2 SHL 

ONPE-04 9.2 10.4 SDST 

ONPE-04 10.4 11.2 SHL 

ONPE-04 11.2 11.7 SHL-SDST 

ONPE-04 11.7 12.9 SHL-SDST 

ONPE-04 12.9 14.2 SHL-SDST 

Figure 7: Images of some Drill Core Samples in core trays 
from Onupi Coal Mine. 
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Table 5: The Collar Table 
HOLE ID EASTING 

X 

NORTHING 

Y 

ELEVATION 

Z 

MAX. 

DEPTH 

(M) 

COAL_ 

ROOF 

(M) 

REMARKS HOLE_ 

PATH 

ONPE-01 362745 824777.1 285.66 21 268.16 Coal Straight 

ONPE-02 362670.1 824798.4 276.29 21 0 No Coal Straight 
ONPE-03 362742.2 824738.6 287.63 24 269.13 Coal Straight 

ONPE-04 362771 824726.7 290.77 36.1 267.67 Coal Straight 

ONPE-05 362763.6 824676.7 291.75 27 268.45 Coal Straight 
ONPE-06 362753.1 824639.7 292.14 33 269.14 Coal Straight 

ONPE-07 362791.1 824700.4 301.05 39 266.35 Coal Straight 

ONPE-08 362749 824473 295.81 33 266.31 Coal Straight 
ONPE-09 362736 824560 292.67 27 269.87 Coal Straight 

ONPE-10 362710 824587 291.05 30 0 No Coal Straight 

ONPE-11 362733 824581 291.95 27 269.65 Coal Straight 
ONPE-12 362592 824618 286.65 33 265.65 Coal Straight 

ONPE-13 362609 824574 289.15 27 267.35 Coal Straight 

ONPE-14 362601 824607 287.4 27 266.6 Coal Straight 
ONPE-15 362602 824590 288.1 27 267.45 Coal Straight 

ONPE-16 362657 824566 290.65 27 267.45 Coal Straight 

ONPE-17 362693 824554 291.9 27 0 No Coal Straight 
ONPE-18 362711 824526 293.15 30 266.25 Coal Straight 

ONPE-19 362565 824582 287.15 24 266.45 Coal Straight 

ONPE-20 362532 824566 286.55 27 0 No Coal Straight 
ONPE-21 362784 824383 300.25 39 266.45 Coal Straight 

ONPE-22 362870 824319 305.3 39 0 Rod Jam Straight 
ONPE-23 362538 824516 289.25 30 267.95 Coal Straight 

ONPE-24 362524 824474 290.05 27 266.45 Coal Straight 

ONPE-25 362531 824394 291.15 27 266.65 Coal Straight 
ONPE-26 362563 824300 290.65 27 267.9 Coal Straight 

ONPE-27 362581 824221 289.65 27 267.01 Coal Straight 

ONPE-28 362542 823898 304.2 42 265.33 Coal Straight 
ONPE-29 362774 823919 302.9 45 261.4 Coal Straight 

ONPE-30 362713 823860 302.25 45 264.1 Coal Straight 

ONPE-31 362737 824058 302.25 42 264.02 Coal Straight 
ONPO-03 362661.3 824772.5 292.44 28 0 No Coal Straight 

ONPO-09 362602.2 824559.6 296.25 28 273.95 Coal Straight 

ONPO-10 362563 824093.9 300.03 31 273.53 Coal Straight 

ONPE-04 14.2 15.1 SHL-SDST 

ONPE-04 15.1 16.2 SHL-SDST 

ONPE-04 16.2 17.5 SHL-SDST 

ONPE-04 17.5 18.4 SDST 

ONPE-04 18.4 19.4 SHL-SDST 

ONPE-04 19.4 19.9 SHL 

ONPE-04 19.9 21.5 SHL 

ONPE-04 21.5 22.3 SHL-SDST 

ONPE-04 22.3 23.2 SHL 

ONPE-04 23.2 24.8 C 

ONPE-04 24.8 28.4 SHL-SDST 

ONPE-04 28.4 29.9 SHL-C 

ONPE-04 29.9 36.1 SHL-SDST 

ONPE-05 0 2.8 CLY-SDST 

ONPE-05 2.8 4.3 SHL-SDST 

ONPE-05 4.3 6.3 SHL-SDST 

ONPE-05 6.3 6.8 SHL 

ONPE-05 6.8 9.4 SHL 

ONPE-05 9.4 12.1 SDST 

ONPE-05 12.1 15.1 SHL 

ONPE-05 15.1 17.8 SHL-SDST 

ONPE-05 17.8 19.3 SHL 

ONPE-05 19.3 20.3 SDST 

ONPE-05 20.3 22.3 SHL 

ONPE-05 22.3 23.5 SDST 

ONPE-05 23.5 25.3 C 

ONPE-05 25.3 27 SHL 

ONPE-06 0 3 CLY-SDST 

ONPE-06 3 6.5 SHL 

ONPE-06 6.5 8.5 SHL 

ONPE-06 8.5 10 SHL 

ONPE-06 10 12 SHL 

ONPE-06 12 14.5 SDST 

ONPE-06 14.5 16 SHL 

ONPE-06 16 17.6 SHL-SDST 
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ONPO-12 362925.3 824443 312.43 47.5 273.83 Coal Straight 

ONPO-17 362923.2 824220.3 315.17 61 269.17 Coal Straight 
ONPO-38 362811.4 824609.5 305.75 39 274.75 Coal Straight 

ONPO-56 362496 824276 291.41 23 272.91 Coal Straight 

 

Table 6: The Assay Table 
HOLE ID SAMPLE 

ID 

DEPTH 

FROM 

(M) 

DEPTH 

TO 

(M) 

MOISTURE 

(%) 

VOLATILE 

MATTER 

(%) 

FIXED 

CARBON 

(%) 

ASH  

(%) 

CALORIFIC 

VALUE 

ONPE-01 PRX-A-1 17.5 18.8 12.2 38.3 40.5 9 2478.42 
ONPE-03 PRX-A-2 18.5 20.1 12.5 38.9 37.8 10.8 2411.64 

ONPE-04 PRX-A-3 23.1 24.1 7.1 42.7 42.2 8 2847.6 
ONPE-05 PRX-A-4 23.3 25.3 6.1 42.8 43.8 7.3 3018.96 

ONPE-06 PRX-A-5 23 25.5 8.4 41.2 42 8.4 2696.4 

ONPE-07 PRX-A-6 34.7 36 8.4 41.6 42 8 2797.2 

ONPE-08 PRX-A-7 29.5 32.05 9 41.2 41.9 7.6 2588.04 

ONPE-09 PRX-A-8 22.8 25.1 9.3 40 40.1 10.6 2454.48 

ONPE-11 PRX-A-9 22.3 24 7.4 40.9 42.7 9 2865.24 
ONPE-12 PRX-A-10 21 21.2 8 42.4 42.7 6.9 2940.84 

ONPE-13 PRX-A-11 21.8 24 7.3 42.6 41.4 8.7 2484.72 

ONPE-14 PRX-A-12 21 21.3 8 39.8 41.6 10.6 2545.2 
ONPE-15 PRX-A-13 21.5 21.8 6.4 42.1 41.2 10.3 2484.72 

ONPE-16 PRX-A-14 23.2 25.4 8 41.4 41.4 9.2 2492.28 

ONPE-18 PRX-A-15 26.9 28.4 8.1 42.7 41.4 7.8 2520 
ONPE-19 PRX-A-16 20.7 21 11.5 40.8 38.8 8.9 2613.74 

ONPE-21 PRX-A-17 33.8 35.8 8.5 44 36.1 11.4 2462.54 

ONPE-23 PRX-A-18 21.3 23.6 8.9 43.4 37.5 10.2 2505.38 
ONPE-24 PRX-A-19 23.6 25.6 5 42.8 39.8 12.4 2638.94 

ONPE-25 PRX-A-20 24.5 26.5 5.2 41.7 41.9 11.2 2790.14 

ONPE-26 PRX-A-21 22.75 24.98 4.9 43.1 41.6 10.4 2790.14 
ONPE-27 PRX-A-22 22.64 24.84 5.4 44.9 40.6 9.1 2732.18 

ONPE-28 PRX-A-23 40.18 41.6 5.3 43.3 40.7 10.7 2757.38 

ONPE-29 PRX-A-24 41.5 42.7 6.3 40.4 41.4 11.9 2777.54 

ONPE-30 PRX-A-25 39.46 40.9 5.8 42.6 39.2 12.4 2623.82 

ONPE-31 PRX-A-26 38.23 40.23 5.7 43.1 40.5 10.7 2656.58 
ONPO-09 PRX-O-27 22.3 24.6 11.2 41.2 36.9 10.7 2487.74 

ONPO-10 PRX-O-28 26.5 28.58 12.7 42.6 37.8 6.9 2512.94 

ONPO-12 PRX-O-29 43.5 45.56 13.1 38.9 40.6 7.4 2734.7 
ONPO-17 PRX-O-30 46 48 12.8 39.7 38.6 8.9 2613.49 

ONPO-38 PRX-O-31 31 33.05 10.5 39.6 33.5 16.4 2311.34 

ONPO-56 PRX-O-32 18.5 20 12 40.7 38 9.3 2563.34 

 

Table 7: Proximate Analysis Report of Selected Coal samples from Onupi 
PROXIMATE ANALYSIS OF COAL SAMPLES FROM ONUPI 

HOLE ID Sample ID Coal Seam Thickness Depth of bottom Seam Proximate Analysis Calorific Value 

  
m m Moisture (%) Volatile (%) Fixed Carbon (%) Ash (%) C.V (BTU/Lb.) C.V (Kcal/kg) 

ONPE-01 PRX-A-1 1. 30 21. 00 12.20 38.30 40.50 9.00 9835.00 2478.42 

ONPE-03 PRX-A-2 1. 60 21. 00 12.50 38.90 37.80 10.80 9570.00 2411.64 

ONPE-04 PRX-A-3 1. 00 24. 00 7.10 42.70 42.20 8.00 11300.00 2847.60 

ONPE-05 PRX-A-4 2. 00 36. 10 6.10 42.80 43.80 7.30 11980.00 3018.96 

ONPE-06 PRX-A-5 2. 50 27. 00 8.40 41.20 42.00 8.40 10700.00 2696.40 

ONPE-07 PRX-A-6 1. 30 33. 00 8.40 41.60 42.00 8.00 11100.00 2797.20 

ONPE-08 PRX-A-7 2.55 39.00 9.00 41.20 41.90 7.60 10270.00 2588.04 

ONPE-09 PRX-A-8 2. 30 33. 00 9.30 40.00 40.10 10.60 9740.00 2454.48 

ONPE-11 PRX-A-9 1. 70 27. 00 7.40 40.90 42.70 9.00 11370.00 2865.24 

ONPE-12 PRX-A-10 0. 20 30. 00 8.00 42.40 42.70 6.90 11670.00 2940.84 

ONPE-13 PRX-A-11 2.2 27. 00 7.30 42.60 41.40 8.70 9860.00 2484.72 

ONPE-14 PRX-A-12 0. 30 33. 00 8.00 39.80 41.60 10.60 10100.00 2545.20 

ONPE-15 PRX-A-13 0. 30 27. 00 6.40 42.10 41.20 10.30 9860.00 2484.72 

ONPE-16 PRX-A-14 2. 20 27. 00 8.00 41.40 41.40 9.20 9890.00 2492.28 

ONPE-18 PRX-A-15 1. 50 27. 00 8.10 42.70 41.40 7.80 10000.00 2520.00 

ONPE-19 PRX-A-16 0. 30 24. 00 11.50 40.80 38.80 8.90 10372.00 2613.74 

ONPE-21 PRX-A-17 2. 00 39. 00 8.50 44.00 36.10 11.40 9772.00 2462.54 

ONPE-23 PRX-A-18 2.3 30. 00 8.90 43.40 37.50 10.20 9942.00 2505.38 

ONPE-24 PRX-A-19 2. 00 27. 00 5.00 42.80 39.80 12.40 10472.00 2638.94 

ONPE-25 PRX-A-20 2.07 27. 00 5.20 41.70 41.90 11.20 11072.00 2790.14 

ONPE-26 PRX-A-21 2.23 27. 00 4.90 43.10 41.60 10.40 11072.00 2790.14 

ONPE-27 PRX-A-22 2. 20 27. 00 5.40 44.90 40.60 9.10 10842.00 2732.18 

ONPE-28 PRX-A-23 1.42 42. 00 5.30 43.30 40.70 10.70 10942.00 2757.38 

ONPE-29 PRX-A-24 1. 20 45. 00 6.30 40.40 41.40 11.90 11022.00 2777.54 

ONPE-30 PRX-A-25 1.44 45. 00 5.80 42.60 39.20 12.40 10412.00 2623.82 

ONPE-31 PRX-A-26 2. 00 42. 00 5.70 43.10 40.50 10.70 10542.00 2656.58 

ONPO-09 PRX-A-27 2. 30 28. 00 11.20 41.20 36.90 10.70 9872.00 2487.74 

ONPO-10 PRX-A-28 2.08 31. 00 12.70 42.60 37.80 6.90 9972.00 2512.94 

ONPO-12 PRX-A-29 1.96 47. 50 13.10 38.90 40.60 7.40 10852.00 2734.70 

ONPO-17 PRX-A-30 2.01 61. 00 12.80 39.70 38.60 8.90 10371.00 2613.49 

ONPO-38 PRX-A-31 2.05 39. 00 10.50 39.60 33.50 16.40 9172.00 2311.34 

ONPO-56 PRX-A-32 2. 30 23. 00 12.00 40.70 38.00 9.30 10172.00 2563.34 

 

Coal Seam Modeling in Geovia Surpac 
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A three-dimensional (3D) model of the coal seam was created using the portions of the drill holes that 

intersected the coal. Drill hole sections with coal thickness less than 0.5 m were not included in the model, as 

they were considered too thin and not economic to extract. Figure 8 shows the 3D model of the Onupi coal seam 

in a grid, and Figure 9 shows the 3D model of the coal seam in the section view with the drill holes indicating 

the depth at which the coal seam was intersected. Table 8 gives the major lithological units in the study area and 

their respective codes used for geologic modeling of the coal deposit. 

 

Table 8: Major Lithological Units in the study area and modeled Codes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Lift -3D solid model of the coal seam in a 50 x 50 x 10 m grid. Right shows the model in the XY-

plane.   

 

 
 

Figure 9: shows the 3D model of the coal seam in the section view with the drill holes showing the different 

rock units. 

 

Exploratory Data Analysis (EDA) 

  The first step in any geostatistical analytical exercise is exploratory data analysis (EDA). This 

step is necessary to detect any potential problems, such as errors in the dataset, and lack of stationarity. When 

using sequential gaussian simulation, we must make the decision of stationarity for the data, for us to be able to 

carry out any statistical analysis[22]. Server lack of stationarity is worthy of special attention. Zones with 

different statistics (bimodal distributions) are processed separately, outliers if detected should be well 

investigated and dealt with using appropriate methods (either by top-cutting them or converting them to the 

minimum values if found at the tail or maximum values if found at the head of the distribution). EDA also 

LITHOLOGY MODELED CODE 

 LATERITE, GRAVEL   GL 

 CLAY  CLY 

 CLAY-SANDSTONE  CLY-SDST 

 SANDSTONE  SDST 

 SHALE  SHL 

 COAL  C 

 SHALY-SANDSTONE  SHL-SDST 
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provides the variable distributions and basic summary statistics. Figure 10 shows the histograms of the 

proximate analysis results for the coal components and some basic summary statistics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Histograms of the proximate analysis results for the coal components and some basic summary 

statistics. 

 

Compositional Data Analysis (CoDa) 

 

Coal proximate analysis is a form of compositional data or compositions which consist of observations 

that are part of a whole (sum up to a constant) and carry relative information [23]. It is proven that straight 

application of standard statistical and geostatistical methods to compositional data will always expose the results 

to inconsistencies and non-optimality [24], [25],and[26].   

[27], stated that the main problem of geostatistical analysis of regionalized compositions in their raw 

form can be stated in terms of covariances which are subjected to nonstochastic controls. Therefore, to get a 

better understanding of the proximate analysis and the relationship between the variables namely, Ash (A), 

Fixed carbon (FC), Volatile Matter (VM) and Moisture Content (M), the compositional data analytical 

approach, more precisely the Isometric Log-ratio (ilr) transformation method introduced by [28],  which 

involved the transformation of the raw (constrained or closed) data into unconstrained ilr-coordinates known as 

balances by defining a sequential binary partition (SBP) for the 4-part (Ash, Fixed carbon, Volatile Matter and 

Moisture content) compositions. 

 

The procedure for ilr transformation of compositional date and the mathematical details involved are 

summarized in the proceeding sections, details can be found in [28]. The comparison of the compositional and 

non-compositional approaches, and the problems associated with neglecting the compositional nature of 

proximate analysis data in resource estimation are not discussed in this work but are well presented by[13], [12] 

and [11].  

  

The compositional Data Package (CoDa Pack) [29]was used for defining the SBP and carrying out the 

ilr data transformation. The full closed system with D parts (in our case D = 4) is transformed into D – 1 balance 

coordinates, and the relationship of these balances with the parts is through log-ratios of geometric means of 

parts. The SBP is defined based on the mutual relationship of the parts that is Ash, Fixed carbon, Volatile 

matter, and Moisture. Considering the Onupi coal compositional data set with D parts, a SBP matrix will have D 

columns and D – 1 rows (4 columns and 3 rows), each row indicates a group of parts, Equation 1. The 

participation of a part in a group is coded by +1, -1 and 0; whereby convention, +1 indicates the part in the 

numerator, -1 the parts in the denominator, and 0 the parts not participating in the partition. The compositional 

bi-plot (Figure 11) that is based on the centered log-ratio (clr) transformation is one of the most popular ways to 

jointly represent the variables due to its connection to principal component analysis (PCA) [30]. The bi-plot is a 

2-D representation of the singular value decomposition (SVD), where the individual data points are represented 

as dots and the variables are represented as rays. The length of a ray is proportional to the standard deviation of 

the variable it represents. If two rays are near each other, the variables might be highly associated. If three or 

more vertices of rays are aligned, a compositional linear interaction between the parts may exist and should be 

investigated. The links between the vertices of rays, are proportional to the standard deviation of the simple log-

ratio of the variables corresponding to the rays[31]. The cosine of the angle between the two links closely 

approximates the correlation coefficient between the corresponding simple log-ratios [26]. If this angle is 

orthogonal (90 degrees), the two simple log-ratios are possibly uncorrelated [12]. 
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Figure 11: clr biplot of proximate analysis data of the coal samples: (A) 1st (ilr1) and 2nd (ilr2) PCs (98% 

explained variance), (B) 2nd (ilr2) and 3rd (ilr3) PCs. 

 

From the centered log-ratio (clr) biplots (Figure 11) the behavior of parts (Ash, Fixed carbon (FC), 

Volatile matter (VM), and Moisture (M)) can be virtualized. The SBP matrix (Equation 1) was constructed with 

+1, -1 and 0 values, using the interpretation of the relationship among the parts as depicted in the biplots. The ilr 

transformation leads to three (3) balances denoted by ilr1, ilr2, and ilr3. The principal components shown by the 

clr biplot of proximate analysis data of the Onupi coal represents 98% of the cumulative variance (Figure 

11andTable 9). Based on the inverse relationship of moisture (M) with the other parts (Ash, FC, VM) (Figure 

11(A)), and considering the fact that the clr (moisture (%)) has the longest ray, it was decided to mark moisture 

(%) with -1 at the first row of the SBP matrix. This procedure was repeated for Ash (%) based on the clr biplot 

of Figure 11(B). The full SBP matrix for the parts is defined by Equation 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Principal Components PCs of the clr transformed values  
PC1 PC2 PC3 

CLR.M (%) 0.85 -0.17 0.01 

CLR.VM (%) -0.21 0.36 -0.76 

CLR.FC(%) -0.19 0.55 0.64 

CLR.ASH (%) -0.45 -0.74 0.11 

CUMULATIVE 

PROPORTION EXPLAINED 

0.76 0.99 1 

 

Isometric Log-ratio Transformation (ilr) 

Based on SBP matrix, the ilr balances are given by Equation 2.  

 

where ri is the number of +1 values in i-th row of 

SBP, si is the number of -1 values in the same 

row, g (z+) and g (z-) are the geometric means of 

parts which corresponding values in the SBP are 

+1 and -1, respectively. Equations 3, 4 and 5 gives the expressions used to calculate the ilr balances. 

A B 

, i = 1, 2, … D - 1 ilri =√
𝑟𝑖 𝑥 𝑠𝑖

𝑟𝑖+ 𝑠𝑖
 𝐼𝑛 [

𝑔(𝑧+)

𝑔(𝑧−)
] (2) 

M    Ash FC      VM 

-1+1 +1+1 

 0-1 +1+1 

 0 0 -1+1 

 ilr1 

SBP = ilr2 

ilr3 

(1) risi 

31 

21 

11 

 

(1) 
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For example, the balances ilr1,ilr2, and ilr3 for the proximate analysis are calculated below 

 

 

 

  

 

 

 

 

 

Considering a drill hole (ONPE-01, PRX-A-1 from our 

data set in Table 7) with proximate analysis [12.2 9.0 

40.5 38.3] for [M Ash FC VM] respectively. There 

Isometric Log-ratio (ilr) balances are computed as follows, 

 

Back Transformations (ilr Inverse Function) 

 

Geostatistical estimation and simulation are best performed on distributions that follow an 

approximately normal distribution, as such the ilr transformed data were used for estimation and simulation for 

resources evaluation because they follow a symmetric distribution. In order to cross-validate the simulated 

values and evaluate the uncertainty, it is necessary to back-transform the simulated ilr’s to the original data 

space using the ilr inverse function (Equation 8).  

  

By defining clr transformation (Equation 9) and ilr transformation in matrix form (Equation 9), the ilr 

inverse function is given by Equation 11, [23]. 

 

  

  

 

 

 

 

 

 

 

 

 

where N is the sample size, clr (Z(xi)) is the set of transformed compositions by clr transformation, g(Z(xi)) is 

the sample geometric mean of the composition, ilr (Z(xi)) is the vector of transformed balances, ϕ is the (D, D-1) 

constant matrix, which is  

defined by (Equation 9), Z(xi) is the compositions at location xi and ʗ is the closure constant - one over the sum 

of elements in the vector ϕT. ilr. 

 

 

 

 

 

 

 

  ilr1= √
3 x 1

3 + 1
𝑙𝑛 [

(𝐹𝐶 x 𝑉𝑀 x 𝐴𝑠ℎ)
1

3⁄

(𝑀)
](3) 

       = √
3

4
𝑙𝑛 [

(𝐹𝐶 x 𝑉𝑀 x 𝐴𝑠ℎ)
1

3⁄

(𝑀)
] 

 

 

ilr2 = √
2 x 1

2 + 1
𝑙𝑛 [

(𝐹𝐶 x 𝑉𝑀)
1

2⁄

(𝐴𝑠ℎ)
](4) 

= √
2

3
𝑙𝑛 [

(𝐹𝐶 x 𝑉𝑀)
1

2⁄

(𝐴𝑠ℎ)
]   

ilr3 = √
1 x 1

1 + 1
𝑙𝑛 [

(𝑉𝑀)

(𝐹𝐶)
]  (5) 

= √
1

2
𝑙𝑛 [

(𝑉𝑀)

(𝐹𝐶)
]   

 

 

 

ilr3 = √
1

2
𝑙𝑛[

(𝐹𝐶)

(𝑉𝑀)
]                

equ.3.2.3 

 

 

 

ilr1= √
3

4
𝑙𝑛 [

(40.5 x 38.3 x 9.0)
1

3⁄

(12.2)
] = 0.5888         (6) 

ilr2 = √
2

3
𝑙𝑛 [

(40.5 x 38.3)
1

2⁄

(9.0)
] = 1.2053               (7) 

ilr3 = √
1

2
𝑙𝑛 [

(38.3)

(40.5)
] =  −0.0395                        (8) 

clr (Z (xi)) = 𝑙𝑛 
𝑥𝑖

𝑔(𝑍(𝑥𝑖)
 , i = 1, 2, …, N        (9)

  

ilr (Z (xi)) = ϕ. clr (Z (xi)), i = 1, 2, …, N       (10) 

Z (xi) = ʗ. exp (ϕT. ilr (Z (xi))), i = 1, 2, …, N         (11) 
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 where vij denotes the element of i-th row and  

j-th column in the SBP matrix. ri and si were explained in Equation 2. The following illustrates the procedure for 

the back transformation of the ilr balances gotten in Equation 3 to 5 to their original raw form (space) using the 

ilr inverse function. 

 

 

 

 

 

 

Firstly, the constant matrix (ϕ) is defined using Equation 12, its transpose (ϕT) is later defined, followed 

by the matrix multiplication (ϕT x ilri*) of the transposed constant matrix and the ilr values earlier evaluated, and 

taking their exponents (designated here as pi) which satisfies the first part of Equation 8. The closure constant ʗ, 

which is a ratio of the constant sum (100% in our case) over the sum of the elements in the vector pi is then 

computed. The product of the closure constant ʗ and corresponding pi according to the ordering of the parts in 

the SBP matrix gives the back transformed raw values (Z(i)*), which satisfies the other part of Equation 8. The 

above steps are detailed below. 
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ϕT x ilr*=  

In which case p (exponent of the matrix product) is evaluated thus, 
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Consequently,  
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Applying the above expressions on the earlier computed ilr for drill hole ONPE-01 we have, 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

The closure term becomes, 

 

 

 

 

 

 

and the back transformed values (Z(i)*) for sample ONPE-01 are given below. 

 

 

 

 

 

 

Figure 12shows the histograms of the isometric log-ratio (ilr) transformed values (balances: ilr1, ilr2, 

and ilr3) and some basic summary statistics. Comparing the variances (standard deviations) of the raw data and 

the ilr transformed values (Table 10andTable11), the raw values show higher variance in the distribution. The 

histograms of the raw data (Figure 10) also show a skewed distribution for the variables Ash and FC. The ilr 

histograms in Figure 12 gives a more symmetrical distribution of the variables. More so, performing preliminary 

statistical tests on the ilr transformed values revealed no censored and outlier data. Table 12 gives the raw data 

values and their corresponding clr, ilr transformed, and biplot generated (UD) values generated using the CoDa 

pack software.   

 

 

 

 

 

 

 

 

 

 

Figure 12: Histograms of the isometric log-ratio (ilr) balances: ilr1, ilr2, and ilr3. 
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ʗ = 
100

𝑝1+𝑝2+𝑝3+𝑝4
=  

100

0.600545+0.443025+1.993614+1.885319
= 20.31487, 

Z1* M* c x p1 20.31487 * 0.600545   12.2 

Z2* Ash* c x p2 20.31487 *0.443025 9 

Z3* FC* c x p3 20.31487 *1.993614 40.5 

Z4* VM* c x p4 20.31487 *1.885319 38.3 
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Table 10: Summary Statistics of the Raw Proximate Analysis Data 

 

 

 

 

 

 

 

 

 

 

    

 

Table 11: Summary Statistics of the ilr Transformed Data 

 

 

CLASSICAL STATISTICS SUMMARY: RAW DATA 

NA'S: 0 

SAMPLE SIZE: 32 

STATISTICS  
Mean Std.Dev 0 25 50 75 100 

MOISTURE (%) 8.4688 2.5749 4.9 6.3 8.1 11.2 13.1 

VOLATILE (%) 41.6062 1.5738 38.3 40.7 41.7 42.8 44.9 

FIXED CARBON (%) 40.1937 2.2014 33.5 38.8 40.7 41.9 43.8 

ASH (%) 9.7219 1.9575 6.9 8.4 9.3 10.7 16.4 

CLASSICAL STATISTICS SUMMARY: FOR THE ILR TRANSFORMED DATA 

NA'S: 0 
SAMPLE SIZE: 32 

STATISTICS  
Mean Std.Dev 0 25 50 75 100 

ILR.1 0.983 0.2969 0.4759 0.8343 0.9768 1.2635 1.4808 

ILR.2 1.1875 0.1724 0.6515 1.0853 1.2053 1.35 1.4853 

ILR.3 -0.025 0.0447 -0.1399 -0.0485 -0.0199 0.0119 0.0395 
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Table 12: Raw date values and their corresponding clr, ilr transformed, and biplot generated (UD) values 

 

SAM

PLE 

MOIS

TURE 

(%) 

A

S

H 

(

%

) 

FIXE

D 

CAR

BON 

(%) 

VOLA

TILE  

(%) 

RES

ID. 

C.V 

(KCAL/K

G) 

CLR. 

MOIS

TURE 

(%) 

CLR. 

VOLA

TILE 

(%) 

CLR.FIXED 

CARBON 

(%) 

CLR

. 

ASH  

(%) 

IL

R.1 

IL

R.2 

ILR

.3 

UD1 UD2 UD3 

PRX-

A-1 

12.2 9 40.5 38.3 0 2478.42 -

0.50992 

0.6340

97 

0.689949 -

0.81

413 

0.5

888 

1.2

053 

-

0.03

95 

0.390

544 

-

0.052

68 

0.067

611 

PRX-

A-3 

12.5 10.

8 

37.8 38.9 0 2411.64 -

0.52392 

0.6113

5 

0.582665 -

0.67

01 

0.6

050 

1.0

346 

0.02

03 

0.339

923 

-

0.223

15 

0.030

925 

PRX-

A-4 

7.1 8 42.2 42.7 0 2847.6 -

0.92394 

0.8701

6 

0.858381 -

0.80

46 

1.0

669 

1.3

626 

0.00

83 

-

0.047

01 

0.189

003 

-

0.008

15 

PRX-

A-5 

6.1 7.3 43.8 42.8 0 3018.96 -

1.02479 

0.9234

54 

0.94655 -

0.84

521 

1.1

833 

1.4

535 

-

0.01

63 

-

0.142

67 

0.303

78 

0.002

357 

PRX-

A-6 

8.4 8.4 42 41.2 0 2696.4 -

0.79991 

0.7902

95 

0.809527 -

0.79

991 

0.9

237 

1.3

062 

-

0.01

36 

0.082

315 

0.108

651 

0.023

315 

PRX-

A-7 

8.4 8 42 41.6 0 2797.2 -

0.79013 

0.8097

39 

0.819309 -

0.83

892 

0.9

124 

1.3

500 

-

0.00

68 

0.102

045 

0.147

983 

0.010

872 

PRX-

A-8 

9 7.6 41.9 41.2 0.3 2588.04 -

0.72255 

0.7986

64 

0.815512 -

0.89

163 

0.8

343 

1.3

870 

-

0.01

19 

0.185

943 

0.168

99 

0.012

235 

PRX-

A-9 

9.3 10.

6 

40.1 40 0 2454.48 -

0.76277 

0.6960

98 

0.698595 -

0.63

193 

0.8

808 

1.0

853 

-

0.00

18 

0.080

09 

-

0.115

92 

0.041

752 

PRX-

A-11 

7.4 9 42.7 40.9 0 2865.24 -

0.91453 

0.7951

22 

0.838191 -

0.71

878 

1.0

560 

1.2

537 

-

0.03

05 

-

0.057

66 

0.086

275 

0.045

003 

PRX-

A-12 

8 6.9 42.7 42.4 0 2940.84 -

0.79864 

0.8690

71 

0.876121 -

0.94

656 

0.9

222 

1.4

853 

-

0.00

50 

0.119

417 

0.281

042 

-

0.009

11 

PRX-

A-13 

7.3 8.7 41.4 42.6 0 2484.72 -

0.91871 

0.8452

71 

0.816698 -

0.74

326 

1.0

608 

1.2

854 

0.02

02 

-

0.056

65 

0.111

209 

-

0.009

5 

PRX-

A-14 

8 10.

6 

41.6 39.8 0 2545.2 -

0.88362 

0.7208

01 

0.765035 -

0.60

221 

1.0

203 

1.0

983 

-

0.03

13 

-

0.053

71 

-

0.071

57 

0.067

121 

PRX-

A-15 

6.4 10.

3 

41.2 42.1 0 2484.72 -

1.05543 

0.8283

16 

0.806706 -

0.57

959 

1.2

187 

1.1

407 

0.01

53 

-

0.240

16 

0.002

952 

0.012

267 

PRX-

A-16 

8 9.2 41.4 41.4 0 2492.28 -

0.85686 

0.7869

79 

0.786979 -

0.71

71 

0.9

894 

1.2

281 

0.00

00 

0.002

115 

0.044

059 

0.019

269 

PRX-

A-18 

8.1 7.8 41.4 42.7 0 2520 -0.814 0.8483

32 

0.817414 -

0.85

174 

0.9

399 

1.3

755 

0.02

19 

0.079

782 

0.174

354 

-

0.021

32 

PRX-

A-19 

11.5 8.9 38.8 40.8 0 2613.74 -

0.55653 

0.7098

07 

0.659545 -

0.81

282 

0.6

426 

1.2

227 

0.03

55 

0.340

412 

-

0.035

08 

-

0.009

9 

PRX-

A-20 

8.5 11.

4 

36.1 44 0 2462.54 -

0.84597 

0.7981

49 

0.600252 -

0.55

243 

0.9

768 

1.0

219 

0.13

99 

-

0.028

37 

-

0.177

28 

-

0.091

67 

PRX-

A-21 

8.9 10.

2 

37.5 43.4 0 2505.38 -

0.78976 

0.7946

5 

0.648531 -

0.65

342 

0.9

119 

1.1

227 

0.10

33 

0.055

779 

-

0.087

53 

-

0.067

85 

PRX-

A-22 

5 12.

4 

39.8 42.8 0 2638.94 -

1.28245 

0.8646

53 

0.791982 -

0.37

419 

1.4

808 

0.9

818 

0.05

14 

-

0.529

15 

-

0.103

84 

-

0.006

32 

PRX-

A-23 

5.2 11.

2 

41.9 41.7 0 2790.14 -

1.23393 

0.8479

11 

0.852696 -

0.46

668 

1.4

248 

1.0

753 

-

0.00

34 

-

0.454

95 

-

0.016

94 

0.036

327 

PRX-

A-24 

4.9 10.

4 

41.6 43.1 0 2790.14 -

1.26643 

0.9078

57 

0.872434 -

0.51

386 

1.4

623 

1.1

464 

0.02

50 

-

0.477

87 

0.055

708 

-

0.001

91 

PRX-

A-25 

5.4 9.1 40.6 44.9 0 2732.18 -

1.16432 

0.9537

18 

0.853048 -

0.64

245 

1.3

444 

1.2

622 

0.07

12 

-

0.339

76 

0.138

421 

-

0.061

28 

PRX-

A-26 

5.3 10.

7 

40.7 43.3 0 2757.38 -

1.21038 

0.8900

7 

0.828145 -

0.50

784 

1.3

976 

1.1

161 

0.04

38 

-

0.420

71 

0.010

917 

-

0.015

45 

PRX-

A-27 

6.3 11.

9 

41.4 40.4 0 2777.54 -

1.09425 

0.7640

3 

0.788481 -

0.45

826 

1.2

635 

1.0

080 

-

0.01

73 

-

0.310

21 

-

0.112

61 

0.061

581 

PRX-

A-28 

5.8 12.

4 

39.2 42.6 0 2623.82 -

1.16616 

0.8278

33 

0.744655 -

0.40

632 

1.3

466 

0.9

737 

0.05

88 

-

0.399

3 

-

0.139

49 

-

0.010

54 

PRX-

A-29 

5.7 10.

7 

40.5 43.1 0 2656.58 -

1.15342 

0.8696

39 

0.807418 -

0.52

364 

1.3

319 

1.1

122 

0.04

40 

-

0.357

05 

-

0.006

01 

-

0.014

12 

PRX-

A-30 

11.2 10.

7 

36.9 41.2 0 2487.74 -

0.61229 

0.6902

36 

0.58001 -

0.65

796 

0.7

070 

1.0

558 

0.07

79 

0.243

502 

-

0.189

93 

-

0.030

61 

PRX-

A-31 

12.7 6.9 37.8 42.6 0 2512.94 -

0.42272 

0.7875

33 

0.667987 -

1.03

28 

0.4

881 

1.4

375 

0.08

45 

0.534

115 

0.136

045 

-

0.084

75 

PRX-

A-32 

13.1 7.4 40.6 38.9 0 2734.7 -0.4121 0.6762

81 

0.719054 -

0.98

323 

0.4

759 

1.3

725 

-

0.03

02 

0.534

483 

0.085

835 

0.037

857 



Ore Modeling and Reserve Evaluation Using Isometric Log-Ratio Transformation and .. 

DOI: 10.9790/1813-140680123                                    www.theijes.com                                                   Page 98 

Mapping the attributes in the original variable space 

Figure 13 and Figure 14 shows the maps of the proximate analysis on a 15 x 15 m grid, giving a not too 

comprehensive insights about the spatial fluctuations of the attributes – Moisture, Ash, Fixed Carbon and 

Volatile Matter. These maps were generated using the Geostatistical Software Library (Gslib) [32] for windows 

(WinGslib) software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Post map of proximate analysis components, Moisture-M (%) and Ash -A (%)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Post map of proximate analysis components, Fixed Carbon-FC (%) and Volatile Matter- VM (%) 

 

Normality Test of the balances 

 

Sequential Gaussian Simulation (SGS) is the method chosen to generate realizations (probable 

estimates) in this study (see sections 2.7.2 and 2.7.3 for details). SGS requires that the frequency distribution 

(histogram) of all variables must follow standard normal distributions (distributions with zero means and unit 

variance often designated as N[0,1]).  
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To test for the normality of our balances, the Kolmogorov-Smirnov statistics DKS, was used. The 

results of DKSstats are in Table 13. If the DKSvalue is less than 0.1, it is acceptable to assume normality for the 

balance [33]. 

 

Table 13: Kolmogorov-Smirnov Statistics Results 

 

 

 

 

 

 

From the DKS results, normality can be assumed for the balances ilr.1 and ilr.2 and not for ilr.3. As a 

result, normality was not assumed for the three balances, and the balances were transformed to the normal 

distribution (normal score -Nscore) before SGS was performed. 

 

 

Geostatistics 

 

Variogram Model Fitting and Interpretation (Variography)  

 

The first step in most application of two-point geostatistics requires modeling of semi-variograms 

(measure of dissimilarity of a variable over distance) and cross-semivariograms (measure of dissimilarity of two 

or more correlated variables over distance). Detail discussions on the concepts of variogram calculation, 

variogram modeling and interpretation (variography) would not be done here. Here, we would define some 

important concepts and present a general procedure in variogram modeling and interpretation as it pertains to 

this work. For detail and in-depth understanding see, [32],[34], and [9].  

 

  

 

 

Variogram – this is a measure of dissimilarity over distance. Calculated as 
1

2
 (one-half) of the average squared 

difference of values separated by a lag distance (vector (h)), Equation 13 below gives the semi-variogram 

expression, 

 

 

 

 

 

 

 

The precise term is semi-variogram (its’ called variogram if we remove the 
1

2
 (one-half)), but in practice the term 

variogram is used. The 
1

2
 is used so that the covariance function and variogram may be related directly. Equation 

14 gives the covariance function which is a measure of similarity among variables over a lag vector h.  

 

 

 

 

 

 

Cross-semivariogram – is the measure of cross variability (dissimilarity) of two different attributes. It is 

defined as 
1

2
 of the average product of the spatial difference of two or more different attributes separated by lag 

vector (distance (h)). Equation 15 is the cross-semivariogram function given in terms of two variables z and y. 

 

 

 

 

 

BALANCES DISTANCE (DKS) P-VALUE 

ILR.1 0.0950 0.9084 

ILR.2 0.0799 0.9764 

ILR.3 0.1247 0.6561 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑(𝑍(𝑢𝑎) − 𝑍(𝑢𝑎 + ℎ))2

𝑁(ℎ)

𝑎=1

           (13) 

Where, 

𝛾(ℎ) is the variogram, 

𝑁 is the number of pairs at a given lag distance (h) 

(h), is the lag distance (vector), 

𝑍(𝑢𝑎) is the tail value of the variable at location 𝑢𝑎, 

Z(𝑢𝑎 + ℎ) is the head value of the variable at location (𝑢𝑎 + ℎ) 

𝐶𝑥(ℎ) = 𝜎𝑥
2 −  𝛾𝑥(ℎ)                   (14) 

Where; 
𝐶𝑥(ℎ) is the covariance of the attribute that are separated by a lag distance h,  

𝜎𝑥
2 is the variance of the attribute, usually called the sill,  

𝛾𝑥(ℎ) is the variogram at the lag distance (h).  

𝛾𝑍𝑌(ℎ) =  
1

2𝑁(ℎ)
∑(𝑍𝑎 − 𝑍𝑎

′ )(𝑌𝑎 − 𝑌𝑎
′)

𝑁(ℎ)

𝑎=1

                 (15) 
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More so, Figure 15 gives a summary of experimental variogram interpretation and variogram model 

parameter extraction from a fitted model. The main objective of fitting a model to the variogram is to define the 

geostatistical parameters namely, Range(s), Sill and Nugget. 

Range (a) - This is the distance at which the variogram structure reaches the sill. Its measure is read 

from the lag distance axis. 

Sill (C + Co) - This is the population variance, variance of the distribution under study. At the sill 

correlation is zero, below the sill correlation is positive and above the sill correlation is negative. 

Nugget (Co) - This is the point variance – the variance between any two points/samples in the 

distribution. A low nugget indicates a low variance between points and a high nugget indicates high variability 

between points in the distribution. The nugget effect can be determined using the nugget ratio relation in 

Equation 16. 

 

 

 

 

 

 

 

 

 

The following general guidelines can be used in variogram model fitting; 

i. Variograms with less number of pairs can be ignored 

ii. Nugget (Co) can be obtained from the crossed tangential line of some first variogram points to 

the gamma 𝛾(ℎ) axis. 

iii. The sill (Co + C) is approximately equal or close to the population variance. – Tangential line 

will cross the sill line at distances 
2

3
𝑎 (two-third of range), so that the range (a) can be defined. 

iv. Variogram model fitting must consider the experimental variogram near the origin, and then 

regard the variogram with high number of pairs. 

v. Interpretation of nugget variance for variogram with angle tolerance > 90º (omnidirectional) is 

helpful in anticipating the magnitude of nugget variance.  

 

 
 

𝑁𝑢𝑔𝑔𝑒𝑡 𝑟𝑎𝑡𝑖𝑜 =  
𝑁𝑢𝑔𝑔𝑒𝑡

𝑠𝑖𝑙𝑙
 𝑥 100 =  

𝐶𝑜

𝐶 + 𝐶𝑜
 𝑥 100                  (16) 

Low – nugget ratio      < 25% 

Medium – nugget ratio   25-50% 

High – nugget ratio   50-75% 

Extreme – nugget ratio   >75%  [35]. 

Where; 

𝛾𝑍𝑌(ℎ) is the cross-semivarigram of two different attribute. 

𝑍𝑎 is the value of attribute Z at the tail of pair a and𝑍𝑎
′  is  

the correspondinghead value.  

The locations of the two values 𝑍𝑎 and 𝑍𝑎
′  are separated  

by the vector h with specified directions and distance tolerance. 

(𝑌𝑎 − 𝑌𝑎
′) is the corresponding spatial difference of the other attribute Y. 
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2.7.2 Conditional Simulation 

 

The details on conditional simulation and its various types such as sequential gaussian simulation, 

direct simulation, indicator simulation, etc, its advantages over kriging and its applications for different 

problems are well documented in various literatures ([32], [36], and [37]) and geostatistical journals. Therefore, 

detail discussion on conditional simulation and its mathematical relations will not be discussed here. The focus 

here will be on sequential gaussian co-simulation (SGCS) (which in practice is not very different from 

sequential gaussian simulation SGS) with full-cokriging. 

The choice for SGCS was made for this work because of its practicality, its efficiency in honouring the 

data – spatial fluctuations, the histogram, the variogram and also due to its ability to enable uncertainty (error) 

analysis through many equiprobable realizations that maybe required to represent a stabilized variance for the 

attribute of interest.      

 On account of the practical similarity between Sequential Gaussian simulation (SGS) and SGCS, a 

brief description of the concept and procedureof SGS is given, this is to aid in understanding the slight 

difference between both methods.     

SGS is a Gaussian-based method of conditional simulation [38], [10]. This method uses data 

transformed to a Gaussian distribution ‘Nscore’ with a zero mean and a unit variance N[0,1] (Gaussian 

anamorphosis), which is then used to simulate spatial distribution of the variable of interest. 

Simulated realization is achieved by defining a random path through the grid nodes including the 

conditioning data, which has been migrated to the nearest grid nodes and considered as hard data. A sequential 

neighbourhood of the target node is established, which includes hard data (original data) and already simulated 

nodes (soft data). The combination of the hard and soft data is used to calculate a local conditioning distribution 

and derive a simulated value at the target node. The simulated value is determined using Equation 17, 

 

 

Furthermore, conditional simulation generates quantitative models of the attribute of interest, 

reproducing the data histogram and their spatial variability. However, because the conditional simulation 

techniques are based on the Monte Carlo stochastic (random) algorithm, it generates unlimited number of 

equiprobable models (realizations) of the attribute of interest. All realizations honour statistical and 

geostatistical characteristics of the constraining data, 

however, they differ in details. The higher the variability 

of the data and less samples available for constraining 

the models the larger degree of the differences between 

realizations. Thus, by statistical analysis of the 

differences between simulated realizations the 

uncertainty of the geostatistical model can be accurately 

quantified[39]. 

 

 

 

Sequential Gaussian Cosimulation (SGCS) with Full-Cokriging Option 

 

SGCS an extension of SGS, is proposed as a means for simulating models of several continues 

variables. It reproduces the distribution and the auto- and cross-variograms of the variables together with their 

values where they are known [40]. Detailed discussion on the algorithm, and the formulations of the procedure 

and concepts of SGCS with full cokriging can be found in [40]. 

 With respect to the ilr balances, Table 14 shows how they were grouped based on their correlation and 

measure of variance into primary and secondary variables for the simple cokriging and cosimulation algorithm. 

 

Table 14: Grouping of the ilr balances for simulation 

SIMULATE PRIMARY 

VARIABLE (Z) 

SECONDARY 

VARIABLE (Y) 

ILR.1 ilr.1 ilr.2 

ILR.2 ilr.2 ilr.3 

ILR.3 ilr.3 ilr.2 

 

To simulate ilr.1, ilr.1 was taken as the primary variable and ilr.2 as the secondary variable. To 

simulate for ilr.2, ilr.2 is taken as the primary variable and ilr.3 as the secondary variable, and to simulate ilr.3, 

ilr.2 was used as the secondary variable. 

Z*SGS = Z*SK + δK(U)    (17) 
 

Where,  

Z*SGS is the SGS simulated value 
Z*SK simple kriging estimate 

δK standard deviation of the kriging estimate 

(U) is a random normal function 
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The following gives details of the simple kriging (SK) and cokriging algorithm and give reasons why 

SK was chosen as the linear regression estimator. As earlier stated, SGS requires that the random variable be 

stationary, it is proper that simple kriging which requires a stationary mean be used as the linear regression 

estimator for our balances, since they are in ‘gaussian/normal space’ N[0,1] with a stationary mean of zero (m = 

0). Equation 18 gives the SK estimator for one variable in its stationary form. 

 

 

 

 

Equation 16 gives the simple cokriging estimator for two variable Z and Y, primary and secondary. 

 

 

 

 

Since we are working in ‘gaussian space’ with a zero mean (m = 0), the terms in the square brackets in Equation 

15 equates to zero, and the SK cokriging estimator reduces to Equation 20, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑍 (𝑢) =  ∑ 𝜆𝑎(𝑢)

𝑛

𝑎=1

𝑍(𝑢𝑎) +  [1 − ∑ 𝜆𝑎(𝑢)

𝑛

𝑎=1

] 𝑚𝑆𝐾
∗             (18) 

𝑍 (𝑢) =  ∑ 𝜆𝑎1 (𝑢)

𝑛1

𝑎=1

𝑍(𝑢𝑎1) + ∑ 𝜆𝑎2 (𝑢)

𝑛2

𝑎=2

𝑌′(𝑢′
𝑎2

) + [1 − (∑ 𝜆𝑎1(𝑢)

𝑛1

𝑎=1

+ ∑ 𝜆𝑎2(𝑢)

𝑛2

𝑎=2

)] 𝑚       (19)𝐶𝑂𝐾
∗  

𝑍 (𝑢) =  ∑ 𝜆𝑎1 (𝑢)

𝑛1

𝑎=1

𝑍(𝑢𝑎1) + ∑ 𝜆𝑎2 (𝑢)

𝑛2

𝑎=2

𝑌′(𝑢′
𝑎2

)        (20)𝐶𝑂𝐾
∗  

Where,  

𝜆𝑎1 are the weights applied to the 𝑛1 𝑍 samples, (samples of the primary variable within the search neighborhood).  

𝜆′𝑎2  are the weights applied to the 𝑛2 𝑌 samples, (samples of the secondary variables within the search neighborhood).   

𝑍 (𝑢)𝐶𝑂𝐾
∗  is the cokriged estimate that forms part of the ccdf on which Monte Carlo simulation will be applied to draw out realizations, 

𝑍(𝑢𝑎1) is the primary variable at the location 𝑢𝑎1 

𝑌′(𝑢′
𝑎2

) is the secondary variable at location 𝑢′
𝑎2 
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Figure 16: Steps in Sequential Gaussian Cosimulation (SGCS) used in this work. 

 

 

Figure 16 shows the work flow of the steps involved in sequential gaussian cosimulation undertaken in 

this work, in the same vain Figure 17,Figure 18 andFigure 19 gives an illustration of the transformation of the ilr 

balances from ‘ilr space’ to ‘gaussian space’ with their normal score omnidirectional variograms and the 

variogram model parameters given in Table 15. 
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Omni-directional variogram of ilr.1 -

Nscore 
ilr.1  ilr.1 - Nscore 

Omni-directional variogram of 

ilr.1-Nscore 
Figure 17: Transformation of ilr.1 to normal space N[0,1] and its omni-directional 

variogram. 

 

Omni-directional variogram of ilr.2-Nscore 
ilr.2_Nscore 

Omni-directional variogram of ilr.2 -

Nscore 

ilr.2  ilr.2 - Nscore 

Figure 18: Transformation of ilr.2 to normal space N[0,1] and its omni-directional variogram 

Distance (m) 

Omni-directional variogram of 

ilr.3-Nscore 

ilr.3_Nsc

ore 

Omni-directional variogram of 

ilr.3 -Nscore 
ilr

.3  
ilr.3 - Nscore 

Figure 19: Transformation of ilr.3 to normal space N[0,1] and its 

omni-directional variogram. 

Distance (m) 
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RESULTS AND DISCUSSION 

Modeling the Anisotropy (Semi-variograms and Cross-variograms) 

 

Using the nugget ratio relation (Equation 16) to determine the nugget effect of the ilr balance, values 

ranging from 33-50% (medium – nugget ratio) were obtained this indicates the variance between points in the 

distribution can be tolerated for modeling purposes.  

 

More so, Figure 20 shows the auto- and cross-semivariograms and the fitted variogram models for the 

ilr balances. Although anisotropy was observed in the variogram, it was not significant, consequently isotropic 

variogram models were fitted. Table 15 and Table 16 gives the results of the variogram models and parameters 

for the ilr balances and the raw proximate components respectively. The variogram models were fitted using the 

Stanford Geostatistical Modeling Software (SGeMS) an open-source computer package.  

 

A notable feature from the spatial continuity analysis plots in Figure 20 is the significant spatial 

correlation between the balances depicted by the cross-semivariogram (ilr.1 vs ilr.2, ilr.1 vs ilr.3, and ilr.2 vs 

ilr.3). As a result of this spatial interaction, cokriging and cosimulation methods were chosen for simulation 

(estimation), details are in the next section.  

 

Table 15: Variogram Model Parameters for each of the ilr balances 

ILR 

BALANCES 

MODEL NUGGET 

(CO) 

SILL-NUGGET  

(SILL 

CONTRIBUTION) 

MIN. 

RANGE 

(A) 

(M) 

MAX. 

RANGE(A) 

(M) 

ILR.1 spherical 0.03 0.06 350 450 

ILR.2 spherical 0.015 0.015 350 450 

ILR.3 spherical 0.001 0.001 350 450 

 Normal Transformed (Nscore) ilr balance (Sill = 1) 

ILR.1 spherical 0.25 0.75 350 450 

ILR.2 spherical 0.45 0.55 350 450 

ILR.3 spherical 0.25 0.75 350 450 

 

Table 16: Variogram Model Parameters for each of the proximate analysis components 

COMPONENT MODEL NUGGET SILL- NUGGET 

(SILL 

CONTRIBUTION) 

MIN. RANGE 

(A) 

(M) 

RANGE(A) 

(M) 

MOISTURE spherical 4.30 2.54 350 450 

ASH spherical 2.50 1.45 350 450 

FIXED CARBON spherical 2.30 2.70 350 450 

VOLATILE 

MATTER 

spherical 0.6 2.56 350 450 
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Figure 20: Omnidirectional Experimental Semivariograms, Cross-semivariograms 

and models of the ilr Balances  
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Co-simulation with Simple Cokriging 

Owing to the spatial correlation between the ilr balances (Figure 20), cosimulation with simple 

cokriging was used to draw realizations (estimates). The SGeMS software was used for the cosimulation 

(cosgsim) on a 15 x 15 m grid, which gave 28350 nodes (cells). 100 realizations were drawn for each ilr balance 

to give us a reasonable statistic from which to make inference. In all 8,505,000 realizations were drawn for the 

three ilr balances (28350 x 100 = 2,835,000 for each. 2,835,000 x 3 = 8, 505,000). 

 

 Figure 21 shows the SGCS maps for realization #99 for all balances. Realization #99 was not chosen 

randomly; it has the best spatial fluctuations that corresponds to the original ilr balances and also reflects the 

inverse relation of ash and moisture to the other components. 
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Figure 21: Sequential Gaussian Cosimulation Maps for the three-isometric 

log-ratio balances on a 15 x 15 m grid 
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Figure 22: Sequential Gaussian Cosimulation E-Type Maps for the four-part proximate 

analysis components on a 15 x 15 m grid 
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Simulation Post-Processing – Computing the E-Type Map 

 

For compositional data, the averaging (calculation of the arithmetic mean) has to be done among the 

realizations of the transformed values, such as Figure 21, and then back-transform all average maps, in our case, 

those for ilr.1, ilr.2 and ilr.3. 

 

Mean-value maps, also called E-type maps, convey the same idea of kriging, only that the expected 

value, instead of being derived analytically (using the kriging algorithm), is calculated numerically (the sum of 

all node values divided by the total number of realizations). Hence, this single map per attribute, although 

unique and minimizing the mean square error, has the disadvantage of smoothing, which is obvious when 

comparing them to any realization, such as those in Figure 23. Figure 22 shows the E-type map for the four-part 

proximate analysis (M, Ash, FC and V). At any cell in the E-type maps, the sum of the values adds to 100% if 

the realizations are derived from ilr maps. 

 

transformation 

 

The final step is the back transformation, which is done with the three simulated balances (ilr*(ui)) 

exactly as illustrated in section 2.6.2 using the ilr inverse function. The simulated values of each of the ilr 

balances were extracted, and thereafter imported into CoDa Pack were the ilr-raw transformation option was 

used to back-transform the values. The paring of realizations must be done at random, because the three sets of 

100 realizations were each generated at random, pairing the realizations in the same sequence as they were 

generated is an acceptable and convenient alternative. For example, the first cell for realization #99 of ilr.1 is 

paired with the first cell for realizations #99 for ilr.2 and ilr.3, and so on. The back-transformation results in 4 

numbers, one for each proximate analysis part. The process is completed upon transforming the last cell for the 

last triplet of realizations. Figure 23shows the results upon back transforming the balances for the last cell for all 

3 realizations #99. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from Figure 23 that the better coals (with FC values ranging from 40 – 44%) are 

found in the North-eastern and southern parts of the deposit, while the low-grade coals are mostly concentrated 

in the central part of the deposit. The inverse relationship between ash and fixed carbon is clearly depicted by 

the maps. Additionally, the similar spatial fluctuations of volatile matter and fixed carbon is clearly 

demonstrated. This implies that in areas where there are high-grade coals, high volatile matter contents should 

be expected. 

 

Furthermore, the E-type (mean) maps of the 4-part components (Figure 22)are not very informative 

because they are too smooth (have similar patterns like the kriged maps – this is one of the disadvantages of 

kriging and why simulation is preferred to kriging). Although the E-type maps give insights as regards to the 

general trends of the components. 

 

Model Validation 

 

A very important aspect in geostatistical modeling, is the validation of the models, this is done to verify 

if the estimated or simulated values honours the original data, honours the original histogram, and the spatial 

continuity plots (variogram). 
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To carry out the validation of our geostatistical model, we plotted quantile-quantile/percentile-

percentile (QQ/PP) plots, Histograms and variograms between raw (original) and simulated (model) values. 

Figures 24, 25, 26, 27 and Figure 28 shows these validation plots. 

 

The QQ/PP plots are used to compare the similarities between two distributions. If the distributions 

plot exactly on the 45° line, they are classed as the same, and there is no significant difference in their moments. 

From Figure24 and Figure 25, it can be observed that our model did not do badly, as both distributions came 

close to the 45° line. Although there are some deviations, especially at the tails, but things look very similar at 

the middles of both distributions. The measure of these deviations can be ascertained by comparing the means 

and variances of both distributions given at the top left corner of the plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure26 and Figure 27 gives the histogram of the distribution (raw and simulated). The histogram also 

known as the probability density function (PDF) can be used to analyze the shape of a distribution and its 

summary statistics. Comparing the histogram plots for both the raw and simulated proximate components, the 

similarities in both distributions can be observed. The upper and lower bounds of both distributions are very 

close, their upper and lower quartiles and median values are the same. 
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Figure 24: A. QQ/PP plot of Raw Moisture Vs SGCS Moisture.  B. QQ/PP plot of Raw Ash vs 

SGCS Ash.  

Figure 25: C. QQ/PP plot of Raw Fixed Carbon Vs SGCS Fixed Carbon. 

D. QQ/PP plot of Raw Volatile Matter vs SGCS Volatile Matter. 
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Compositional SGCS Volatile Matter (%) 

Realization #99 

Compositional SGCS Fixed Carbon (%) 

Realization #99 

Figure 27: Top-left Histogram plot of Raw-Fixed Carbon, Bottom-left Histogram plot of SGCS Fixed 

Carbon / Top-right Histogram plot of Raw-Volatile Matter, Bottom-right Histogram plot of SGCS Volatile 

Matter   

Data count  32 
Mean:  41.6063 
Variance:  2.55673 
Maximum:  44.9 
Upper quartile:      42.7 
Median:  41.6 
Lower quartile:      40.4 
Minimum:  38.3 

Data count  32 
Mean: 40.1937                                                                                                                       
Variance: 5.00253 
Maximum:  43.8 
Upper quartile:     41.6 
Median: 40.6 
Lower quartile:     38.6 
Minimum: 33.5 

Data count 28350 
Mean: 40.0517                                                                                                                      
Variance: 5.07918 
Maximum:  44.2929 
Upper quartile:     41.5785 

Median: 40.594 
Lower quartile:     38.6479 
Minimum: 33.0365 

Data count 28350 
Mean: 41.7008                                                                                                                      
Variance: 2.66148 
Maximum:  45.8873 
Upper quartile:     42.757 
Median: 41.8863 
Lower quartile:     40.7355 
Minimum: 37.3802 

Compositional SGCS Moisture (%) 

Realization #99 

Compositional SGCS Ash (%) 

Realization #99 
Figure 26: Top-left Histogram plot of Raw-Moisture, Bottom-left Histogram plot of SGCS 

Moisture / Top-right Histogram plot of Raw-Ash, Bottom-right Histogram plot of SGCS Ash   
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The validating spatial continuity plots (variogram) in Figure 28, compares the spatial fluctuations of the 

simulated values and those of the original data. The variogram model parameters for the simulated values are 

given in Table 17, comparing them to the parameters in Table 16 (those of the raw proximate components), we 

can see the similarities, especially in the ranges, which mark the extent of spatial continuity of the values. 

Taking a closer look at the variogram model of the simulated components, we can observe that all the values 

plot on or below the variogram structure, none of the values went way above the sill until beyond the 350 m 

range mark (not captured in this plot for easy viewing purpose), this range is very close to those of the raw 

variogram structure. This implies that the spatial fluctuations of our simulated value and those of the original 

(raw) data are similar, which further confirms that our model, honours the data configuration, the histogram and 

variogram of the original data, and as such can be used for further analysis of the deposit- grade and tonnage 

computation of the coal deposit in the study area, which is the focus of the next section.  

  

Table 17: Variogram Model Parameters for SGCS proximate analysis components 

SGCS 

COMPONENT 

MODEL NUGGET SILL- NUGGET 

(SILL 

CONTRIBUTION) 

MIN. RANGE 

(A) 

(M) 

MAX. 

RANGE(A) 

(M) 

MOISTURE spherical 3.2 3.95 200 350 

ASH spherical 2.2 2.53 200 350 

FIXED CARBON spherical 2.1 2.90 200 350 

VOLATILE 

MATTER 

spherical 1.0 1.66 200 350 

 

Resource Estimation 

 

BLOCK MODEL (Definition of Selective Mining Units (SMU)) 

 

In mining, the most important interest is in estimating a certain selective mining unit (SMU) that is a 

volume of material of a specific size that characterizes mining selectivity. [22], defined the SMU volume size as 

the minimum volume of material on which ore and waste can be separated, which is a function of mining 

method and selectivity. They also stated that the SMU size is related to the ability of the (excavator) equipment 

to select material; it is also based on the data available for ore/waste classification, the procedures used to 
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Figure 28: Top row shows the variograms of the raw proximate components, bottom row 

gives the variograms of the simulated proximate components. 
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translate that data to minable dig limits, and the efficiency with which the mining equipment excavates those dig 

limits.  

 

Considering the above factors together with the interpreted controls on mineralization, and geometry of 

mineralization, a SUM volume size of 10 x 10 x 1.7 m was chosen for the Onupi coal deposit block model. The 

block model (block/cell) was created and constrained by the validated geologic model (wireframe) for the coal 

seam (Figures 8 and 9). Figure 29 shows the constrained block model in the surpac window, with a vertical 

exaggeration of 5 for the Z-axis, the north direction is the same as that illustrated in Figures 8 and 9.  

 

 

Table 18: Block model Report for the Onupi coal, generated using Surpac. 

 

 

Table 18 gives the block model report, which contains the size for each cell, the total number of blocks 

(SMU), the attributes, viz, the proximate analysis components and their background (maximum) values, the 

average seam thickness and the specific gravity of subbituminous coal. These attributes are necessary as they 

will be used for the classification of the blocks into ore or waste, calculation of diluted grade, tonnage and 

recoverable product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

GEMCOM SOFTWARE 

INTERNATIONAL   FEB 28, 2022 

BLOCK MODEL SUMMARY 

ONUPI_COAL_BLOCKMODL2.MDL 

    

ONUPI COAL BLOCK MODEL FOR 

RESOURCES ESTIMATION 

    

     

TYPE  Y X Z 
 

MINIMUM COORDINATES 823828 362500 260 
 

MAXIMUM COORDINATES 824778 362950 275.3 
 

USER BLOCK SIZE 10 10 1.7 
 

MIN. BLOCK SIZE 10 10 1.7 
 

ROTATION 0 0 0 
 

     

TOTAL BLOCKS 16124 
   

STORAGE EFFICIENCY % 70.09 
   

     

ATTRIBUTE NAME  Type  Decimals Background Description  

ASH Float 2 16.40 Ash-content (%) 

CALORIFIC_VAL Float 2 3018.96 Calorific value (Kcal/kg)  

FIXED_CARBON Float 2 43.80 Fixed carbon content (%) 

MOISTURE Float 2 13.10 Moisture content (%) 

SEAM_THICKNESS Float 2 1.70 Avg. seam thickness (m) 

SG Float 2 1.30 Specific gravity of sub-

bituminous coal 

THICKNESS Float 2 2.25 coal seam thickness (m) 

VOLATILE Float 2 44.90 Volatile matter content (%)      

BLOCK MODEL SUMMARY                                                   

1/1 
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Block Model Population with simulated values 

 

 The SGSM function in the Gslib estimation option in surpac was used to populate the blocks, using the 

proximate analysis values and the exact spatial continuity parameters already discussed. One hundred 

realizations were ran. Realization # 99 was chosen and its values were assigned to the cells of the block model. 

Figure 30 shows the populated blocks for the fixed-carbon content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the legend in Figure 30, the fixed-carbon content for each block (SMU) can be determined, blue 

coloured blocks indicate blocks with fixed-carbon content range of 33.50 – 35.50 % (low carbon content), and 

yellow and red coloured blocks with fixed-carbon content range of 41.50 % and above (high carbon content for 

subbituminous coal). 

 The quality of coal is generally determined by its fixed-carbon content and ash contents. In some cases, 

moisture content is also used as a coal quality determinate parameter. Based on the purpose for which the coal 

under study is used for, fixed-carbon (carbon) content value will be used as the coal quality (grade) determinate 

parameter. So, the grade of a block refers to the value of carbon contained in it. In the same vain, calorific value 

Figure 30: Block Model populated with simulated values for 

Fixed-Carbon (%) (Realization #99). 

Figure 29: Left – the block model in a 50 x 50 x 10 grid without cell 
outline. Right – block model without grid and containing each cell 

outline. For proper viewing, a vertical exaggeration of 5 was applied 

to the Z-direction since it’s smaller in length when compared to the 
X and Y – directions.   
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of coal which is a measure of the heat energy released by coal is dependent on the carbon content, the higher the 

carbon content the higher the calorific value. 

 

Block model Classification (Ore and Waste) - Cutoff Grade (CG) Definition 

 

 Proposing a generalized methodology for the computation of cutoff grade (grade that is normally used 

to discriminate/classify between ore and waste within a given deposit) is very difficult or impossible, as every 

mine has its unique features, and as such has its unique parameters used to define a cutoff grade. In this section a 

cutoff grade based on the fixed carbon content is defined for the Onupi coal to distinguish ore from waste.  

 

The coal extraction operation in the study area is not for commercial purposes (the coal mined is not 

sold for profit) but used by the company to fire the kiln for cement production. Owing to this fact, the cutoff 

grade determinate parameters at Onupi are different from the traditional cutoff grade determinate parameters as 

profit from sale of coal is not the focus. At Onupi the CG is dependent on the ratio of the overburden thickness 

(OBT) to the coal seam thickness (CST) and Fixed-carbon content (FCC). Consequently, an average CST of 1.7 

m, OBT less than 35 m and FCC of 33% and above were chosen as the cutoff grade defining parameters. 

 

Dilution Factor 

 

The National Instrument 43-101 (NI-43-101) requires that details about dilution (waste material that is 

not separated from the ore during the mining operation and is mined with ore) factor used for prefeasibility and 

feasibility reports for resource estimation be stated, but not necessarily for preliminary economic assessment 

(PEA) studies but can be assumed[41].It is generally accepted that dilution is about 5% for vain type deposits 

such as a copper porphyry, and about 10% for tabular (sedimentary) deposits such as a gold, coal etc.[42]. 

Owing to the non-disclosure agreement of some vital information between the company and the researchers 

most of the economic information in this work are informed assumptions, as such this section can be seen as a 

PEA studies. As a result, the dilution expression (Equation 18) was used to compute the dilution factor, and a 

dilution factor of 10% was applied to the resource and reserve estimation. 

 

 

 

Furthermore, from pit observation and drill core studies, the major sources of dilution at Onupi will 

come from the inter-burden between the upper and lower coal seams, and the shaly-coal layers that have a 

gradational contact with the main coal seams. This can be minimized by the skill of the excavator operator and 

the reduction of the bench height to allow for more selectivity during coal production. 

 

Recoverable Resource Evaluation 

 

The concept of recoverable resources imply that we are interested in evaluating a truncated statistic (a 

part) of the overall grade distribution. The classical formulae (Equations 19, 20 and 21) formulated by 

[43],and[22], for the evaluation of tonnage, metal quantity (in this case coal quantity) and average grade for 

recoverable material are found after defining an economic cutoff (threshold) for any set of SUM. The tonnage is 

simply the sum of all unit (block) tonnages that are above the threshold; 

 

 

 

Where 𝑇0 is the total in-situ tonnage at a cutoff 0 and 𝑍𝑐 is the applied cutoff grade. 

 

The quantity of carbon is calculated as the summation of the quantity of fixed-carbon for each individual unit;  

 

 

 

 

 

 

Where 𝑍 is the grade of the unit block.  

Finally, the average grade of the recovered material (recoverable resource) is computed as the ratio of 

the contained material in tons to the total in-situ tonnage  

 

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 (%) =  
𝑤𝑎𝑠𝑡𝑒 𝑡𝑜𝑛𝑛𝑒𝑠

(𝑜𝑟𝑒 𝑡𝑜𝑛𝑛𝑒𝑠 + 𝑤𝑎𝑠𝑡𝑒 𝑡𝑜𝑛𝑛𝑒𝑠)
 𝑥 100          (18) 

𝑇(𝑧0) =  𝑇0[1 − 𝐹𝑧(𝑧0)] =  𝑇𝑜.  ∫ 𝑓𝑧(𝑍)𝑑𝑧

+∞

𝑍𝑐

=  𝑇0 .  
1

𝑁𝐴

 ∑ 𝑡𝑖(𝑢𝑖 ,

𝑁𝐴

𝑖=1

𝑍𝑐)         (19) 

𝑄(𝑧0) =  𝑇𝑜.  ∫ 𝑍.  𝑓𝑧(𝑍)𝑑𝑧

+∞

𝑍𝑐

=  𝑇0 .  
1

𝑁𝐴

 ∑ 𝑍.  𝑡𝑖(𝑢𝑖 ,

𝑁𝐴

𝑖=1

𝑍𝑐)                       (20) 
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The above parameters where applied to the block model to classify the blocks into ore and waste. 

Figures 31, 32, 33 and 34 shows the classified blocks in the surpac window and the attributes. During the 

classification, an ore-waste flag of 0 and 1(integer values) were used to discretize the blocks, the integer 0 

signifies waste (blue blocks – blocks below the cutoff grade), and the integer 1 signifies ore (red blocks – blocks 

above the cutoff grade or threshold).  

 

Figure 31 shows both ore and waste and the attributes for an ore block. Figure 32 shows only the waste 

blocks and the attributes of one block, and Figure 33 and Figure 34 shows only the ore blocks and the attributes 

for one block. In the attribute panel in the figures, the attributes for the block model in view are the ones with 

the suffix ‘_33’. The suffix ‘_33’ is the identification used for fixed-carbon content greater-than 33%. Table 19 

shows the attributes and their description. 

 

Table 19: Attributes in blocks and their description 

S/N ATTRIBUTE DESCRIPTION 

1 Composite_grade_33 Composite grade calculated for that block, using a composite length of 1 m  

2 Individual_ratio_33 The ratio of the volume of material (ore + waste) to that of the product (ore) 

for that block. A high value indicates that the block is not economical.  

3 Cumulative_ratio_33 The ratio of volume of material to product for all blocks within a column.  

4 Diluted_grade_33 The grade of the block after the dilution factor of 10% is applied.  

5 Fixed_carbon The raw fixed carbon content of the block before dilution factor is applied 

6 Fixed_carbon 1 The simulated/estimated fixed carbon content of the block before dilution 

factor is applied.  

7 Ore_waste_flag_33 The flag (integer value) that signifies if a block is ore or waste. 

8 Recoverable_product_33  The part of the ore that can be recovered for that block, gotten after a 

recovery of 90% is applied.  

9 Recovery_33 The recovery factor 90% (assumed), this means we have an ore loss 

(reduction) of 10% 

10 Sg Specific gravity of subbituminous coal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Block model classified into Ore (Red blocks) and 
Waste (Blue blocks) after the application of the cutoff grade 

parameters specific for Onupi Mine. The block attribute panel 

gives the attributes and the values for the block pointed by the 
arrow.   

 

 

𝑀(𝑧0) =  
𝑄(𝑧0)

𝑇(𝑧0)
                                   (21) 
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Figure 32: Blocks classified as waste (blocks that did not satisfy the 

grade cutoff constrains). The block attribute panel gives the attributes 

and the values for the block pointed by the arrow.   

Figure 33: Blocks classified as Ore (blocks that satisfy the grade 
cutoff constrains). The block attribute panel gives the attributes and 
the values for the block pointed by the arrow.   
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GEMCOM SOFTWARE INTERNATIONAL                            

MAR 13 2022  

BLOCK MODEL REPORT 

BLOCK MODEL: 

ONUPI_BLOCKMOD_33.MDL 

  

VOLUME TONNAGE REPORT FOR ECONOMIC GRADE 

PARAMETERS AT ONUPI COAL: CST OF 1.7 M, OBT < 35 M, 

FIXED CARBON CONTENT > 33.0%.  

CONSTRAINTS USED 

  A. NOT ABOVE DTM TOP_ORE_33.DTM OBJECT ID 1 

TRISOLATION ID 1 

  B.  ABOVE DTM BOT_ORE_20.DTM OBJECT ID 1 

TRISOLATION ID 1 

  C.  = BLOCK ORE_WASTE_FLAG 1 

Z  Volume 

(m3) 

Tonnes 

(Mt) 

Diluted 

Grade   

Recoverable 

Product 

(m3) 

257.0 -> 

259.0 

58174.00 75626.00 27.88 84388.52 

259.0 -> 

261.0 

182099.00 236728.00 26.65 252519.28 

261.0 -> 

263.0 

243055.00 315971.00 26.68 337353.38 

263.0 -> 

265.0 

363125.00 472062.00 27.30 515707.88 

265.0 -> 

267.0 

416174.00 541026.00 27.36 592460.22 

267.0 -> 

269.0 

437877.00 569239.00 27.23 620414.66 

269.0 -> 

271.0 

305643.00 397336.00 27.28 433844.84 

271.0 -> 

273.0 

99293.00 129080.00 26.68 137812.92 

273.0 -> 36006.00 46808.00 26.51 49673.77 

Figure 34: Blocks classified as Ore (blocks that satisfy the economic 

cutoff constrains).  

The block attribute panel (continuation from Figure 33) gives the 

attributes and the values for the block pointed by the arrow. 
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Furthermore, the ore blocks were further classified into economic blocks (recoverable blocks) by 

applying an assumed recovery value of 90%. The cumulative volume of all economic blocks was calculated and 

the specific gravity applied to convert from volume to tonnage. Table 20 gives the result of the volume, tonnes, 

diluted and recoverable product for the economic blocks, calculated at 2-meter interval along the Z-axis 

(downwards). 

 

Table 20: Volume, Tonnage and Recoverable Product Report for the economic blocks at the study area 

generated. 

 

 

From Table 20, a total volume of 2,147,270 cubic meter of coal, with a weight of 2,791,451 metric 

tonnes, having a fixed carbon content greater-than 33%, and an aggregate recoverable product of 3,032,296.80 

cubic meter of coal was estimated within the study area in Onupi.  

 

Tonnage- Cutoff Grade Curve 

 

 Tonnage-cutoff grade curves are common tools in reserve evaluations, used to analyze the relationship 

between tonnages at different cutoff grades, which allows to predict recoverable resources in an SMU at 

different economic cutoff grades. Figure 35 gives the Tonnage – cutoff grade chart for some selected grade 

cutoff based on fixed carbon content. Table 21 gives the tonnage and grade cutoff values. 

 

From Figure 35, the inverse relationship between carbon cutoff and carbon tonnage can be observed. It 

means at higher cutoffs low carbon tonnages should be expected. So, if we place or assign high carbon cutoffs 

for the coal deposit or SMU, the quantity (tonnage) of coal that would be available for production will be low, 

as such economic cutoff grade assignment will differ for different SMU’s within the Onupi coal field. 

 

Table 21: Selected Grade cutoff and their evaluated tonnages 

GRADE 

CUTOFF 

TONNAGES 

47 1739075 

46 2898600 

45 1936000 

36 1012440 

33 3161836 

28 7562600 

27 4949150 

26 1472320 

 

275.0 

275.0 -> 

277.0 

5826.00 7574.00 26.79 8121.33 

     

GRAND 

TOTAL 

2147270.00 2791451.00 27.14 3032296.80 

                                                                             1/1 
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Figure 35: Tonnage-Cutoff Grade Curve Based on Fixed Carbon Content (%)  

 

Resources and Reserves Classification 

   

Mineral Resources 

According to the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) guidelines in NI 43-

101 standards of disclosure for mineral projects, the public disclosure of estimated resources requires that 

resource estimates be classified based on degree of confidence and allocated as measured, indicated and 

inferred, while reserves must be classified as either proven or probable reserves, derived under certain rules 

from resources categories [22]. 

 

Measured Mineral Resources: Mineralization or other natural material of economic interest may be 

defined as a measured mineral resource when the nature, quality, quantity and distribution of data are such that 

the tonnage (quantity) and grade (quality) of the mineralization can be estimated to within close limits and that 

the variation from the estimate would not significantly affect potential economic viability. 

Indicated Mineral Resources: Mineralization may be classified as an indicated Mineral Resource when 

the nature, quantity and distribution of data are such as to allow confident interpretation of the geological 

framework and to reasonably assume the continuity of mineralization. The importance of the Indicated Mineral 

category to the advancement of the feasibility of the project and as a base for major development decisions must 

be recognized by the Qualified Person (QP). 

 

Inferred Mineral Resource: Mineralization can be classified as Inferred Mineral Resource if the 

quantity and grade (quality) can be reasonably assumed, but not necessarily verified. As a result of the 

uncertainty that maybe attached to Inferred Mineral Resources, it cannot be assumed that all or any part of an 

Inferred Mineral Resource will be upgraded to an Indicated or Measured Mineral Resource as a result of 

continued exploration. Confidence in the estimate is not sufficient to permit meaningful application of technical 

and economic parameters or to enable an economic evaluation viable enough for public disclosure. As such, 

Inferred Mineral Resources must be excluded from estimates forming the basis of feasibility or other economic 

studies [22]. 

 

Mineral Reserves 

A Mineral Reserve is the economically minable (extractable) part of a Measured or Indicated Mineral 

Resource displayed by a least a Preliminary Feasibility Study. This study must contain sufficient information on 

mining, processing, metallurgical, economic and other relevant factors that demonstrate, at the time of reporting, 

that economic extraction can be justified or validated. A mineral Reserve includes diluting materials and 

allowances for losses that may occur when the material is extracted. A mineral Reserve can be classified as 

Proven or Probable Mineral Reserve. 

 

A Proven Mineral Reserve is the economically mineable part of a Measured Mineral Resources 

demonstrated by at least a Preliminary Feasibility Study which must include, adequate information on mining, 

processing, metallurgical, economic, and other relevant factors that demonstrate, at the time of reporting, that 

economic extraction is justified. On the other hand, a Probable Mineral Reserve is the economically minable 
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part of an indicated, and in some circumstances a Measured Mineral Resource displayed by at least a 

Preliminary Feasibility Study,[22]. 

 

Resource and Reserve Classification for the Onupi Coal 

 

From the above definitions of Resource and Reserve, and the consideration of the geological and 

economic factors specific for the Onupi coal. The classification of the coal in the study area into Resource is 

given in Tables 22 and 23.  

  

Table 22: Measured and Indicated Resources 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 23: Inferred Resource 

 

 

 

 

 

 

 

 

 

 

 

 

The Measured and Indicated Resources in Table 22 can pass as proven Mineral Reserve for the study 

area after proper evaluation of relevant mining, processing and economic factors, whose details are not within 

the scope of this work. From Table 22, the total Measured and Indicated Resources is 2,708,250.00 tonnes at a 

recoverable product of 2,939,786.95 tonnes, and from Table 23, the total Inferred Resource is 83,200.00 tonnes, 

and Recoverable product of 92,509.85 tonnes.    

 

CONCLUSION 

 The creation of a geologic model from drill cores analysis that intersected the coal seam, and from 

studies of excavated sections within the ore domain, together with the production of coal quality maps by 

applying both the ilr transformation and sequential simulation, allows for the integration of both geologic and 

statistical models of the deposit, thus providing a resource estimation result with high confidence. The 

integration of geologic and statistical models provides in depth knowledge of the spatial extent of the coal 

MEASURED/INDICATED RESOURCES 

Z  Volume  Tonnes  Diluted 

Grade  

Recoverable 

Product  

259.0 -> 

261.0 

182099.00 236728.00 26.65 252519.28 

261.0 -> 

263.0 

243055.00 315971.00 26.68 337353.38 

263.0 -> 

265.0 

363125.00 472062.00 27.30 515707.88 

265.0 -> 

267.0 

416174.00 541026.00 27.36 592460.22 

267.0 -> 

269.0 

437877.00 569239.00 27.23 620414.66 

269.0 -> 

271.0 

305643.00 397336.00 27.28 433844.84 

271.0 -> 

273.0 

99293.00 129080.00 26.68 137812.92 

273.0 -> 

275.0 

36006.00 46808.00 26.51 49673.77 

     

GRAND 

TOTAL 

2083272.00 2708250.00 26.96 2939786.95 

INFERRED RESOURCES 

Z  Volume  Tonnes  Diluted 

Grade  

Recoverable 

Product  

257.0 -> 

259.0 

58174.00 75626.00 27.88 84388.52 

275.0 -> 

277.0 

5826.00 7574.00 26.79 8121.33 

     

GRAND 

TOTAL 

64000.00 83200.00 27.34 92509.85 
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deposit and also the distribution of the attributes across the deposit, which are very useful information during 

mine planning. 

 

 More so, by applying ilr transformation and sequential simulation for data modeling, several maps 

(realizations) that allows clear characterization of the coal quality across the deposit were produced, from which 

the best map that depicts the original raw data characteristics was chosen. 

  

 The semivariograms used for modeling were free of any spurious correlations that would have been 

present if ilr transformation was not used. Semivariogram studies showed significant spatial correlation among 

the ilr balances, which led to the choice of cosimulation for resource estimation. 

 

 Normality test revealed that the balances were not approximately normal, thus warranting the 

transformation of the data into normal space to properly apply sequential gaussian simulation. Additionally, 

model validity analysis showed that the histogram and semivariogram of the chosen realization was the same as 

those of the parent (raw) data. 

 

The Tonnage-Cutoff grade curve shows a general inverse relationship between Tonnage and Cutoff 

grade for the Onupi coal. From where we drew inference that, at higher carbon grade cutoffs,coals with low 

carbon contents should be expected. As such economic cutoff grade assignment will differ for different SMU’s 

within the Onupi coal field. 

 

 Resource estimation and classification carried out on the geologic block model with SUM dimensions 

(volume) of 10 x 10 x 1.7 m3 showed that the estimated resource of the coal deposit in Onupi field was 

estimated to have a total volume of 2,147,270 cm3 with a tonnage of 2,791,451 MT and a fixed carbon content 

(grade) greater than 33%. The total measured and indicted coal resource (reserve) in the study area is 

approximately 2,708,250.00 MT, while the inferred resource is 83,200.00 MT.  
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