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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

This paper deals with the propagation of magneto thermoelastic interactions in an isotropic homogeneous 

perfectly conducting thermoelastic medium in the context of Fourier’s law of heat conduction and Ohm’s law of 

electromagnetism. One dimensional application of a thin metallic rod of the finite length of ferromagnetic 

material which is subjected to a time-dependent magnetic field is solved using Laplace transform and finite 

Fourier sine transform. Due to time-dependent magnetic fields, conducting currents are produced which give 

rise to Eddy current and consequently result in heat loss known as Eddy current loss. At the same time due to 

the time lag between magnetization and demagnetization of magnetic material some amount of energy is lost 

which is termed Hysteresis loss. We have treated this total loss as the heat source for the problem. The 

differential equations governing the distribution of temperature fields are formulated and solved. The numerical 

calculations are carried out for displacement, temperature and stresses. The results obtained are displayed 

graphically to illustrate the influence of wave frequency, hysteresis loss, Eddy current loss and time-dependent 

magnetic field.

 KEYWORDS; - Magneto-thermoelasticity, Eddy current, Hysteresis loss, time-varying magnetic field, 
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I. INTRODUCTION 

Investigations of electro-magneto-thermoelastic interactions where we study the relationship and 

interactivity between strain, temperature and electromagnetic fields in a thermoelastic material are of great 

practicable significance due to its wide range of applications in various fields like geophysics, damping acoustic 

waves in magnetic field, designing of heat exchangers, boiler tubes in which elastic deformations occurs due to 

induced temperature, electrical power engineering, plasma physics and many more. 

Magneto-thermoelasticity is a subject where we study the interactions between magnetic, thermal and 

mechanical fields in a thermoelastic solid in the presence of a magnetic field. Magneto-elasticity is the theory of 

studying the coupling between electromagnetic and deformation, thermoelasticity combines elasticity and heat 

conduction to study the coupling theory between temperature field and elastic field. Magneto-thermoelasticity 

includes the heat conduction theory, classical elasticity theory and electromagnetic theory. These theories are 

applied to solve the coupling problems of temperature field, electromagnetic field and elastic field of conductive 

elastic solids. The theoretical foundation of magneto-thermoelasticity was presented by [1] and [2] and 

developed by [3]. Propagation of plane waves using thermo-elastic solid inside a magnetic field was studied by 

[4] and developed the theoretical framework of the advancement of magneto-thermoelasticity. Propagation of 

magneto–thermoelastic waves in a non-rotating medium was studied by [5]. The above studies were based on 

the theory of classical coupled thermoelasticity, with interaction among the electromagnetic field, the thermal 

field, and the elastic field, as well as the dispersion relation, was taken into consideration. Effect of small 

couplings related to thermoelasticity and magnetoelasticity of an unbounded isotropic medium using 

Perturbation technique was studied by [6]. A one-dimensional thermal shock problem of generalized 

thermoelastic electrically conducting half-space permeated by a primary uniform magnetic field with thermal 

relaxation was discussed by [7]. A two-dimensional half-space problem was discussed by [8] using electro-

magneto-thermoelasticity theory which was explored to a non-uniform thermal shock. A mathematical model of 

generalized magneto-thermoelasticity in a perfectly conducting medium was developed by [9]. Problems of 
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magneto-thermoelasticity with thermal relaxation and heat source in the infinite rotating elastic medium in 

three-dimensional spaces was investigated by [10]. Magnetoelastic plane waves in rotating media with uniform 

angular velocity was studied by [11]. A new mathematical model was developed by [12] for the equations of the 

two-temperature magneto-thermoelasticity theory. [13] investigated the interaction of a homogeneous and 

isotropic perfect conducting half-space with rotation, in the context of Lord-Shulman theory. Recently a two-

dimensional problem of magneto-thermoelasticity in thermosensitive finite conducting plates with eddy current 

loss was studied by [14]. 

The study of the interaction between the magnetic field and the strain field in a thermoelastic solid is 

receiving considerable attention in recent years due to its many applications in the field of geophysics, plasma 

physics and related topics. Especially in nuclear fields, the extremely high temperatures and temperature 

gradients, as well as the magnetic field originating inside nuclear reactors, influences their design and 

operations. The present article is an attempt to study the effect of eddy current loss (aroused due to Joule heat 

generated by Eddy current) and Hysteresis loss (aroused due to time lag between magnetization and 

demagnetization) on one dimensional non-linear HCE as an extension to the research work [15]. The derived 

expressions are computed numerically for steel material and results are presented graphically. Effects of Eddy 

current loss along with Hysteresis loss and magnetic field quantities are also analyzed. The integral transform 

technique is used to find the temperature solution. Further thermal and magnetic components of stresses are 

obtained using this non-dimensional temperature solution.  

 

II. PROBLEM FORMULATION  

Consider a one-dimensional isotropic homogeneous perfectly conducting thin rod of finite length c

occupying the region 0 z c  with temperature-dependent properties. We assume that this rod is subjected to 

the time-dependent, one-dimensional magnetic field 0 ( )H t acting along the y direction. Thus, all variables 

depend on z and t only. For one dimensional problem, all considered functions will depend on z and t and the 

displacement vector has one component in z  direction. We assume that the components of the magnetic field, 

induced electric field and current density are 

     0, ( , ),0 , ( , ),0,0 , J ( , ),0,0 .y x xH H z t E E z t J z t  
 

Ampere-Maxwell’s equation which states two possible ways of generation of magnetic field: one is due to 

electric current and the other is due to changing electric field (called as the displacement current) is given by: 
 

.
D

H J
t


  


                                                                      

(1) 

The component form (in the absence of displacement current) of the Ampere-Maxwell’s equation takes the 

following form: 

.
y

x

H
J

z


 


                                                                         

(2) 

 

For this one-dimensional problem all the physical variables depend only on the space variable z and time-

variable ,t therefore the component of displacement vector u becomes: 

0, 0, ( , ).x y zu u v u w u w z t     
                                                   

(3) 

We consider the modified Ohm’s law which outlines the impact of temperature gradient and charge density 

ignoring the seemingly small consequence of temperature gradient on the conduction current J as [16]:
 

 

  ,J E u B  

                                                                       

(4) 

Using equation (2) above the component form of the above equation can be written as: 

  ,x x yJ E B w 

                                                                     

(5) 

similarly, the component of magnetic flux density is given by: 

.y yB H
                                                                             

(6) 

Solving the equation (1) and (4) we obtain electric field intensity in component form as: 

1
.

y
x

H
E

z


 


                                                                             

(7) 
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Faraday’s law of electromagnetism which describes how time-varying magnetic field induces an electric field 

gives:  

.
B

rot E
t


 


                                                                          (8) 

Using (6) and (7), the component form of the above equation gives the uncoupled equation of magnetic field as:  
2

2
0,

y yH H

tz


 
 

                                                                

(9) 

with conditions 

                 at  /
0 0: 1 ( ),t

yz c H H e H t      

                at 0: 0,yz H 
 

at 0: 0.yt H 
                                                                    

(10) 

As a result of time-dependent/varying electromagnetic field conducting currents appear in the rod 

referred to as Eddy current. This Eddy current generates the resistive loss that transforms some form of energy 

such as kinetic energy into heat which is called Joule heat. This Joule heat gives rise to the Eddy current loss 

.EW  According to Joule-Lenz law the power of heating generated by an electric current xJ is proportional to the 

product of its resistance and square of current .xJ Therefore the Eddy current loss is given by  

2( , )
( , ) .x

E

J z t
W z t




                                                                    

(11)    

When a magnetization force is applied to a magnetic material, the molecules of the magnetic material 

are aligned in one particular direction. And when this magnetic force is reversed in the opposite direction, the 

internal friction of the molecular magnets opposes the reversal of magnetism resulting in Magnetic Hysteresis. 

To overcome this internal friction, a part of the magnetizing force is used. This work done by the magnetizing 

force produces heat which causes wastage of energy in the form of heat termed as Hysteresis loss. It is known 

that Hysteresis loss HW is proportional to the square of magnetic field amplitude and frequency f therefore it is 

given by  
2( , ) .H HW z t k f H                                                                 (12) 

Neglecting the coupling term  between the temperature and the deformation fields, the governing equation of 

temperature field in the rod is as follows [17]:  

2

0

,
W C T

T
t



 


  


                                                                   (13) 

,E HW W W                                                                    (14) 

where ( , )W z t is the heat generated (due to Joule Heat and Hysteresis loss) within the material for 0t   subject to 

the initial and boundary conditions as follows: 

at 0, : 0,z c T 
 

at 0: 0.t T 
                                                                     

(15) 

Apart from Eddy current loss and Hysteresis loss the metallic rod placed in a time-dependent magnetic field also 

suffer the Lorentz force given by the expression:  

 
2

.
2

z yf H
z

 
 


                                                                  

(16) 

The constitutive equation for stress-displacement-temperature relation and strain-displacement relation is given 

by Duhamel-Neumann equations:  

2 ( e T) ,ij ij ije      
                                                          

(17) 

,
u v w

e div u
x y z

  
   

  
                                                             

(18) 

 , ,

1
.

2
ij i j j ie u u 

                                                                  

(19) 
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The components of the stress field are [19]: 

 2 T, T.zz xx yy

w w

z z
       

 
     

 
                                

(20) 

The displacement equation of the theory of elasticity, considering the Lorentz force takes the following form: 

, ( ) .i ik k iu J B   
                                                                  

(21)

 

For considered one-dimensional problem, the above equations of motion become: 

   
2

2 T ,
2

y

w
w H

z z z


   

   
       

                                   

(22) 

with mechanical boundary conditions as follows: 

at 0,c : ,
w

z T
z






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
 

at 0 : 0.
w

t w
t


  


                                                             

(23) 

To transform the above equations into dimensionless forms, we define the dimensionless variables as follows:
 

2 2
0 00

, , , , ,
y xz

xy z

H c Jz cf t
z H f J

c H HH c


 
    

 
2 4

2 2 2 2 2
0 0 0 0

, , , .
/ 2

E H
E H

c W c W C T
W W T

H H H H

   


  
   

                 

(24) 

Equations (9) and (10) in the dimensionless forms are taken as:  
2

2
0,

y yH H

z 

 
 

                                                                     

(25) 

with the conditions (in dimensionless form) as follows: 

at 1: 1 ,yz H e   
 

at 0 : 0,yz H 
 

at 0 : 0.yH  
                                                                    

(26) 

Expressions for current density, eddy current loss, Hysteresis loss and temperature field in the dimensionless 

form are given by 

 
 ,

, ,
y

x

H z
J z

z








                               (27) 

 
2

, ,E xW z J                                                                       (28) 

4
2

2
( , ) ,H

H y

k c f
W z H





 (29)

2

2 2
0

.
T C C T

W
tz c

 



  
  
    

                                     

(30) 

Equation (30) is subject to the initial and boundary conditions given by 

                                                                          at 0,1: 0,z T   
 

at 0 : 0,T  
                                                                     

(31) 

and the component of Lorentz force in dimensionless form is given by 

   
21

, .
2

z yf z H
z




 


                                                               

(32)
 

Stress-displacement relations (20) in the dimensionless form are as follows:  

2
0

2 2
T,xx yy

w

z CH

 
 




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
 

 
2

2
0

2
( , ) ,

M
M M
xx yy y

w
H z

zH


   


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 
4

( , ),
2

T T
xx yy T z

C


  

  
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
 

 
2
0

2 2 2
T,zz

w

z CH

  




 
 


 

  
2

0, 2 ( , ) .T M
zz zz yH z      

                                                   
(33)

 

Equations of motion (22), reduces to dimensionless form as: 

 
 

2 22 2
0 0

2

1
,

2 2
y

H Hw T
H

C z zz

 

  

   
  

     
                                                

(34)
 

with the mechanical boundary conditions as follows: 

at 
2
0

2
0,1: ,

Hw
z T

z C






 


 

at 0 : 0.
w

w



  


                                                                    

(35) 

III. SOLUTIONS 
Determination of Magnetic field 

To determine Magnetic field expression, we first need to transform the inhomogeneous boundary 

condition in (26) into a homogeneous one, for this, we introduce a new function:
 

     , , , ,y yv z H z h z   
                                                              

(36)
 

And  

 (z, ) 1 .yh z e   
                                                                      

(37)
 

Now using (36) into (25) we obtain: 
2

2
.

v v
ze

z




 
 
                                                                           

(38)
 

Using (36), the equation (26) becomes: 

at  0,1: , 0,z v z    
 

      at  0 : , 0.v z  
                                                                    

(39) 

Collecting this information, we find that ( , )v z  satisfies: 

2

2
,

v v
ze

z




 
 
                                                                      

(40)
 

at  0,1: , 0,z v z  
 

 at  0 : , 0.v z  
                                                                    

(41) 

To determine the solution of (40), first, we apply finite Fourier sine transform and then Laplace transform [18] 

to (40) to obtain: 

  
*

2 2

( 1)
(n, ) .

n

v s
n s s n



  

 
  

  
  

   

Now applying inverse Laplace transform and inverse finite Fourier sine transform we obtain: 

2 2 ( )

1 0

( 1)
( , ) 2 sin(n z).

n
n

n

v z e e d
n


      



  



 
 
 
 

                                              (42) 

Using (42) in (36) we obtain: 

   
2 2 ( )

1 0

( 1)
, 1 2 sin(n z).

n
n

y

n

H z z e e e d
n


       



   



 
   
 
 

                            (43) 
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Using equation (43) in (27), the dimensionless current density expression is obtained as: 

 
2 2 ( )

1 0

(z, ) 1 2 ( 1) cos(n z).n n
x

n

J e e e d


          



 
    
 
 

                               (44) 

Using (44) in (28) we obtain Dimensionless form of Eddy Current loss as:

 

 
2 2

2

2 ( )

1 0

( , ) 1 2 ( 1) cos(n z) .n n
E x

n

W z J e e e d


          



  
           

  

                         (45)
 

Similarly, the expression for Hysteresis loss in dimensionless form is obtained as:
 

 
2 2

2
4

( )

2
1 0

( 1)
( , ) 1 2 sin(n z) .

n
nH

H

n

k c f
W z z e e e d

n


    

   


   



  
    

  
  

                     (46) 

The total Heat loss in (dimensionless form) is given by 
4

2 2

2
W( , ) ,H

E H x y

k c f
z W W J H





     
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z z e 

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 
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sin( z)
4 1 ( 1) cos( z) ,
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
 






                        

  

2
1 2 3 4W( , ) 4 4 T .z T T T                                                                   

(47)  

Applying the finite Fourier sine transform and the Laplace transform to (47) we obtain:
 

* 1 1 2ˆ
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2
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1 1 1 1
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Determination of Non-dimensional temperature 

Applying the finite Fourier sine transform and Laplace transform to (30) we obtain: 



         Study of Hysteresis and Eddy Current loss of One-dimensional Magento-thermoelastic problem 

DOI:10.9790/1813-12072940                                  www.theijes.com                                                          Page 35 

   
*

2
0

1 1 2ˆ
( , )

( ) 2 ( ) ( )
nT n s A

s s B s s B s s Bc



 

   
     
         

       
2

2 2 2 2
1 1

1 1 1 1
4

2 ( ) ( ) ( ) ( )
npq

p q q p p q

B
s s B s k s B s k s B s k k s B


  

 

 


 
     

                            



        2 2
1

1 1 1 1
4 .

( ) 2 ( )( ) ( )
np

p p p

C
s s B s s Bs k s B s k s B


  





 
 

     
       

  

  

Now applying inverse Laplace transform and inverse finite Fourier sine transform to (30) we obtain: 
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Determination of Magnetic and Thermal components of Displacement and Stresses 

The quasistatic solutions of displacement due to temperature change and Lorentz force in terms of its 

thermal and magnetic components are given by [15], 
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(53)  

We solve equations in (33) further with the help of the above equations and equation (50) to obtain the 

expressions of thermal and magnetic stresses which are given by 

0,T
zz 

                                                                              
(54) 
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IV. NUMERICAL RESULTS AND DISCUSSION 
To illustrate and compare the theoretical results obtained, we now present some numerical results 

which depict the variations of displacement, temperature, and stress component. The material chosen for the 

purpose of numerical evaluations is steel, for which we take the following values of the different physical 

constants [17] 4 9 6
0 1.26 10 [ / ], 79.3[ ], 101.91 10 , 7.7 10 [ / ], 502.416[ / ]H m GPa S m C J kgK          

3 3 2 67663[ / ], 1.4 10 [ / sec], 0.28, 205[ ], 12 10 [1/ ],kg m m v E GPa K          01 , 50 / .c mm W mK      

Figure 1 depicts the variation of the current density xJ  for different values of z varying with the time

 . For 1z   the value of xJ  change monotonically which shows a sharp rise followed by a rapid decline when 

0 40  while the value of xJ  slowly decreases when 40   and then tends to be stable. It can also be seen 

that at the middle of the plate i. e. for 0.5z   as well as for 0z  the current density xJ  is small and varies 

slowly in comparison with the variation at the surface. Figure 2 depicts the variation of Eddy current loss with 

the time  .  

 
Figure 1. Time Variation of current density xJ  for 0,0.5,1z   

 
Figure 2. Time Variation of Eddy current loss EW  for 0,0.5,1z   
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Figure 3. Time Variation of Hysteresis loss HW  for 0,0.5,1z 

 

 
Figure 4. Time Variation of Total Heat loss TotalW  for 0,0.5,1z 

 

 Figure 5. Time evolution of Temperature changes T  
Figure 3 and 4 shows the time variation of Hysteresis loss and total heat loss for 0,0.5,1.z  Figure 5 

shows the time variation of non-dimensional temperature for 0,0.5,1z  until it attains a steady state. From the 

graphs it can be seen that for the temperature it takes about 40 seconds to attain steady state. Figure 6 represents 

the temperature variation in the middle of the rod as a function of time and wave frequency. Figure 7 shows the 

quasi-static behaviors of thermal stresses T
xx with time for 0,0.5,1.0.z 

 
From the figure it can be seen that the 
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thermal stress T
xx is compressive at the surface. Figure 8 and 10 shows the variation of magnetic stress 

component versus non-dimensional time and distance respectively.
  

 
Figure 6. Temperature changes T at 50z mm as a function of time and wave frequency. 

 
Figure 7. Quasi-static behaviors of thermal stresses T

xx versus non-dimensional time. 

 Figure 8. Quasistatic behavior of Magnetic stresses M
zz versus non-dimensional time   
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Figure 9. Variation of Non-dimensional Temperature T against z at for 30,40,50sec. 

 

 
Figure 10. Variation of magnetic stresses component M

zz against z at 30,40,50sec 
 

 
Figure 11. Variation of stresses distribution T T

xx yy  against z at 30,40,50sec 
 

It is evident from figure 9 that the non-dimensional Temperature T have coincident point with zero 

value which is consistent with the boundary conditions applied, afterward it jump to attain maximum value and 

finally decreases gradually to diminish to zero value as 1.z  Figure 13 depicts that stress components 
T T
xx yy  starts with zero value at 0.z  It decreases at the beginning and starts increasing at 0.35z  and finally 

converges to zero value as z increases.   
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V. CONCLUSION 

The main goal of the present work is to study the effect of the Eddy Current loss and the Hysteresis 

loss on a one-dimensional magneto-thermo-elastic problem subjected to a time-varying magnetic field 

accompanied with the appearance of eddy current and hysteresis losses. The fundamental solutions are derived 

using a very suitable method for solving equations governing temperature field in analytical form, that is 

integral transform technique where we have used Laplace transform and Finite Fourier sine transform and the 

effect of Eddy current loss and the Hysteresis loss has been studied. The current density is higher at the surface 

and it decreases with depth. The rate of the decrease depends on the conductivity and permeability of the metal. 

The conductivity of the material affects the depth of penetration. The intensity of losses decreases exponentially 

with time. The intensity of Eddy current loss shows a sharp rise followed by a rapid decline after that it 

decreases slowly with time and tends to be stable. Variation of the intensity of Eddy current loss is small and 

slow as compared with its variation at the surface. The temperature of the rod increases with an increase in the 

wave frequency. Under the influence of the wave frequency the rod heats up slowly and after about 40 seconds 

achieves the maximum temperature and then moves to the steady-state. We note that the solution for thermal 

stresses is proportional to the temperature of the rod with a negative constant for steel. Therefore, the thermal 

stresses are compressive at the surface. Some numerical computations for ferromagnetic material like steel have 

been carried out.  
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