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------------------------------------------------------------ Abstract ------------------------------------------------------------- 

This literature survey examines the economic impacts of artificial intelligence (AI) on labor markets, focus-ing 

on job displacement, wage inequality, and the creation of new employment opportunities. By employing a 

systematic methodology, including Latent Dirichlet Allocation (LDA) and citation graph analysis, the study 

identifies key themes and influential papers within the field. The findings highlight a nuanced consensus: while 

AI and automation pose significant risks of job displacement and polarization, they also offer potential for job 

creation and complementarity, particularly in tasks requiring human intuition and empathy. The research 

underscores the importance of task characteristics, skill requirements, and contextual factors in understanding 

AI’s labor market effects. Future research should address the evolving nature of AI technologies, refine 

quantitative methodologies, and consider broader policy responses to ensure inclusive economic growth. 
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I. Background and motivation 
Over and beyond the prevalence of recent discussion about potential existential risks of AI technology, 

from an economist’s perspective, the broad set of technological capabilities that are collectively referenced by 

the term "Artificial Intelligence" (further on: AI) represents a new kind of force in the economic life of society, 

that bears huge promises, as well as hold significant risks for the prosperity and wellbeing of society at large. 

Since there is a significant amount of work dedicated already to the topic of "economic effects of AI", especially 

it’s aspects pertaining to the labour markets, a synthesis and overview of the broader literature can be useful to 

provide some orientation about the current state of discussion, as well as to shed light on areas of further 

potential research, thus, with a broad scope analysis we endeavor to provide such an overview. 

 

II. Methodology 
This study aimed to conduct a thorough analysis of the existing literature on the impact of artificial 

intelligence (AI) on the labor market. Given the extensive research activity in this area, our methodological 

framework was designed to systematically evaluate a broad array of academic publications to gain 

comprehensive insights into the topic. 

 

2.1 Literature Search and Collection 

Our literature search began with a targeted strategy using Google Scholar to ensure access to a wide 

range of academic journals and conference proceedings. We complemented this online search with a manual 

examination of the citation networks from key papers, which allowed us to capture additional relevant studies 

that might not have been indexed or immediately apparent in digital search results. 

 

2.2 Screening and Selection 

The search strategy resulted in an initial pool of over 2000 publications. To determine relevance, we 

applied a two-stage screening process. First, an automated filtering system was used to perform an initial 

screening based on keywords and abstract content. This reduced the pool to approximately 725 potentially 

relevant articles. Second, we engaged in a manual curation step narrowing down the number of immediately 

relevant papers for the topic of AI in the labor market. This process led to a curated set of 250 articles for in-

depth analysis. 
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2.3 Thematic Analysis 

To uncover the thematic structure within the curated set, we utilized Latent Dirichlet Allocation (LDA) [5], a 

technique utilized in Natural Language Processing which allowed us to identify meaningful topics, assess their 

contribution to the given documents, thus to track the prevalence of these topics over time, which informed us 

about the focus areas within the field and their evolution. 

 

2.4 Citation Analysis 

With the aim of identifying the most influential studies, we conducted a citation graph analysis which helped us 

isolate a shortlist of 13 papers that were not only frequently cited but also held significant sway in shaping the 

discourse in the field. These papers received a detailed examination, wherein we scrutinized their hypotheses, 

methodologies, datasets, and findings for getting a more in depth view on the consensus in the field. 

 

2.5 Quantitative and Content Analysis 

Each paper on the shortlist underwent a rigorous quantitative and content analysis. We examined the papers’ 

predictions and conclusions about the impact of AI on the labor market. We also identified a strand of research 

specifically focusing on the quantitative estimation of AI’s effects on different occupations based on their 

associ-ated skill sets. 

 

2.6 Identification of Research limitations 

Throughout our analysis, we remained cognizant of the limitations inherent in the existing body of work. We 

documented these limitations and proposed directions for future research to address these gaps and to advance 

the understanding of AI’s role in the labor market. 

 

In the following sections of this paper, we will provide detailed descriptions of the methods used at each stage 

of our analysis. 

 

III. General trends 
As a first level of analysis, we looked at the broadest set of 725 "generally relevant" articles identified by 

filtering the results (>2000 entries) of automated Google Scholar searches carried out for such expressions as 

"effects of Artificial Intelligence on the labour market". 

 

We analyzed the temporal distribution of the broad set of 725 to get a grasp on the general trend of interest in 

the field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Broadly relevant articles 

 

As we can see, there is a strong increasing trend visible in the number publications, with an inflection point at 

2015. (For better illustration, we extrapolated - based on the proportion of days remaining in the year at the time 

of writing - the number of publications in 2023.) 
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This begs the question, why did this trend appear just in this time period, what are the prime events moving it? 

 

3.1 Why the trend? 

 

Though the long term progress of some classical areas in AI research, like automated speech recognition or 

image classification showed steady progress through the decades, the gains in performance (or decrease in error 

rate, which can be considered the same) were achieved at a cost of investing considerable amounts of 

engineering manpower. As for example the case of "AlexNet" [28], the first really successful Deep Learning 

model to beat "conventional" (non-neural network based statistical models mainly relying on manual, expert 

driven feature engi-neering) illustrates, a paradigm shift appeared in the for of the new "end-to-end learning" 

paradigm. This paradigm enabled the application of single models without extensive manual feature design on 

large scale datasets (eg. Im-ageNet [10] in case of image classification), letting the learning procedure "figure 

out" the necessary features, essentially trading human expert engineering hours for computation. 

 

The increased "compute" utilization in what Sevilla et al. [36] call the "Deep Learning era" is quite visible in the 

chart below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Compute usage of SOTA AI models in time [36] 

 

This - combined with the wide availability of computation resources and larger datasets lead to a breakthrough 

in performance on common AI benchmarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Automated speech recognition history[21] (modified to show approximate human level performance) 

 

As one of the "founding fathers" of Deep Learning, the Turing Award winning computer scientist Geoffrey 

Hinton pointed out in his public lecture [22]: The theoretical advancements of the late 90s did not bear fruit until 

enough data and computing power became available (to a suitable model structure, that is Deep Learning, since 

other previous modeling architectures did not directly benefit from such a boost in data / computing power)
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Figure 4: Image classification on Image Net 

 

 
Figure 5: Geoffrey Hinton’s lecture on the history of Deep Learning [22] 

 

As the notes of Hinton illustrate, from a decades long held substantially lower performance ( 26% error rate) in 

image classification, in 2012 the first well trained Deep Learning model cut the error in nearly half, then in the 

span of approximately 3 years, on this task human level performance was achieved. 

 

As the knowledge about this breakthrough - and the rapid increase in performance - became more common-

place (as evidenced by e.g. the Google Search Trends for the term "Deep Learning") this coincides with the 

increase in interest by the economic sciences in the effect of AI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Google Trends Search: Deep Learning [19] 

 

Looking closer to the number of AI related economic publications in time, there is also a small "saturation" 

effect visible in 2020-21, until the concept of generative AI burst into consciousness with the release of 

ChatGPT, and gave a new push to the discussion. 
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It is worth noting, that technology again rapidly and qualitatively changed with the advent of "generative AI" 

(which itself is somewhat of a misnomer, covering the combined advancements in Deep Learning based Large 

Language Models - what Stanford researchers, Bommasani et al. [6] in their paper "On the Opportunities and 

Risks of Foundation Models" call "foundational models", with (mainly) diffusion based image generation 

models [23], and their potential combination under the umbrella of "multi-modality"). 

 

The sudden gain in capabilities for "foundational models" re-sparked the interest of economic research in the 

effects of AI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Google Trends Search: generative AI [20] 

 

With this interest in mind, it is essential to point out, that the change in capabilities in this case was not just 

"quantitative", the set of capabilities for the foundational models expanded rapidly, thus, their practical applica-

tions changed in at least three meaningful ways: 

 

• The accuracy of ML models on some tasks increased 

 

• The scope of their applicability exploded 

 

• The technological threshold for their application dropped 

 

Based on this, we can conclude, that the discussion about AI currently must aim at a more broad set of 

capabilities. Essentially: talking about AI’s impact before November 2022 is different than after it. 

 

IV. Detailed analysis: The "Curated list" 

For detailed analysis, a manually curated list of 250 articles were selected, that focused more on the 

direct labor market influences, and at least touched upon the pertinent question of technology-induced 

unemployment. The main selection criterion for this manual curation was that the stated focus of the article had 

to have direct relevance for the theme of AI’s effect on the labor market and had to at least partially concern the 

question of technology-induced unemployment. 
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Figure 8: Time distribution of the curated set 

 

During the curation process, we took care to ensure that the temporal distribution of articles reflects that of the 

broader set, thus ensuring that the general dynamics of topics remain discernable. 

 

4.1 General topics present in the "Curated set" 

 

For a more quantitatively driven - thus hopefully more objective - analysis of the topics prevalent in the 

"Curated set," we decided to utilize Natural Language Processing-based techniques, especially Latent Dirichlet 

allocation [5], which is a technique for document topic analysis. At its core, the approach assumes that the 

documents present in a corpus of text (in our case the 250 hand-selected articles) came to existence as a 

probabilistic mixture of latent topics as a generative distribution, thus every document can be interpreted as a 

kind of mixture of these not directly observed thematic causes. 

 

For the training procedure of the model, we utilized the OpenSource "Gensim" library [34], and after exper-

imentation, we settled to utilize 5 topics for modeling. With this technique, we created a topic model of this 

subliterature, and we identified the following topics (by interpreting the low-level LDA results). The topic labels 

themselves were created by the interpretation of the keyphrase probabilities of the LDA model and confirmed 

by manual inspection of the broader set of 750 articles. 

 

1. Topic 1: "Job dynamics and wage variations" ("gigification", wage change and modes of changes in the 

work) 

2. Topic 2: "Technological innovation and labor productivity (the effects on productivity gain) 

3. Topic 3: "Occupational skills and digital transformation" (the "unemployment question") 

4. Topic 4: "Human interaction with emerging technologies" (including AI hiring, bias, the effects of 

algorith-mic management) 

5. Topic 5: "Robotics and labor share in industries" (Physical robotization of manufacturing as a separate 

topic) 

 

4.1.1 Some takeaways 

The presence of this topic distribution as it stands can hit to some interesting associations and structure inside 

the literature. 

 

1. Job Dynamics and Wage Variations: The presence of this more distinguishable topic suggests that the 

litera-ture is not just concerned with the employment question in the frames of "traditional" employment 

relations, but the differentiation between gig work and traditional employment is getting emphasized, hinting at 

po-tential variance in job stability and wage trajectories. This is seems to be a noteworthy concern for the 

literature, raising questions about how these trends may diverge from established labor market behaviors and 



AI’s effect on labour: What does economic literature say? 

DOI:10.9790/1813-1305328350                                       www.theijes.com                                               Page 334 

whether these differences could lead to alternative employment models becoming more normative in certain 

sectors. 

 

2. Technological Innovation and Labor Productivity: The presence of technology as a driver of productivity 

is well-documented, but its intersection with AI introduces new considerations. There appears to be a possibility 

that AI and automation are altering the established dynamics between capital and labor, with open questions on 

whether these changes lead to complementarities or new forms of substitution. 

 

3. Occupational Skills and Digital Transformation: The observed association between the demand for new 

skills and unemployment rates seems to be the main area of concern, which suggests a shifting landscape. 

Though the causal pathways are not completely clear, this seems to be one of the main areas of interest for 

research, so quantifying and analyzing the changes in the skill sets demanded by employers driven by AI 

adoption remains one of the main areas of concern. 

 

4. Human Interaction with Emerging Technologies: The inclusion of AI in HR processes points to an emer-

gent field of inquiry within labor economics, where technology is not just a backdrop but a participant. The 

considerations around bias and algorithmic decision-making indicate a nascent concern with profound 

implications, which invite further examination into how these technologies reshape labor market practices. 

 

5. Robotics and Labor Share in Industries: Robotics’ specific mention reflects its visible impact on manufac-

turing, but also its slight distinctiveness in the area of study, since arguably it impacts a very specific subset of 

job areas, mainly in manufacturing and the agriculture sector, so its effects, though maybe more easily 

measurable, are focused on a very specific area. 

 

In general, we can argue (giving additional legitimacy to the choice of LDA as a model specifically) that there is 

a deeply interwoven set of relations between the different areas. Hence, when analyzing the effects of AI on the 

labor economy, the picture is more like overlaying effects on top of each other, rather than some nicely 

separable set of distinct mechanisms. 

 

4.1.2 Topics in time 

 

To further examine the dynamics of the topic distribution over time, getting a sense of its stability, as well as 

ratio of relative frequency, we analyzed the topics’ prevalence by averaging their presence through the years 

with respect to the articles in the "curated set". For this, we utilized the property of LDA models to represent 

documents as a weighted mixture of topics. Thus, we could easily take the mean of the topic presences for a 

subset of articles published in a given year. 

 

The resulting chart can lead us to the conclusion that the topic distribution over time is generally stable. The 

interest in AI’s effect on hiring and the fairness question increases around 2016, presumably with the more 

widespread adoption of AI/ML solutions in HR processes, thus increased scrutiny from the scientific 

community. Beyond this, the skills and employment question is pretty important. 

 

4.2 What is the consensus about the effects on unemployment specifically? 

 

4.2.1 Quantitative Analysis 

 

Our aim was to establish an estimate of the consensus in the selected literature (250 papers) about the beneficial 

or harmful effects of AI on employment. For this, we endeavored to assess each paper’s overall sentiment 

concern-ing AI’s impact on unemployment by counting the number of mentions of "positive" or "negative" 

phenomena related to employment within the text. The count was strictly numerical, irrespective of the length or 

depth of the discussion surrounding each mention. 
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Figure 9: LDA topics, temporal distribution 

 

4.2.2 Classification Criteria 

 

The classification of papers was contingent on a direct comparison between the counts of positive and negative 

mentions. We operationalized our assessment using the following criteria: 

 

1. Class A - Positive Outlook: A paper was categorized as having a positive outlook if the count of positive 

mentions outnumbered the negative mentions. 

 

2. Class B - Ambiguous Outlook: A paper was deemed to have an ambiguous outlook if the difference 

between positive and negative mentions was within a 2.5% margin, reflecting an almost equal consideration of 

both types of phenomena. 

 

3. Class C - Negative Outlook: Conversely, a paper was classified as having a negative outlook if negative 

mentions surpassed positive mentions in number. 

 

4.2.3 Positive and Negative Phenomena 

 

Positive phenomena were defined as any mention of trends or effects where AI resulted in: 

 

• The creation of new job types. 

 

• The simplification of job tasks, potentially requiring less skill. 

 

• A shift towards more fulfilling tasks within existing jobs. Negative phenomena included mentions where 

AI was associated with: 

• A decreased need for human workers, potentially resulting in layoffs. 

 

• The competitive displacement of human labor across various sectors. 

 

4.2.4 Threshold for Classification 

 

To classify the outlook of each paper, a threshold was set. If a paper had more than a 2.5% greater count in 

either direction (positive or negative mentions), it was classified accordingly. For instance, if positive 

phenomena were mentioned with a frequency greater than 2.5% compared to negative mentions, the paper was 

categorized under Class A. 

 

4.2.5 Results 

 

If we utilize the classification framework, and then count the articles accordingly, the ratio of positively and 

negatively dominated articles overall is as follows: 
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If we would like to paint a more nuanced picture and calculate the ratio of individual positive or negative 

mentions, the consensus is maybe less bleak, but nonetheless remains negatively biased. 

 

 
Figure 10: Positive-negative articles ratio 

 

 
Figure 11: Positive-negative mentions ratio 

 

As an added exercise, we analysed the temporal distribution of the "overall positive", "overall negative" and 

"undecided" articles in time (as in: year of publication), as well as the ratio of total individual mentions, and we 

found, that the not dominating, but none the less very perceptable negative dominance is generally stable. 

 

 
Figure 12: Positive-negative articles ratio 
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Figure 13: Positive-negative mentions ratio in time 

 

Overall, we can conclude, that the surveyed literature can be characterized by a certain "cautious pessimism", so 

stopping short from being completely dominated by the outlook of negative effects of AI on the labour market, 

but being generally slightly pessimistic in outlook. 

 

V. Establishing a Foundational Subset through Citation Graph Analysis 

As a methodology for identifying the core literature, to distill a foundational subset of articles having 

the dominant influence on the field, from the collection of 250 academic papers we implemented a citation 

graph analysis. This involved constructing a directed graph where the nodes represent the articles within our 

curated set, and the edges represent citations between these articles. For this phase of analysis, we focused 

exclusively on the internal citation dynamics, intentionally omitting external citations – those references 

pointing outwards from the curated subset. This allowed for a more concentrated examination of the discourse 

and intellectual lineage within the scope of our research question. 

 

5.1 Assessing the Network Topology 

 

Preliminary observations suggest that the citation graph displays characteristics reminiscent of a ’small-world 

network’, a concept rooted in the field of network theory. Small-world networks are marked by high clustering 

and short path lengths between nodes. In the context of our citation graph, this could manifest in a pattern where 

a limited number of highly-cited papers form the backbone of the research area, with a multitude of less-cited 

works branching off from these central nodes. These foundational works typically serve as keystones in the 

construction of the field’s academic edifice, setting the research agenda and framing the scientific discourse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Citation graph 

 

To substantiate this observation, we used numeric methods for examining the "centrality" of given articles. 
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5.2 Identifying Central Articles with PageRank 

 

Utilizing the PageRank [31] algorithm, an approach famously employed by Google for ranking web pages, but 

also widely used as a general measure of network centrality, we utilized to identify the most ’central’ articles 

within our citation graph. PageRank serves as a measure of node influence in a network, based on the notion that 

connections to high-scoring nodes contribute more to the score of a node than equal connections to low-scoring 

nodes. By adapting this algorithm to our citation network, we were able to objectively quantify the influence of 

each paper within our subset, beyond mere citation counts, taking into account the ’quality’ of citations in terms 

of the influence of the citing papers. 

 

Looking at the PageRank values, we indeed see signs of a handful of "core" papers dominating the citation 

graph, so we feel vindicated in creating a "shortlist" of most influential papers. 

 

5.3 Curating a Shortlist of Influential Articles 

 

To further refine our analysis and extract a ’shortlist’ of the most influential articles, we employed the technique 

outlined in "Finding a Kneedle in a Haystack: Detecting Knee Points in System Behavior" [35]. This method, 

designed to identify points of interest in a system’s behavior, was adeptly repurposed to determine a threshold 

for influence within the citation graph. By plotting the distribution of PageRank scores and identifying the ’knee 

point’ — the point where the curve sharply changes — we were able to delineate a natural cutoff. Papers above 

this threshold are considered as having a disproportionately large influence on the research field and are 

therefore included in our shortlist. 

 

5.4 The shortlist 

 

As final representatives of the "shortlist", we included: 

 

Based on this analysis, we can conclude that by far the most "central" work of this curated set is "Why Are 

There Still So Many Jobs? The History and Future of Workplace Automation" by David H. Autor from 2015 

[4]. This is a seminal work that "kickstarted" the study of AI’s effects on the labor market early on in the 

"revolution". 

 

Also noteworthy, but somewhat misleading with two entries, is Acemoglu and Restrepo’s paper "Robots and 

Jobs: Evidence from US Labor Markets" [1]. It first appeared as a report from the National Bureau of Economic 

Research and then later got published in the Journal of Political Economy in 2020 [2]. Combining its citations 

makes it also a remarkable cornerstone of the topic. 

 

Below, we endeavor to summarize the key findings of the centrality measure based "shortlist". 

 

 
Figure 15: PageRank of the citation graph 
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Table 1: Shortlist of influential articles 

 

Author(s) Title Year DOI 

Autor Why Are There Still So Many Jobs? The History and 2015 10.1257/jep.29.3.3 

 Future of Workplace Automation   

Acemoglu and Restrepo Robots and Jobs: Evidence from US Labor Markets 2020 10.1086/705716 

Acemoglu and Restrepo Robots and Jobs: Evidence from US Labor Markets 2017 10.3386/w23285 

Huang and Rust Artificial Intelligence in Service 2018 10.1177/1094670517752459 

Agrawal et al. Artificial Intelligence: The Ambiguous Labor Market 2019 10.1257/jep.33.2.31 

 Impact of Automating Prediction   

Brynjolfsson and Mitchell What can machine learning do? Workforce implica- 2017 10.1126/science.aap8062 

 tions   

Frank et al. Toward understanding the impact of artificial intelli- 2019 10.1073/pnas.1900949116 

 gence on labor   

Brynjolfsson et al. What Can Machines Learn and What Does It Mean for 2018 10.1257/pandp.20181019 

 Occupations and the Economy?   

Degryse Digitalisation of the Economy and its Impact on 2016 10.2139/ssrn.2730550 

 Labour Markets   

Felten et al. A Method to Link Advances in Artificial Intelligence 2018 10.1257/pandp.20181021 

 to Occupational Abilities   

Furman and Seamans AI and the Economy 2019 10.1086/699936 

DeCanio Robots and humans – complements or substitutes? 2016 10.1016/j.jmacro.2016.08.003 

Brougham and Haar Smart Technology, Artificial Intelligence, Robotics, 2017 10.1017/jmo.2016.55 

 and Algorithms (STARA): Employees’ perceptions of   

 our future workplace   

 

5.5 What are the main conclusions of the "shortlist"? 

 

Research represented by the "shortlist" literature has focused on quantifying and illustrating the impact of 

automa-tion, robotics, and artificial intelligence (AI) on the labor market and the economy. Amongst the various 

papers exploring the implications, some common hypotheses and conclusions emerge: 

 

One common hypothesis is that automation and technology do not necessarily lead to job loss but result in job 

displacement and polarization. This is supported by research papers such as Autor (2015)[4] and Acemoglu and 

Restrepo (2017)[1], which suggest that routine tasks are being automated, leading to growth in high-education, 

high-wage jobs and low-education, low-wage jobs at the expense of middle-wage, middle-education jobs such 

as bank tellers and brokers. It is also proposed that the main economic issue will be one of distribution, rather 

than scarcity. 

 

Another common finding is that automation both eliminates and displaces jobs while also raising the value of 

tasks that are uniquely supplied by humans. Agrawal et al. (2019)[3] conclude that automation has ambiguous 

labor market impacts, as it can automate prediction tasks but may also create new opportunities. Brynjolfsson 

and Mitchell (2017)[7] suggest that AI can lead to job displacement in specific occupations such as legal 

research and gaming but create new opportunities and complement human skills in others. The key factor for 

workers to benefit from automation is to supply tasks that are complemented by it, such as intuitive and 

empathetic skills. 

 

The impact of robotics and AI on employment and wage inequality is another recurring theme in the literature. 

Acemoglu and Restrepo (2020)[2] find that exposure to industrial robots in the US labor market negatively 

affects employment and wages, particularly in low- and medium-skill occupations such as manufacturing. This 

finding is supported by other studies, such as Frank et al. (2019)[16], which suggest that the rise of AI could 

lead to job polarization and income inequality. Furman and Seamans (2019)[17] investigate the impact of AI on 

occupational abilities and conclude that certain occupations such as drivers and retail workers are more 

susceptible to advances in AI technology. 

 

There is also a growing consensus that the impact of technology on the labor market depends on factors such as 

task characteristics, contextual factors, and skill requirements. Brynjolfsson et al. (2018)[8] argue that the 

successful application of AI depends on a variety of task characteristics and contextual factors, and that job 
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bundling of tasks can offer diversification with respect to machine learning exposure. Felten et al. (2018)[13] 

suggest that jobs that can be broken down into homogeneous tasks are more likely to be replaced by AI, even if 

they require higher intelligence. They also emphasize the need to acquire intuitive and empathetic skills as a 

strategy to counteract large-scale displacement due to AI replacing lower-skilled jobs. 

 

In conclusion, the "shortlist" literature suggests that automation, robotics, and AI have varying impacts on the 

labor market and the economy. While the main concern still is job displacement and polarization, the potential 

for job creation and complementarity also exists. The distributional effects and implications for wage inequality 

represent the most important consideration. 

 

Regarding the specific impact of technology on a given field, the consensus is that it depends on factors such as 

task characteristics, skill requirements, and contextual factors typical in a given area of economic activity. 

On the level of broader policy, to navigate the challenges and opportunities posed by automation and tech-

nological advancements, investment in human capital and the development of skills that are complemented by 

technology is crucial. Additionally, policy responses and governance frameworks that address distributional 

chal-lenges and ensure broad-based benefits are important for inclusive economic growth. 

 

5.6 What methods and data are utilized to study the unemployment question? 

 

Looking from a more methodological angle, it is interesting to take note of the different approaches the articles 

in the "shortlist" take from the angle of data collection and quantitative analysis. 

 

One group of articles, including Autor (2015)[4] and Acemoglu and Restrepo (2020)[2], uses empirical data and 

statistical analysis to investigate the relationship between robot adoption and employment. These articles utilize 

data on robot usage, employment rates, and wages to estimate the impact of robots on labor markets. They 

employ statistical models, such as instrumental variable (IV) estimates and regression analysis, to provide 

quantitative evidence on the relationship between robot adoption and employment outcomes. 

 

Another group of articles, such as Huang and Rust (2018)[24] and Brynjolfsson et al. (2018)[8], explores the 

implications of AI and machine learning on workforce dynamics. These articles utilize empirical data and statis-

tical analysis to investigate the impact of AI on various sectors, tasks, and occupations. They employ statistical 

methods, such as regression analysis and correlation analysis, to examine the relationship between AI adoption 

and employment outcomes, as well as the effect of AI on productivity and wages. 

 

Other articles, including Frank et al. (2019)[16] and Furman and Seamans (2019)[17], focus on the impact of AI 

on the skill requirements of occupations. These articles utilize data on occupation-level skill requirements, 

automation risk, and AI advancements to analyze the changing skill demands in the labor market. They employ 

statistical methods, such as correlation analysis and regression analysis, to examine the relationship between AI 

technologies and occupational abilities. 

 

All in all, one of the main challenges in the field seems to be the fact that hard data quantifying the phenomena 

of "AI adoption" in itself is hard to come by, so linking changes in general observable measurements (like wage 

inequality) to the effect of AI adoption is extremely challenging. 

 

5.7 Quantification of AI exposure: a subliterature with great potential 

 

While surveying the general consensus of the literature regarding AI’s direct unemployment effects, as already 

stated, it is apparent that the question of skills from the human side is of paramount importance. It is equally 

important though for the task of quantifying the risk of structural unemployment to analyze the quantifiable met-

rics of different AI model’s performance in given skills, thus bridging the gap between human job taxonomies 

(for example O*NET[38] or ISCO[26]) showing the necessary skills for certain occupations, and AI’s specific 

automation risk regarding these. 

 

In frames of our investigation, we identified a very promising direction of research, and a corresponding small 

set of articles trying to carry out exactly this task. If we would have to summarize their methodology, it can be 

roughly sketched as follows: 

 

1. Take a taxonomy (like O*NET or ISCO) that defines a decomposition of jobs in terms of skills required 

for carrying them out; 
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2. Take a source describing AI capabilities (like Electronic Frontier Foundation’s AI Progress 

Measurement[15]), that endeavors to quantify AI "skills" in different taxonomy domains; 

 

3. Create a mapping (by typically manual labor) matching the AI "capabilities" to the human skills; 

 

4. Estimate progress in AI skills by projecting progress into the future; 

 

5. Project this progress via the skill mapping back to the jobs as an "automation risk" measure. 

 

This strand of research is most clearly characterized by the series of papers by Edward W. Felten and colleagues 

in Felten et al. 2018[13], Felten et al. 2019[14], and Felten et al. 2021[11], which have the same basic pattern: 

utilizing O*NET for labor taxonomy, EFF’s measurement for AI progress, and a mapping created by dedicated 

labor (acquired via Amazon’s Mechanical Turk[37]). They call the resulting metric the "AI occupational 

exposure" (AIOE) score. 

 

Beyond this series, though, very similar patterns appear in Colombo et al. 2019[9], though it utilizes semantic 

embedding methods for mapping, as well as replaces O*NET and ISCO with ESCO; Paolillo et al. 2022[32] 

focusing on robotics; but also in such recent works as Pizzinelli et al. 2023[33] (which explicitly references the 

Felten group’s work) and Gmyrek et al. 2023[18], and finally an "update paper" from the Felten team [12] 

which even took into account the recent advancements in generative AI. 

 

This latter work is all the more important, since it not just "corrects" for the effects of "generative AI" (so 

basically "large language models" or "foundational models [6] and diffusion based image generation models 

[23]), but they carry out a kind of "stability analysis", so analyse the correlation between the AIOE score before 

and after this correction. 

 

The analysis suggests, that the AIOE score is pretty robust. 

 

5.7.1 Merits and limitations of this approach 

 

The merits of this research methodology have to be emphasized since it "opens up" the black box of AI and does 

not treat it as a single set of capabilities – which, in our view, is all the more important since the term "AI" does 

not even represent a single set of technologies and is not static in time, meaning: newer and newer methods 

appear under its umbrella with their specific characteristics. 

 

That said, since some of this research is coming from time periods representing previous iterations of technol-

ogy, some empirical testing of the actual realized automation could be fruitful to reach a more precise estimate 

between the automation potential and its actual application. 

 

As a general remark, it has to be pointed out that this "shifting of the goalpost," with which we "normalize" or 

"commoditize" technology (like the Optical Character Recognition, which once was an area at the forefront of 

computer vision, hence AI research, and now is treated as a solved problem that has "nothing to do with real 

AI"), makes it in general more difficult to systematically investigate the effects of "AI" (whatever technology it 

currently means) on the economy. As a more nuanced ground for observation, the different *types of 

technologies* (like classical expert systems, non-neural machine learning models, "classical" Deep Learning 

models, and now 
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Figure 16: Correlation of original and "generative AI" adjusted AIOE scores from [12] 

 

 

"foundational" models) would be more appropriate as a subject of study. In this sense, the approach to 

decompose AI – via possible task and skill investigations – to different aspects is all the more laudable. 

 

6 Threats from an emerging paradigm 

 

It is important to note, that recent work on foundational level language models (or simply "Large Language 

Mod-els", LLMs, as they are called in common parlance) shows, that these models possess - beyond their 

"mere" language generation skills - strong reasoning and planning abilities (see eg: [27] and [25]). Reasoning 

and plan-ning on large scale, in a learned manner was thought this far to be a pretty uniquely human capability, 

but it seems, that the the emergence of these models, and the the "Autonomous Agents" and "Agent 

societies"([30]) built upon them represent a whole new level of capability, that’s release as available 

technological solutions is imminent (see eg. the "Autogen" Framework of Microsoft Research [29]), and will 

dramatically increase the impact of AI automation possibilities, given it is deployed at scale. 

 

This basically means, that it is reasonable to assume, that the AIOE like scores will have to be recalculated 

pretty soon, or even structural changes might be necessary. 

 

7 Final conclusions 

 

After conducting a thorough literature review on the impact of artificial intelligence (AI) on the labor market 

and the economy, several key findings and trends have emerged. 

 

Firstly, the overall consensus is that the effects of AI on employment are complex and nuanced. While there is 

concern about job displacement and polarization, there is also recognition that automation and AI can create 

new job opportunities and complement human skills. The distributional effects and implications for wage 

inequality are significant considerations in the discussion. 

 

The literature highlights the importance of task characteristics, contextual factors, and skill requirements in 

understanding the impact of AI on the labor market. Different studies have explored various aspects of AI’s 

effects, including job dynamics, labor productivity, occupational skills, human interaction with technology, and 

robotics in industries. These studies provide valuable insights into the specific ramifications of AI in different 

fields and shed light on the challenges and opportunities posed by automation and technological advancements. 

 

Quantitative analysis plays a crucial role in studying the unemployment question. Some papers have used em-

pirical data and statistical analysis to investigate the relationship between AI adoption and employment 

outcomes. Others have focused on the quantification of AI exposure, mapping AI capabilities to human skills 



AI’s effect on labour: What does economic literature say? 

DOI:10.9790/1813-1305328350                                       www.theijes.com                                               Page 343 

and estimating the risk of automation for different occupations. These methodologies provide valuable 

frameworks for assessing the impact of AI on employment and should be further developed and refined in future 

research. 

 

It is important to note the limitations of the existing literature. The definition of AI itself is subject to concept 

drift, and the rapid advancements in technology require ongoing updates and refinements in research 

methodologies. Additionally, the field would benefit from incorporating a broader range of AI technologies 

beyond machine learning and taking into account the shifting ground of AI capabilities. 

 

In conclusion, the literature on AI’s effect on the labor market and the economy presents a multifaceted picture 

of both challenges and opportunities. The discussion around job displacement, job creation, wage inequality, 

and skill requirements provides a foundation for further research and policy development. Future work should 

focus on refining research methodologies, incorporating a broader range of AI technologies, and addressing the 

evolving nature of AI capabilities. Additionally, policy responses and governance frameworks that consider the 

distribu-tional challenges and ensure inclusive economic growth are important to navigate the challenges and 

opportunities posed by AI. 
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