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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

The identification of emotions from speech is a challenging task due to the vague definition of emotion itself. 

This study employs a feature-based approach to address speech emotion recognition. The problem is formulated 

as a multi-class classification task, and two types of models are compared in terms of their performance. Eight 

manually crafted features are extracted from speech for both approaches. In the first method, six traditional 

machine learning classifiers are trained using the extracted features, while the second approach utilizes deep 

learning techniques, where a feed-forward neural network and an LSTM-based classifier are trained on the 

same features. Additionally, to mitigate communication ambiguities, text-based features are also included. The 

study evaluates the models in various settings and reports accuracy, f-score, precision, and recall. The results 

demonstrate that simpler machine learning models trained on a few handmade features can achieve comparable 

performance to the current state-of-the-art deep learning-based method for emotion recognition. 
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I. Introduction 
The ability to communicate is crucial for human survival, and we frequently encounter situations that 

are open to interpretation. For example, the statement "This is out of this world" could be uttered in either a 

joyful or a melancholy context. Humans typically resolve ambiguity or uncertainty with ease, as we are adept at 

comprehending information from various modalities, such as speech, text, and visual cues. In recent times, deep 

learning algorithms have been employed to tackle the task of Speech Emotion Recognition (SER), as evidenced 

by previous studies [1], [2], and [3]. 

The rise of deep learning has led many practitioners to rely solely on the power of these models, 

neglecting the use of domain knowledge to create meaningful features and develop models that are both 

effective and interpretable. This study examines the impact of hand-crafted features on SER and compares the 

performance of lighter machine learning models to data-intensive deep learning models. To improve the ability 

to resolve uncertainties, we also integrate features from the textual modality and explore the correlation between 

different modalities. We approach our task as a multi-class classification problem and employ two classes of 

models. Hand-crafted features are initially extracted from the time domain of the speech in the dataset and used 

to train the corresponding models in both approaches. 

The first approach involves training traditional machine learning classifiers, such as Random Forests, 

Gradient Boosting, Support Vector Machines, Naive Bayes, and Logistic Regression. In the second method, 

emotions are recognized based on audio signals through the development of a Multi-Layer Perceptron and the 

use of an LSTM [4] classification algorithm.Different settings are employed to evaluate the models on the 

IEMOCAP [5] dataset, including Audio-only, Text-only, and a combination Audio and Text.The source code 

for the experiment can be found on Githubat the following link  

https://github.com/stewartfohlo/speech_recognition_experiment . 

 

The paper is structured as follows: Section II presents an overview of existing methods in the literature 

for speech emotion recognition. Section III provides information about the dataset used in this study and the pre-

processing procedures carried out before feature extraction. Section IV outlines the proposed models and their 

implementation details. Results are presented in Section V, followed by the conclusion and suggestions for 

future work in Section VI. 

 

 

 

https://github.com/stewartfohlo/speech_recognition_experiment
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II. Literature Review 
This section presents a literature review of research carried out in the field of Speech Emotion 

Recognition (SER). Although not a new task, it has been extensively studied in the literature for a considerable 

time. Initially, a majority of the early approaches ([6] [7]) utilized Hidden Markov Models (HMMs) [8] for 

identifying emotions from speech. Recently, with the introduction of deep neural networks to the field, the state-

of-the-art performance has significantly improved. For example, [3] and [9] utilize recurrent autoencoders to 

tackle the task. In addition, several different techniques have been suggested to integrate characteristics and 

features from various modalities in an efficient manner, such as Tensor Fusion Networks [10] and Low-Rank 

Matrix Multiplication [11], rather than simply combining them. 

The objective of this work is to conduct a comparative analysis between 1) end-to-end deep learning 

models, and 2) lighter machine learning and deep learning models trained using hand-crafted features. 

Additionally, we explore the information present in multiple modalities and investigate how their combination 

affects performance. 

 

III. The Dataset 
This study utilizes the IEMOCAP dataset [5], which contains recorded conversations from ten speakers 

across five sessions. The dataset includes approximately twelve hours of audio and visual information along 

with transcriptions and is annotated with eight categorical emotion labels: anger, happiness, sadness, neutral, 

surprise, fear, frustration, and excited. Additionally, it includes dimensional labels for the activation and valence 

values from 1 to 5, which are not used in this study. The dataset has already been divided into multiple 

utterances per session, and each utterance file was further split into individual wav files for each sentence using 

the provided start and end timestamps. This resulted in approximately ten thousand speech audio files, which 

were used for feature extraction and classification with the two proposed models. 

 

IV. Methodology 
In this segment, the steps for pre-processing the data are outlined, along with a thorough explanation of the 

features that were extracted and the two models that were utilized to address the classification issue. 

 
Classification Number of audio files 

Sad 2327 

Neutral 1385 

Happy 1309 

Angry 860 

Fear 1007 

Surprised 949 

Table 1: Number of audio files for each class 

 

1). Data Pre-Processing 

i. Audio:After conducting a preliminary frequency analysis, it was discovered that the dataset was 

imbalanced, with "fear" and "surprise" being under-represented. To address this issue, up-sampling techniques 

were employed. Furthermore, examples from the "happy" and "excited" classes were merged into the "happy" 

class as they closely resembled each other, and the "happy" class was also under-represented. Additionally, 

examples that were classified as "others" were discarded as they were labelled as ambiguous even for humans. 

Following these operations, a total of 7837 audio files were obtained. Table I shows the final sample distribution 

for each emotion. 

ii. Text:The transcriptions initially underwent a normalization process where they were converted to 

lowercase and any special symbols were eliminated. 

 

2). Feature Extraction 

i. Pitch:The significance of pitch lies in the fact that the waveforms generated by our vocal cords can 

vary according to our emotional state. Various algorithms have been developed to determine the pitch signal, 

with the autocorrelation of center-clipped frames being the most widely used method [12]. To clarify, the input 

signal y[n] is modified by center-clipping to produce a resultant signal, yclipped[n]: 
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As a rule, Cl; is approximately equal to half of the input signal's mean, and the brackets notation [∙] indicates 

that the input signal is discrete. Autocorrelation is then computed for the resulting yclipped signal, which is 

subsequently normalized and used to identify peak values corresponding to the pitch of the original input signal 

y[n]. The utilization of center-clipping on the input signal was determined to yield clearer autocorrelation peaks. 

 

ii. Harmonics:When expressing anger or undergoing stressful situations, there may be supplementary 

excitation signals present besides pitch ([13], [14]). These additional signals can be observed in the spectrum as 

harmonics and cross-harmonics, as shown in Figure 1. To determine the harmonics, we employ a median-based 

filter method outlined in [15]. Initially, a median filter is generated for a specific window size, denoted as l: 

 
 

where the value of l is always an odd number. However, in instances where l is even, the median is calculated as 

the average of the two middle values in the sorted list. Using this filter, we process the h-th frequency slice, 

denoted as Sh, of a given spectrogram S. This results in a harmonic-enhanced frequency slice, denoted as Hh: 

 

 
In this case I is the I-th step, Iharm is the harmonic filter and M is the median filter. 

 

iii.) Speech Energy:By measuring the energy of a speech signal, which is closely linked to its volume, we can 

detect specific emotions. The disparity in energy levels between an "angry" signal and a "sad" signal is 

demonstrated in Figure 2. To quantify the speech energy, we utilize the conventional Root Mean Square Energy 

(RMSE) representation, which is calculated using the following equation: 

 

 
 

The calculation of RMSE is conducted on a frame-by-frame basis, and we extract both the mean and standard 

deviation as features. 

 

iv.) Pause:We employ this feature to indicate the "silent" segment within the audio signal, which has a direct 

correlation to our emotional state. For example, when we are feeling excited, such as when we are angry or 

happy, we tend to speak rapidly, resulting in a low Pause value. The feature value is determined by the 

following expression: 

 
 

 

where t indicates a carefully selected threshold of approximately 0.4 * E, and representing the RMSE.  

 

v.) Central Moments:In conclusion, we utilize the average and standard deviation of the signal's amplitude to 

encompass a condensed overview of the input. 
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3.) Text Features 

i.) Term Frequency-Inverse Document Frequency (TFIDF) :This is a numerical metric that reveals the 

association between a word and a document in a corpus or collection. It comprises two components: 

 Term Frequency:This represents the frequency of a word or token's occurrence in a document. The 

most straightforward approach is to use the raw count of a token in a document (such as sentences, in our 

specific case). 

 Inverse Document Frequency:To mitigate the impact of commonly used language words such as "the," 

"a," and "an," this phrase is employed. Typically, idf for a term t and document D is defined as follows: 

 

 
The denominator demonstrates the number of documents that include the term t, and N represents the overall 

number of documents.  

Ultimately, the TFIDF score for a term is obtained by multiplying the values of its TF and IDF. 

4.) Machine Learning Models 

In this section, we present a description of the machine learning-based classifiers employed in our work, which 

are, (XGB) Gradient Boosting, Support Vector Machines (SVM), Naive-Bayes, Random Forests (RF) and 

Logistic Regression.  

a.) Random Forest (RF): RF utilizes an ensemble learning approach by creating numerous decision trees 

during training and returning the class that is the mode of the classes of individual trees. The RF algorithm 

employs two core principles: each decision tree predicts using a random subset of features, and each decision 

tree is trained with a subset of training samples via bootstrap aggregating. Finally, a majority vote of all the 

decision trees is taken to predict the class of a given input [16, 17]. 
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b.) Gradient Boosting (XGB):XGB stands for eXtreme Gradient Boosting, which is a boosting algorithm 

that is implemented to train the model in a fast and parallelized way. Boosting is an ensemble classifier that 

combines a number of weak learners, typically decision trees, in a sequential manner using forward stagewise 

additive modeling. During the initial iterations, simple decision trees are learned, and as training proceeds, the 

classifier becomes more powerful because it focuses on instances where previous learners made errors.Upon 

completion of the training, the ultimate prediction is determined by a linear combination of the outputs from 

each of the individual learners, with weights assigned to each based on their performance [18]. 

 

c.) Support Vector Machines (SVMs):SVMs are machine learning models that utilize associated learning 

algorithms to classify and perform regression analysis on data. In the context of SVM training, a non-

probabilistic binary linear classifier is constructed (although probabilistic classification can be achieved with 

methods such as Platt scaling [19]). The training process involves representing each example in the data as a 

point in space and mapping them in a way that maximizes the separation between the different categories with a 

clear gap (usually by minimizing the hinge loss).SVMs were initially designed for linear classification but can 

efficiently handle non-linear classification by employing the kernel trick [20], which implicitly maps their inputs 

into high-dimensional feature spaces. 

 

d.) Multinomial Naive Bayes (MNB): Multinomial Naive Bayes is a member of the Naive Bayes family of 

classifiers, which are "probabilistic classifiers" that use Bayes' theorem under strong (naive) independence 

assumptions between features. When in a multinomial context, the feature vectors represent the occurrences of 

certain events, generated by a multinomial distribution (p1; : : : ; pn), where pi represents the probability of 

event I occurring.MNB is widely used in text-based document classification tasks [21], which involve multi-

class classification problems. 

 

 

e.) Logistic Regression (LR): Logistic Regression is typically used for binary classification problems [22], 

which have only two labels. In this work, LR is applied using a one versus rest approach, whereby 6 classifiers 

are trained for each class, and the predicted class with the highest probability is selected.  

 

After training the aforementioned classifiers, an ensemble of the highest performing classifiers is utilized to 

compare against the current state-of-the-art for emotion recognition on the IEMOCAP dataset. 

 

5.) Deep Learning Models 

This section outlines the deep learning models that were used. Deep Neural Networks (DNNs) are typically 

trained end-to-end, allowing them to independently determine features. However, this approach can be time-

consuming and computationally intensive. To reduce computational overhead, we directly input handcrafted 

features into these models and compare their performance with traditionally trained end-to-end models. We 

implemented two models in this study: the Multi-Layer Perceptron (MLP) and the Long Short-Term Memory 

(LSTM). 

 

a.) Multi-Layer Perceptron (MLP): The Multi-Layer Perceptron (MLP) is a type of feed-forward neural 

network with at least three nodes: an input, a hidden, and an output layer. All nodes are connected to a non-

linear activation function to stabilize the network during training. As the number of hidden layers increases, 

their expressive power improves to a certain extent. MLPs can distinguish data that is not linearly separable due 

to their non-linear nature. 

 

b.) Long Short-Term Memory (LSTM): The Long Short-Term Memory (LSTM) was developed to capture 

long-range context in sequences. Unlike MLPs, it has feedback connections that allow it to decide which 

information is important. It comprises a gating mechanism with three types of gates: input, forget, and output. 

The equations for these gates are provided below: 
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The LSTM equations use initial values of c0 = 0 and h0 = 0. The dot (.) represents the element-wise 

product, t represents the time step, and xt refers to the input vector for the LSTM unit. The forget gate's 

activation vector is denoted by ft, the input gate's activation vector is denoted by it, and the output gate's 

activation vector is denoted by ot. The hidden state vector, ht, is typically used to map a vector from the feature 

space to a lower-dimensional latent space. The cell state vector is denoted by ct, and the weight and bias 

matrices (W;U and b) must be learned during training. Figure 3 shows that an LSTM cell can track hidden states 

at all time steps through the feedback mechanism. 
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The network used in this study is depicted in Figure 4. We input feature vectors into the network and 

apply a softmax layer to the output of the LSTM network, generating probability scores for the six emotion 

classes. Because we use feature vectors as input, there is no need for a decoder network to transform hidden to 

output space, thereby reducing the network's size. 

 

 
a.) Audio setting 
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b.) Text Setting 

 

 
c.) Audio and Text setting 

 

Fig. 5: The above results show performance of models where E1 is a combination of MLP, XGB and RF 

algorithms. E2, which is a combination of LR, MNB, MLP, XGB and RFalgorithms. 

 



Investigating the causes of uncertainty in emotion recognition from multimodal speech Inputs 

DOI:10.9790/1813-13052334                                   www.theijes.com                                                         Page 31 

 
E1, Audio Setting 

 

 
E2, Text Setting 

 

 
E2: Audio and Text  Setting 

 

Fig. 6: Shows Confusion Matrices of the models where ensemble E1 is a combination of MLP, XGB and RF 

algorithms and ensemble E2 being a combination of MNB, RF, XGB and LR algorithms. 
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6.) Experiments carried out 

The following is a description of the three experimental settings we utilized: 

 Audio only: Our classifiers were trained solely on the audio feature vectors that were previously 

described. 

 Text only: Our classifiers were trained only on the text feature vectors (TFIDF vectors). 

 Audio and Text: In this setting, we combined the feature vectors from both modalities. There are 

various methods available for effectively fusing vectors from multiple modalities; however, we simply merged 

the feature vectors from audio and text to produce the combined feature vectors. The aim of this experiment was 

to determine the amount of information contained within each modality and to investigate how combining the 

feature vectors influenced the model's performance. 

 

7.) Implementation steps 

This section provides an overview of the implementation details utilized in this study. 

 The LSTM classifiers discussed earlier were implemented using PyTorch [26]. 

 To regularize the hidden space of the LSTM classifiers and enhance network robustness, we 

incorporated a shut-off mechanism called dropout [27]. Dropout involves excluding a fraction of neurons from 

the final prediction, thereby preventing overfitting 

 For the machine learning classifiers (RF, XGB, SVM, MNB, and LR) and the MLP, we employed the 

Python libraries scikit-learn and xgboost [24] [25]. 

 To process the audio files and extract features, we employed the Python library librosa [23]. 

To ensure a fair comparison, we randomly divided our dataset into train (80%) and test (20%) sets, maintaining 

the same split for all experiments. The LSTM classifiers were trained on an Intel Core vPro CPUs to expedite 

processing. Training was stopped when no improvement in validation performance was observed for more than 

10 epochs. Each epoch refers to one iteration over all the training samples. Different batch sizes were employed 

for different models. For detailed hyperparameters of all models in the three experiment settings, please refer to 

the released repository. 

 

8.) Evaluation of Metrics 

In this section, we begin by providing an overview of the evaluation metrics utilized and present the results for 

the three experiment settings. 

a) Accuracy: This metric represents the percentage of correctly classified test samples.  

b) Precision: This measure indicates the proportion of correct predictions out of all the predictions made, 

considering the ground truth (i.e., labels). Below is the formula: 

 
c) Recall: This measure reflects the number of correct labels present in the predicted output. Below is the 

formula: 

 
 

In the formulas, tp, fp, and fn represent true positive, false positive, and false negative, respectively. These 

values can be derived from the confusion matrix. 

 

d) F-score: This metric is defined as the harmonic mean of precision and recall. Unlike accuracy, F-score 

provides a more normalized measure of a model's predictive power. 

To evaluate the performance of our best models, we compare them with the current state-of-the-art models 

mentioned in [2]. The state-of-the-art models employ three types of recurrent encoders: Audio-, Text-, and 

Multimodal Dual-Recurrent Encoders, referred to as ARE, TRE, and MDRE, respectively. It is important to 

note that [2] focuses on classifying four emotions, namely angry, happy, sad, and neutral, whereas our study 

involves six emotions. To ensure a fair comparison between our method and theirs, we also conduct experiments 

considering the four classes (models with code 4-class in Figure 5). 

 

V. Results 
In this section, we present the performance analysis of the models described in Section IV. Based on 

Figure 5, it is evident that our simpler and lighter ML models either outperform or achieve comparable results to 

the heavier state-of-the-art models on this dataset.  
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a) Audio only results: 

The results for this setting are particularly intriguing. The performance of LSTM and ARE highlights that deep 

models require extensive information to learn features, as the LSTM classifier trained on eight-dimensional 

features exhibits significantly lower accuracy compared to the end-to-end trained ARE. However, neither of 

them surpasses the lighter E1 model (Ensemble of RF, XGB, and MLP) trained on the eight-dimensional audio 

feature vectors. Examination of the confusion matrix (Fig. 6a) reveals that the most challenging aspect for the 

model is detecting "neutral" or distinguishing between "angry," "happy," and "sad" emotions. 

 

b) Text only results: 

We observe that the performance of all the models in this setting is similar. This can be attributed to the 

effectiveness of TFIDF vectors in capturing word-sentence correlation. The confusion matrix (Fig. 6b) 

demonstrates that our text-based models, along with the end-to-end trained TRE, are capable of distinguishing 

the six emotions quite well. However, it is worth noting that identifying "sad" emotions is relatively more 

challenging for textual features. 

 

c) Audio and Text results: 

Combining audio and text features provides a significant approx. 15% improvement across all metrics. This 

clearly indicates the strong correlation between text and speech features. It is noteworthy that in this case, the 

recurrent encoders exhibit slightly better accuracy, albeit at the expense of precision. The lower performance of 

E1 can be attributed to the simplistic fusion method (concatenation) used, as simple concatenation for an ML 

model may still retain many modality-specific connections instead of desired inter-modal connections. The 

promising outcome here is that the fusion of features from both modalities effectively resolves the ambiguity 

observed in modality-specific models, as depicted in Fig. 6c. We can conclude that textual features aid in the 

accurate classification of "angry" and "happy" classes, while audio features enhance the model's ability to detect 

"sad" emotions. 

 

Overall, it can be concluded that our simple ML methods demonstrate remarkable robustness by achieving 

comparable performance, despite being designed to predict six classes instead of four in previous works. 

 

A. Key features to explore when addressing uncertainty in speech emotion recognition: 

In this section, we explore the dominant factors influencing predictions in this classification task. We 

specifically selected the XGB model for this analysis and ranked the eight audio features. Our findings reveal 

that the Harmonic feature, which directly correlates with signal excitation, has the greatest impact. Surprisingly, 

the "silence" feature, associated with pauses, is nearly as influential as the standard deviation of the 

autocorrelated signal (linked to pitch). The relatively minor contribution of central moments is understandable, 

considering the diverse nature of the signal, as a global or coarse feature would struggle to capture its subtleties. 

 
Fig. 7: Most critical audio features for speech emotion recognition 
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VI. Conclusion and Future Work 
In this study, our focus is on speech emotion recognition and examining how different modalities 

contribute to resolving ambiguity using the IEMOCAP dataset. We compare Machine Learning (ML) and Deep 

Learning (DL) models and demonstrate that even lighter and more interpretable ML models can achieve 

performance comparable to DL models. Furthermore, we highlight that ensembling multiple ML models can 

lead to performance improvements. Our feature extraction process primarily involves selecting a limited set of 

time-domain features from audio signals. However, incorporating additional frequency-domain features such as 

Mel-Frequency Cepstral Coefficients (MFCC), Spectral Roll-off, and additional time-domain features like Zero 

Crossing Rate (ZCR) could enhance the richness of the audio feature space. Furthermore, exploring advanced 

fusion methods such as TFN and LMF for combining speech and text vectors could improve effectiveness. It 

would also be intriguing to examine how the performance of ML models versus DL models scales with the 

inclusion of more data. 
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