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Given G = B" x SO(n) and K := SO(n), its compact subgroup. The set of spherical functions on G that are

bounded, denoted as X, 1s considered as the Gelfand spectrum of ¢. Among other notable results, a topological
isomorphism is established between the Banach algebra of K-bi-invariant functions (L'(K\G/K)) on G and

¥
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Introduction

Some of the special functions introduced in analysis are related to the representations of Lie groups ([4]).
Prominent among such functions are the spherical functions. The theory of spherical function generalizes
the classical Laplace spherical harmonics and continuous characters of Lie groups. Spherical functions are
significant in the modern theory of infinite dimensional linear representation of Lie groups. In this work we
discuss spherical function on the Euclidean motion groups. Adopting the realization of the set of hounded
positive definite spherical functions on the pair (R™ x SO(n),SO({n)) as the Gelfand spectrum X, we prove,
among other things, that there is a topological isomorphism between the commutative convolution algebra
LYK\G/K) and the Gelfand spectrum. This study is organized into three sections. Sections two deals
with the structure of motion group and its irreducible unitary representation. In section three, main results
concerning this study are presented.

2. Preliminaries

2.1 The Euclidean Motion Groups. The group SE(n), known as the Euclidean motion group, is realized
as the semi-direct product of B"™ with SO(n). That is SE(n) = E® x SO(n). A member of SE(n) may be
denoted as g = (7,£), where £ € SO(n) and ¥ € R". For any g1 = (i7,£1) and g2 = (d2,82) € SE(n),
multiplication on SE(n) may be defined as

g1g2 = (1 + &102, §182),
and the inverse 1s defined as

Here £t denotes a transpose. Alternatively, SE(n) may also be identified with a matrix group whose arbitrary
element may be identified as (n+ 1) x (n+ 1) matrix given by

H{Q):(ét ‘J[_)

where £ € SO(n) and 0 = (0,0...,0). Tt is observed that H(g)H(g2) = H(g1g2), H(g™') = H(g) and

g — H(g) an isomorphism between SE(n) and H(g).
The matrix representation of the element of SE(2) C GL(3,R) is given as

cosp  —sing 1y
g((r1.a3), @) = | sing cosd a9
0 0 1
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where ¢ € [0,27], (x1,25) € B2 ([7],[11]) and in polar coordinate as

cos¢p  —sing wxicosf
glz,0,0)=| sing cos¢ xgsinf

0 0 1

T = (r1,12) € R2 9,6 € [0,27]. The group SE(2) is a non - compact and non- commutative solvable Lie group
([3])- ¥n = 2, SE(n) is a group of affine maps induced by orthogonal transformations. It is also referred to
as a group of rigid motions on B" and plays a significant role in robotic, motion planning as well as dynamics
([7,[2])- The group action of M(2) is rotation operation that is followed by translation on the plane. That is
g translate
(1, 20)Tto (), x4)T

as follows

Iy = rycose — rgsing + ay

xh = wysing + wacosd + ag

and (a2}, 25) = g.(x1,22)([7], p-3) SE(2) is also called the Isometry group of B2, which is sometimes denoted

as T(R)2.

2.2 Irreducible Unitary representation of SE(2). A comprehensive description of the representation
of 5E(2) 1s given in this section. It is also shown that this representation is irreducible and unitary. Let
K = S0(2), a compact subgroup of G, and let L2([0, 2], g—ﬁJ be the Hilbert space on T 2 [0, 27] 2 SO(2). A
representation of SE(2) on L?(K) is an operator defined by

Ulg,p)p(X) = e™ =057 X)

for each g = (2,¢) = g((x1,22),¢) € SE(2), p € RY, X.y = 211 + w2y, X is a unit vector ([6]). U(g,p) is
unitary and irreducible. Following the approach of Vilenkin ([7], p. 200 and [8]), a representation of SE(n) on
L2(K) is defined as _

Tr(g)f(x) = eMo® flo_y) (1)

where x_,, is the vector into which x is transformed under a rotation hy an angle —a and (a,x) = ayry + agrs.
Following (1), we show that Tg(g) is irreducible and unitary in what follows. The parametric equation of the

circle .L% + .L% = 1 has the form
@ = cosy

rg = sina

0 < ¢ < 27, Therefore, one can regard functions f(x) on the space ,®, of square integrable functions on
K = SO(2) as functions of 1. That is

The operator Tr(g) f(x) can then be written as
Tilg) (1) = P09 (4 — ),

where
a = (rcosp,rsing), g= gla,a).

Let L
(f1, f2) = 5= A fi(ab) faleh)dap

be a scalar product defined in ®. Completing © with respect to this product produces a Hilbert space denoted

by H. If R = ip, Tr(g) is unitary. Since Tg(g) is a faithful representation, it means that Tr(g1) # Tr(g2)

if g1 # go. The irreducibility of Tr(g)f(x) is presented as follows. The Lie algebra se(2) of SE(2) has the
following basis

001 000 0 -1 0

Xqg=10 00 |, Xo=[001])]Xz=(1 0 0

000 000 0 0 0

DOI:10.9790/1813-13118491 www.theijes.com Page 85



Topological Isomorphism between Certain Algebras on the Euclidean motion group.

X;. X5, and X3 satisfy the following commutation relations [X;,Xs] = 0, [X2,X3] = Xy and [X3,X] = X»
and their corresponding one - parameter subgroups are (see [1]) for details.

1 01 cost —sint 0
Lgelt)=1 0 1 ¢ |.g3(t)=| sint cost 0O
001

1 0
alt)=10 1
0 0 0 0 0

=R

respectively. The operator Tr(gi(t)) transforms the function f{4) into
Tr(g (1) =MV f(y).

Let us define

ieRfcosvp Rtcosi

d .
Ay = —Tr(g1(t))

dt t=0 - dt t=0 - RCOS?‘;..G t=0 - RCOS'E;':'
This shows that Aq is the operator of multiplication by Reosi).
We also define d d
Ay = ETR(QZ( t)) . d—.'teRfSi““"' T Rsingpelttsmd o Rsina
Lastly,
d - d, d
Ay = S Trlga(t)|_ =2/ (0 —t) ==

The operators A, A; and Aj also satisty commutation relations as follows.
[A1.42) = A1 A3 — AzA) = ReosdRsiny — RsinyReosi =0

that is,

[Al,Ag] -0

Also,

[A2, A3] = Rsin-a’r[’%] — (%)(Rsin-u’:)

4 d,
= —Rsiny P + d._—l;.}:n’sm.?r..

d
=-R 5?'.?1-;-".'? + Recosth = Reosip,

implying that
[42,45] = a4,
Finally,
[A3. 4] = —i}? 1 — (R .;.:.’_i)
3,41 = a0 costy) — (Heosi)( a0
d L d
—@Rcos-y + [Rcos-g.[d_—lu,.}
= Rsiny 4+ 0 = Rsiny,
showing that

[Ag,Al] -0

Next, it is shown that for R # 0, the representations Tr(g) are irreducible. It suffices to prove that any non -

trivial stable subspace in H ( H = L2(T')) coincides with H. In order to achieve this, Tg is restricted onto SO(2).
Let the following notations be introduced. Agetkt = Rcosg"ez'k"‘;’, Agett = R sin-rr:'.'e“'"b, Azttt = etk
With respect to this notations, the following linear combinations hold. H, = A; + idy = Re™ H_ =
Ay — iy = Re™ ™, Now, H+eék¢ = R etht — Reilthy gng H_ oY — Re—ioihv — Reill-kY Therefore,

[(HyH_|=H H_ —H_H,
= ReW Re™™ — Re~ W Rei¥
= D?
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[Hy, As] = Hy Ay — AzH

o —d —d_ .
— L R SR = 1
= Re [d-?r-"-") [ d-;s"Re ]
d- ]
— 2 et
=0+ dﬁ..}?e
= iRe

[H_, As] = H_As — AgH_
wo—d,—d
= Re™™(=2) = (Z5)Re
e (Gg) — (G Be

d -
=04+ —Re™™
+ & 1]

= —iRe™
=iH_

The restriction of Tr onto SO(2) is the regular representation of SO(2) and could be decomposed into the
direct sum of one dimensional representation realized in ‘H, being a subspace of functions that takes the form
Cre’™ I T is defined to be an arbitrary subspace that is invariant with respect to SE(2) and SO(2), it could
be decomposed into a sum of Hg , which are also subspaces, and consequently, it 1s either the set 1s null or it
contains one of the functions e*¥. The invariance of .J means that, along with any one of €% it contains all
the functions H f,_ne“"'b and H™e™*¥ | therefore, it contains all subspaces Hy. That is, J coincides with D. So,
Tr, R #0, 1s irreducible. If R is identically zero, then Tk takes the form

(To(9) )W) = f(¥ — ), g = (a,a),
and could be decomposed into the direct sum of one - dimensional representation of the form,
Ton(g) = ™.
Therefore, the representations Tg, R # 0, and Tp,, n € Z exhaust all irreducible representations of SE(2).

2.3 Spherical functions and transforms on SE(2)

2.3.1 Definitions.Let G be a locally compact group and let K he a compact subgroup of G and let L1(G)
be the convolution algebra of absolutely integrable functions on G. A function f : G — C is said to be
K-bi-invariant if it is constant in the double coset of K, that is,

flkigks) = f(g), Yki, k2 € K and g € G.

Let C.(G) denote the space of continuous functions on G with compact support. Then Co(G)¥ denotes the
space of K-bi-invariant functions on C.(G) and, similarly, L' (G)¥ denotes the space of K-bi-invariant functions
on LY(@). The pair (G, K) is a Gelfand pair if L'(G)¥ is a commutative algebra.

We need definitions of spherical functions and transforms of K-hi-invariant functions on G. First, we present
the definition of spherical functions.

2.3.2 Definition. A spherical function
w:G—=C

for the Gelfand pair (G,K) is a K-bi-invariant C°° - function on K with ¢(e) = 1, where e is the identity
element of &, and satisfies one of the following equivalent conditions

L [ e(aky)duk(k) = e(x)e(y), 2,y € G, k € K;

2. f— [ flg)e(g)dg is a homomorphism of Co(K\G/K) into C

3.  is an eigen function of each D € D(G/K ), where D(G/K) is the algebra of K-invariant differential
operators on G/K( = symmetric space of G)

DOI:10.9790/1813-13118491 www.theijes.com Page 87



Topological Isomorphism between Certain Algebras on the Euclidean motion group.

Also, a function ¢ € C(G), ¢ # 0, is said to be spherical if it is bi-invariant under K and x,, is a character of
Co(GE. That is, Vf.g € Co(GK

Xe(f *g) = xo(f) - Xol9)
Next, we give a definition of spherical transform of a K-bi-invariant function on G. Before going on, some
notations that are required are put in place.

Let § = S(G, K) be the set of all spherical functions for the Gelfand pair (G, K), and let BS(G,K) or
(G,K)T denote the subset of S{G, K) consisting of hounded spherical functions (relative to (G,K)). Spherical
transform for functions on G may be defined as follows.

2.3.4 Definition. The spherical transform for the Gelfand pair (G, K ) is the map

f:CAK\G/K) = S(G.K)

or
f: INK\G/K) — BS(G.K)

defined hy

Flo) = fc F@)elg™)duclg).

The space of bounded spherical spherical function may be topologised by any of the following topologies:

(1) Compact open topology, obtained as the topology of uniform convergence on the compact subset of G.
(ii) The weak topology from the family of continuous linear maps f: BS(G,K) — C
(iii) The weak*- topology inherited from L™ {K\G/K). This is because BS(G,K) C L™ (K\G/K).

A function f: G — C is said to be positive definite if the inequality holds

Z aorf(g7 gr) 2 0 (2)

ij=1m

for all subsets {g1,...,gm} of elements of G and all sequences {a1,...,am} of complex numbers. The integral
analogue of the inequality (2) is given by

[C [C Flor a0 (g0 (o) dgidgr > 0 (3)

where ¢ ranges over L'{G) or over the space C.(G) of continuous functions with compact support. If f is a

continuous functions, (2) and (3) are equivalent. A measure 7 on (G, K) is called the plancherel measure and
its support is the set (G, K.

Let ¥ represents the set of bounded spherical function. When ¥ is endowed with any of the above listed
topologies, it is referred to as the Gelfand spectrum of LY(K\G/K) or the spectrum of (G, K) and the bounded

spherical tunctions defined through the formula
i [ Foreta™dg

determines the multiplicative functional on the corresponding L' - algebra. The weak * topology, heing one
of the topologies on the Gelfand spectrum, is induced from L*(G) and is found to coincide with the compact
open topology [5].

3. Main Results

Let us denote L' (K\G/K) by A and let X be a locally compact Hausdorff space. Here and hereafter, Co (X))
is the space of all continuous functions ¢ : X — C that vanish at infinity, with norm |¢) . = Supyex|o(x)|
and ¢*(z) = ¢(r). Cx(X) is a commutative C* - algebra. (That is, it is a Banach * - algebra such that
|z*x| = ||z||?, for all © € A). The next proposition states clearly that the Gelfand transform is a norm-
preserving Banach algebra homomorphism.

3. Proposition[9]

Let A be a commutative Banach algebra. Then the Gelfand transform x + & is a norm - decreasing Banach
algebra homomorphism G : A — Coo(Ma), ||E|lec = ||z]|spec < ||z|l4. If Ais a C* - algebra then G is a norm
preserving * - algebra isomorphism of A into Coo(M.4)
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Let A* be the dual of A and let D* be a closed unit disk in A*. The next proposition shows that D* is
compact and Hausdortf.

3.2 Proposition. Let D* denote the closed unit disk {f € A*| | f ||< 1} in A* then D* is compact
and Hausdorft.

Here A = LY K\G/K) and A*: L}(K\G/K) — C

Proof. Let r € A, denote C = {’* € C||z| < ||z[|}. Then, €' = [[,c4Cx is compact in the product topology.
Then we map D* into f — (f(x)). That is, the = - coordinate of feD*is f(x) € Cp. This uses the fact that
|F()] < ||FIl*]|z]|. The subspace topo]og;y on D* C C is the same as the suhspa,ce topology on D* C A* where
C' has the product topology and A* has the weak %- topology. So D* C C. Let h belong to the closure of D*
in C. In other words, given € > 0 and x,y € A, there exists f € D* with

|h(x) — f(x) |<— |h(y) — fly)| < —ana’ |h(z+y) — fle+y)| <

wlrn

then,

|[h{x +y) = h{z) = hiy)| = bz +y) — fle+y) = hlx)+ flz) = hy)+ fly)| <€
This shows that h(x+y) = hix) +R(y) Yo,y € A. Similarly, h( Oc.L] = ah(zx), for o € C and = € A. This shows
that h is linear. If e > 0 and = € A there exists f € D* with |f(z) — h(z)| < €, so |h(z)| < |f(z)] +e < ||| +e.
This shows that [|h]| < 1. Now h € D*. We have proved that D* is closed in C'. Since C' is compact Hausdorff
space, D* is also compact and Hausdorff.

Let P{G, K) be the set of positive definite spherical functions on the pair (G,K). It is locally compact in the
subspace topology from BS(G, K) or (G, K)T, the subspace topology from P(G, K) C BS(G,K) is the same
as the subspace topology from P(G,K) C D* where D* is the c]osed unit disk in the dual space LY K\G /K )*,
P(G, K) has a compact closure ¢l(P) in D*, and either cl[P(G,K)) = P(G,K) or c(P(G,K)) = P(G, K)J{0}.

3.3 Corollary(Riemann-Lebesque Lemma):

If f € LK \G/K) then flp € (P(G,K)).

Let C*(G,K) be a Banach algebra that is also a commutative C* - algebra and let R = R(G, K) be the
maximal ideal space Mes (g i) of C*(G, K). The following definitions are in order

3.4 Definition
Let
v: LME\G/K) = Cx(R(G, K))

be a map defined by v(f) = ¢ f where T — T is the Gelfand transform G : C*(G JH) = Cx(R(G,K)). Then v
is injective and the image is dense in Cio(R(G, K)). Moreover, if m € R = R(G, K) there is a unique spherical
function wy, € §(G, K ) such that

b(DIem) = [ Fahom(a™nclo)
¥f e LYK\G/K). ~ is related to the spherical transform by [y(f)](m) = flwm)

Let us see m as a map

m: LYK\G/K)— C

defined by m(f) = H(F)](m). Then [m(7)] < 1(Dlloo < [N < 7] and
m(fi* fa) = [y(f1* fg'](??l [Y(f)](m)[y(f2)](m) = m(f1)m(f2) and m # 0 because ~ is one to one.

m is a multiplicative linear functional on L'(K\G/K). In other words, we have wy, € S(G, K) such that
mif) = [ f@nta™)duc(o

Ve LA(K\G/)

Let X be the set of positive definite bounded spherical functions on the Gelfand pair (G,K). It can be
topologised by any of four topologies listed in 2.3.4 to become a locally convex space. For Lie groups with

polynomial growth, all bounded spherical functions are positive definite, therefore any bounded spherical func-
tion for SE(2) is positive definite. The next theorem is needed in the proof of theorem 3.6
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3.5 Theorem ([10],theorem 8.2.7)
The continuous homomorphism C.(K\G/K) — C (and L*(K\G/K) — C) are the maps f — [ f(z)p(z™ )dpe(x)
where i is is a bounded (G, K) spherical function on G.

Next theorem is the main result of this paper

3.6 Theorem

Let ¢ be a spherical function for the pair (G, K ) where G = R™ x §O(n) and K = SO(n). Let L}(K\G/K) be
the Banach algebra of K-bi-invariant functions on G. Let ¥ be the set of bounded positive spherical functions
on G. For each f € Llf K\G/K), the spherical transform j?of [ extends to a holomorphic function in ¥ such
that the map f — f Is an Lsomorphlsm of LY{K\G/K) onto PWx(G,K)

Proof. Let f : LYK\G/K) ¥, we are going to show that f is a homomorphism, linear, bijective and
continuous. Thereatter, we prove th&t any ¢ € ¥ extends holomorphically to functions on €. To this end, the
spherical transform of ¢ € LY(K\G/K) is defined as

7o) = [ Frelg™aucto) = mel ). @)
To establish the homomorphism, we are going to show tha,t['f_l;;qj_:z) flf P)* fz ) for fi, fa € LYK\G/K).

now
(Fiv Fa)(e) = fG (1% f2)(©)e(y™)du(y)
= f f F1(9) falg™ 9 ey ) du(g)dia(y)
G Ja

L
=f fl(g.i{f g™ ey }a’pfg
o [
1 -1 -1

Letz :g_ly::»gz =y=y ==z g
7] [ 06|t
o G

change z = kz and integrate over k, but f(kz) = f(z)
70| [ [ 26t |t
G GJR

since f Plgrkg2)dp(g) = ¢lg1)e(g2), we have

ff1 fff ) z.UKc,.o(z—lk—lg Y (k J}dmm
= [ fff Vi ( olg™")du(=)du(g)

- f Fila)ele™ F(2)p(=")dp(z)
o o
= A@)hle)

Theorem 3.5 establishes the continuity of f. Also, looking at definition 3.4, the Gelfand transform is injective
therefore f is injective and since the unique image of ¢ € LY K\G/K) lies in T it also means that f is
surjective. Hence, f is an isomorphism. Let D* denote the closed unit disk defined in prop. 3.2, it is closed
and compact(see prop. 3.2) and P(G,K) C D* (see prop. 3.2). Let us define Cx = {z € C|| z |<|| = ||}. Then
D* < € where C has the product topology C' =[], 4 Cx (see prop. 4.6). Let & belong to the closure of D*
in C, then & is linear (from prop.3.2).

To prove that ¢ € ¥ extends to a holomorphic function on €, we need to show that  1s a series of entire function
that converges uniformly on a compact set. Our spherical function for the Gelfand pair (SO(2) x B2, S0(2))
is the Bessel functin Jy(v/Ar) of order zero. This function is known to be the cosine function CO‘S\/_ Our

spectrum, as mentioned earlier is the set of bounded spherical functions, which are analytic. Explicitly, they
are Bessel functions of order zero Jo(A,r). Since e* is an entire function, Cosine functions are entire functions.
This implies that our spectrum is the set of entire functions on C. It is locally compact and does not have group
structure. It is topologized by the weak * topology which is found to coincide with the Euclidean topology or
the Compact open topology. With this topology on the spectrum, it becomes the space of entire functions on
C. Therefore, any function on ¥ 1s also an entire function on C. One important consequence of this result is
that the space ¥ is not larger than L'(K\G/K). O
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4. Conclusion

In this work, an explicit form of spherical function for SE(2) iz understood to be the Bessel function of order
zero. The Gelfand spectrum for our result has been established to be the set of spherical functions on SE(n)
that are bounded and positive definite. This space is known to be isomorphic with R*. A topological iso-

morphism between the L - algebra of I{-bi-invariant functions on SE(n) and the Gelfand spectrum has been
established.
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