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ABSTRACT
The mathematical methods offered by mathematical morphology are mainly oriented towards problems in image
or signal processing and analysis as well as other fields such as artificial intelligence, pattern recognition, and
soft computing. Since mathematical morphology is a combined geometric and algebraic framework, its basic
operations can be defined on sets and numerical functions whenever their underlying algebraic structure is a
complete lattice. The fundamental idea behind the morphological approach is to transform a given set or a
function by means of simple structuring elements into another set or function that preserves the essential
chracteristics of the source set or function in such a way as to make easier its analysis or interpretation in the
case of real world applications. In general, the structuring elements are also sets of smaller extension or
functions defined on a finite subdomain with respect to the original domain. In this work we give a brief
theoretical foundation of the basic operations in mathematical morphology with emphasis on the algebraic
determination and numerical evaluation for the case of real valued functions.
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I. INTRODUCTION

Mathematical morphology [1-5] is a non-linear approach to image processing and analysis [6,7] with a
mathematical foundation that entails both a geometrical as well as an algebraic aspect as a result of conceptually
using complete lattices whose elements can be sets or numerical functions. The central idea of the
morphological approach is to process a digital image using as a scanning element a smaller image with a
predetermined geometry adequate for the evaluation of the geometrical or topological characteristics of objects
contained in the source image. The smaller image is commonly known as a structuring element. Thus, the
fundamental purpose is to transform a given image into another more appropriate for its analysis or data
understanding based on the resulting interaction with the chosen structuring element [8-10].

Mathematical morphology was created in the middle 19’sixties in France, after George Matheron
studied the relationship between the geometry of porous media and their permeabilities and, at the same time,
Jean Serra quantified the petrography of iron minerals with the objective of predicting their grinding properties.
The aforementioned studies conducted both scientists to establish the theoretical grounds for the analysis of
binary images. A porous medium is binary in the sense that a given point belongs to a pore or to the material
that surrounds it. Thus, the material surrounding the pores can be taken as a set and all pores would be the
complement set. Therefore, objects in a binary image can be treated with set operations. In 1967, Matheron
proposed the first morphological transformations for finding the geometry in binary images.

A major portion of mathematical morphology was developed in the Center of Mathematical
Morphology (Centre de Morphologie Mathématique) created in 1968 as part of the Paris School of Mines at
Fontainebleau and directed by Matheron and Serra [11]. The development of specialized equipment for image
processing, such as the Texture Analyzer, allowed the use of new transformations that would adapt to the type
of problem under scrutiny. Hence, mathematical morphology was elaborated by fusioning the theoretical aspects
together with real world applications and algorithmic designs. For almost a decade mathematical morphology
dealt only with binary images considered as sets and since middle 19’seventies it was developed to process and
analyze grayscale images by extending the erosion and dilation operations to numerical functions [12]. By the
end of the 19’eighties and beginning of the 19’ninties, mathematical morphology was founded on a more
general algebraic view based on complete lattices and digital spaces [13-15].
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The naive idea that we have about the structure of objects in a scene is not enough since it can not
always be precised. Furthermore, it is practically imposible to give an objective and complete description of an
arbitrary object. An observer will see an object in a personal manner emphasizing certain characteristics that are
of interest to him and so will transform the object into another one with certain details highlighted. The observer
could say that part of the object that captures his attention, have spikes, is squared or rounded, small or big. The
attributes perceived by the observer are the result that he may have by comparing part of the object under study
with a star, a square, a circle, or other similar objects in shape and size. These last objects can be indentified as
structuring elements and the way of relating them perceptually with the object as a morphological
transformation. Thus, mathematical morphology is a theory that considers the local geometrical traits of specific
interest when analyzing one or more objects. Currently, mathematical morphology is considered a versatile tool
for signal and image processing and analysis, specially in those applications where the geometrical aspects are
relevant [9-10].

The following work presents the elementary theory of mathematical morphology as a body of
knowledge by giving proofs of several basic properties and of some important theorems relative to the
fundamental morphological operations of erosion, dilation, opening and closing for sets and functions. As a
complement to our theoretical exposition we illustrate with simple examples how to determine algebraically as
well as to evaluate numerically the morphological erosion and dilation with real valued functions [16].

Preliminary Concepts
The following background concepts of a geometrical nature are fundamental for the definitions of the basic
operations in mathematical morphology.

Definition 1. Let A € R", the translation of A by vector x € R™, is the set given by A, = {a + x:a € A}, and
the symmetric of A is the set, A = {—a: a € A, where symmetry is realized with respect to the origin.

The next proposition list several equalities that relate the concepts of translation and symmetry with the set
operations of union, intersection, and complementation. In item b) of Proposition 1, we will write B¢ instead of
(B,)¢ to simplify notation.

Proposition 1. Valid identities between set operations with translations and symmetrics:

a) Upep Ap = Ugea Ba (commutativity of translation with union),

b) (BS), = (B,)¢ (commutativity of complement with translation),

C) Npes Ap = Ngeac (B )q (equivalence of intersection of translations by complementation),
d) (Ay)y = Ayyy (composition of translations),

€) (Upes Ap)x = Uper Apix (distributivity of translation over union),

f) Uxex (Uyer By)x = Uyer (Uxex Bx), (conmutativity betwee double unions and translations),

0) Upes Ap = Upep 4p (distributivity of symmetric over union), and

h) B, =B_, (opposite of a translation by symmetrization).

Proof :

a) x € Upeg Ap © Ja€ A beBsuchthatx =a+ b < 3b € B, a € A such that
x=b+ae x €Uy B,

b) ye(B), e y=b'+xsuchthatb’ e By +b+x Vb EB & y € (B,)°,
¢) Npes Ap = (Uper (A)p)° = (Ugeac Ba)® = Ugeac (B)p
dze(y),oz=@+x)ty, a€Adoz=a+(x+ty), a€EASzEA,,,,

e) vy € (Upep 4p)x © Ja€ A, beBsuchthaty = (a+b) +x & Ja € A, b € B such that
y=a+(b+x)© Upep Apix

f) z € Uyex (Uyey By)x ©® 3x €X,y EY suchthatz = (b +y) + x © 3y € Y, x € X such that
z=((b+x)+tyez€ Uer (Uxex Bx)y:

9) Upeg A4, ={—(a+b):a€Ayb € B} = Upep 4, , and
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h) B,={-(b+x):beB}={-b—x:—beB}=B_,.

I1. PARTIAL ORDERINGS AND ALGEBRAIC LATTICES
Definitions of the morphological mathematical operations assume that the set used as workspace is
endowed with the algebraic structure of a complete lattice since the corresponding operations entail that
structure in a natural way. Therefore in this Section we present the concepts of partial orderings and lattices
including several of their properties and types of lattices [17,18].

Definition 2. A is a partially ordered set if given a binary relation < defined on A, satisfies the following
properties for any x,y,z € A: a) x < x V x € A (reflexivity), b) x < y and y < z = x < z (transitivity), and c)
x < yandy < x = x = y (antisimmetry). The expression x < y reads “x precedes y”.

We write a partially ordered set or a partial ordering to be brief, as the pair of objects (4, <),
highlighting the fact that A is the set on which the binary relation < is defined. Two elements of A are
comparable, if and only if, a < b or b < a, otherwise a and b are not comparable. The word “partial” is used to
emphasize that some pairs of elements in A are not comparable. Let (4, <) be a partial ordering. The elements
a, b are called an upper bound or lower bound of A, respectively, if x < a or b < x for all x € A. The lowest of
all upperbounds is known as the supremum of A, denoted by sup(4), and the greatest of all lower bounds is
known as the infimum of A symbolized by inf(A). If sup(A) € A4, then sup(A) is called the maximum of A
denoted by max(A); whereas if inf(4) € A4, then it is named the minimum of A written as min(4). In a partially
ordered set A the binary relation < can be described in the following way. The element a is an immediate
predecessor of b in A or b is an immediate succesor of a in A, expressed as a < b, if no element x exists such
thata < x < b.

Definition 3. Let L be a non-empty partially ordered set. A lattice, denoted as (L,A,Y), is an algebraic structure
equipped with two binary operations named “meet”” and “join”, symbolized respectively by A and v, for which
a Ab =inf(a,b) and a Y b = sup(a, b) exist and belong to L for each pair of elements a, b € L.

Definition 4. L endowed with the binary operations A and v is a lattice algebra if for any a,b,c € L the
following laws are verified: a) a Ab = b Aa and a Y b=b Y a (commutativity), b) (a Ab) Ac=a A (b A c) and
(aYy b)Y c=aVY (b c) (associativity),and c)a A (aY b) =ayaY (aAb) = a (absorption).

We will see that Definitions 3 and 4 are equivalent since both operations, A and v, verify the properties of a
lattice algebra. Similarly, given a lattice algebra a partial ordering is defined as follows: x < y ©® x Ay = x, or
equivalently, x < y @ xvy =y.

Proof : First we check that (L, <) is a partial ordering: a) to prove the reflexivity condition used is made of the
absorption property so that, x Ax =x A (x Y (x Ay)) = x, which implies by definition that x < x; b) for
transitivity, suppose that x < y and also that y < z, then, x Ay =xand yAz=y. Thus, x Az=(x Ay) Az =
x A (y Az) =x Ay = x, and by definition, x < z, and c) antisimmetry, if x < yand y < x, then, x Ay =xy
y Ax = y. By the commutative property results that, x = x Ay = y A x = y, henceforth, x = y. On the other
hand, considering L as a lattice algebra, we see that (X AY) Ax =x A Y AX) =xA X AY) =X AX)AYy =
x Ay.Inaddition, x AY) Ay=x Ay Ay)=xAy e xAy=<xyxAy=<y.Now, assuming that z < x and
z<y, then zAx =2z y zAy =2z Consequently, (zAx)A(zAy)=2zAz =2z which is equivalent to,
zA(x Ay) =z and therefore, z < x Ay. Reciprocally, if z<x Ay, and since x Ay<x y xAy<y, by
transitivity we obtain that, z < x and z < y. Thus, as shown, a lattice algebra L is a lattice m

In this work, we restrict the type of algebraic structures to bounded and complete lattices defined next. If a
lattice L has a maximum element and a minimum element, it is called a bounded lattice which we write in full as
(L,A,Y, max(L), min(L)). Also, a lattice L in which every non-empty subset has an infimum and a supremum, is
said to be a complete lattice; in particular, every complete lattice is bounded.

1. MATHEMATICAL MORPHOLOGY OF SETS
The operations of mathematical morphology allow for the extraction of possible relevant geometrical
structures of the objects contained in a given digital image by considering it as a subset of R? or of Z2. The
extraction is achieved by probing the corresponding subset with another set acting as a structuring element or SE
for short, whose geometrical shape and size depends on the information required for the analysis of objects that
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appear in the given image. We remark that in image processing applications a structuring element is taken as a
much smaller image in size with respect to the original one.

The basic morphological operations have been proposed to allow the SE to interact with the objects of
interest in a given scene by overlaying it point by point and probe if the SE “touches” or “fits within” those
objects. The structuring elements used for exploring two dimensional images are known as flat structuring
elements since they have the same dimension as the image under study, they depend only on its domain and do
not depend on gray scale values. However, three-dimensional structuring elements are known as volumetric
SE’s or none-planar SE’s and must have values in the same dynamic range as the original image.

In each structuring element it is required to fix one of its elements as a reference or pivot point, usually
its center, to allow for changing the way a morphological operation acts. Hence, upon geometrical translation or
displacement of the SE over the image, its center is positioned on the pixel scanned. Once more, the geometric
shape and size of a SE must be adapted to the image object characteristics; for example, a rectangular shaped SE
is adequate for extracting objects whose forms are composed of rectangles. In what follows, we define the
fundamental morphological operations for processing and analyzing binary images. The sets considered in the
corresponding definitions are subsets of the Euclidean n-dimensional real space, i. e., R™.

Erosion and Dilation of Sets

Definition 5. The erosion of set A by the structuring element B, symbolized by A © B, is defined as,
AOB={x:B,C 4},

where B, is the translation of set B to point x € A.

The result obtained with erosion is a new set containing those points x € R™ for which B is contained in A4 (is a
proper subset) when its center is positioned or displaced at x.

Theorem 1. The erosion operation between sets A and B can be expressed as,

A@BzﬂA_b.

Proo x€e AOB© B, CAeob+x=y€EA VbEBS x=y—b suchthat yeA VheEB S x €
A—b VbEB@xEﬂbEBA_bI

Definition 6. The dilation of set A by the structuring element B, symbolized by A @ B, is defined as,
A®B={x:B,nA=0}.

The dilation operation gives another set whose points x € R™ are such that the center of B (symmetric of B)
upon translation to x verifies that B, N A # @ (non-void intersection), meaning that B, “touches” or “hits” A.

Theorem 2. The dilation operation between sets A and B can be expressed as,

A@BzUAb.

Proo. x EA®B < B, NA# @ dysuchthaty € B,andy€E A< y=x—bforsomeb€Bandy € 4
©x=y+bforsomebeEBandy €A < x € A, forsomeb € B x € Upeg Ap B

Proposition 2. The distributivity of the symmetric is valid for the dilation operation,i.e., A@ B = A @ B.

Proof :

A®Bm

wov=Ja=a-Ui -4

beB beB bEB beB
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Note the use of identity g) of Proposition 1 in passing from the first to the second equality.
Opening and Closing of Sets

From the basic morphological operations of erosion and dilation new operations can be constructed. For
example, the morphological opening and closing operations can be built by chaining them algebraically as is
explained next.

Definition 7. The opening of set A by the structuring element B, denoted by A o B, is defined as the following
algebraic composition, Ac B = (A © B) @ B.

In words, the morphological opening consists of applying the erosion of A by B followed by the dilation with B
of the eroded set A © B. This new operation selects points belonging to A that are covered by some translation
of the SE B that is included in A. Thus, the opening of A is obtained by moving B inside A, even tangentially to
the border or frontier of A without any element of B staying outside A. The following theorem corresponds to
the given verbal description.

Teorema 3. The opening operation between sets A and B can be expressed as,

AoB = UBx.

BxCA

Proof: xEA° B x€(AOB)®B ©B,nN(AOB)#® < 3y such that ye B, and y € (A B)
©3y,3beBsuchthaty=x—band B, €A < 3y,dbeBsuchthatx=y+band B, S A < 3B, C A
such thatx € By, & x € Upycq B, .

Definition 8. The closing of A by the structuring element B, denoted by A « B, is defined as the following
algebraic composition, A« B = (A® B) © B.

In words, the morphological closing consists of applying the dilation A by B followed by the erosion with B of
the dilated set A @ B. The theorem below shows that the closing is equivalent to the intersection of the
complements of all translated copies at x of the symmetrical SE contained in the complement of A.

Theorem 4. The closing operation between sets A and B can written as,

c
AeB = U B, | = ﬂ B¢.

ByCAC ByCAC

Proof:x€eAeBoxe(A®B)OBS B, CA®BS (A@B) B (Vy,yeE(A®B) =>y€EBE
© (Vy,B,nA=0=>VbeB,y#x+b)e (Vy,B, S A°=>VbeEBx+y—b)o (Vy,B,C A =>x¢
B)) & (Vy,B, S A°=>x € BY) © x € B, VﬁyQAccbeﬂgy;Acéji.

The morphological opening removes points of A where the translations of the SE do not fit locally, whereas the
morphological closing adds those points not covered by translations of B included in the complement of A. The
core idea of the opening and closing operations consists in rebuilding in a global manner the initial shape of the
eroded or dilated set respectively.

IV. MATHEMATICAL MORPHOLOGY OF FUNCTIONS

In this section additional concepts are introduced in order to extend the mathematical morphology of
sets to include the case of real valued functions. The extension is achieved by associating a unique set to a given
function. In what follows, the domain of a real function f of one or more real variables is a subset of R*~ for
n= 2, i €., Df c Rn_l.
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Definition 9. Let a € R"~* be a vector and f: Dy - R a function. The translation of f by a denoted by f,, is
defined as the function f,: D, — R, where f,(x) = f(x — a). Besides, the symmetric of f written £, is defined
as the function f: D; — R, where f(x) = f(—x).

Definition 10. Let A € R"*, D, = {x € R"1:3y € R such that (x,y) € 4}, and R* = R U {40} the extended
real number system. The top of A is a function denoted by 7 (A): D, — R* such that 7 (4)(x) = sup{y: (x,y) €
A}

Definition 11. Let f: D — R be a function. The umbra or shadow of f is defined as the set, S(f) = {(x,y) €
D xRy < f(x)}.

Lemma 1. Let f: Dy X R — R be a function, then, 7'(S(f)) = f.

Proof: First it is shown that the domains of the functions f and 7°(S(f)) are the same. If x € Dg(r) = 3y € R
such that (x,y) € S(f) = x € Dy . On the other way, if x € Dy and y = f(x) = y < f(x) = 3y € R such that
(x,¥) € S(f) = x € Ds(sy = Ds¢sy = Dy . Second we prove that, 7'(S(f))(x) = f(x) Vx € Dy. Specifically,

T(S())(x) = suply: (6, y) € S(NY =suply:y < f()} = fF() > T(S()) =f m

Definition 12. Let  be an index set and F = {f;|f;: D;, » R",i € I} be a family of real functions. We define the
infimum and supremum functons of F, written respectively as AF:D, - R* and VF:D, - R*, by the

expressions:
a) \F = (/\ﬁ) (x) = /\ﬁ-(X) = inf{f;(x)} where D, = ﬂ_a Dy,

i€l i€l

b) VF = (\/ﬁ) () = \/ﬁ-(x) = sup{f;(x)} where D, = Uiel Dy,

i€l i€l

Lemma 2 Let the family F of real functions f; indexed by I be equipped with the operations of infimum and
supremum, and let P (R™) be the family of subsets of R™ with the operations of intersection and union. Then, the
shadow is a homomorphism between the complete lattices (F,A,v) and (P(R™),Nn,V), i. e., the following

equalities are satisfied:
s </\ﬁ> = ﬂia S(f) and s(\/;a) = U.GI s(f).

i€l i€l
Proof : Let f, g € F then,

) SWier f) ={(x,y) EDAXR:y < (Aeg f)(X)}
={(x,y) ED\XR:y <Ay fi(x)}
={(x,y)ED,XR:y < fi(x)foralli e I}
=Nier {(x,¥) EDAXR:y < fi(0)} = Ny S(fy) and

b) SWVier fi) ={(x,¥) €Dy X R:y < (Vi f) (XD}
={(xy) €Dy XR:y <V f;(x)}
={(x,y) € Dy xR:y < f;(x) forsome i € I}

= Uier {(,¥) EDy X R:y < fi(x)} = Uier S
Erosion and Dilation of Functions

Definition 13. The erosion function of f, g € F, denoted by f © g: Drgy — R is defined as the top of the
erosion of their corresponding shadow sets, symbolically, f © g = T(S(f) © §(g)) .

Theorem 5. The erosion of f by g is equivalent to the expression given by,

DOI:10.9790/1813-12013346 www.theijes.com Page 38



Analysis and evaluation of real-valued functions in mathematical morphology

Ffegkx) = /\{f(x +a) — g(a)} where (x +a) € Dy and Dyoy = Dy © Dy

a€Dy

Proof: Changing variables, let x = x’ —a and y = y' — b, hence we have that,
{(x’,y’) —(a,b):y' < f(x'),x" € Df} = {(x,y):y <f(x+a)—b(x+a)e Df}.

In what follows we omit the fact that (x + a) € D, with the purpose of abbreviating intermediate expressions
and at the end we restitute this condition. For all b < g(a), we have the following set inclusion,

{y)y<f(x+a)—gla)}c ﬂ {(y):y < f(x+a)—b}
bsg(a)

= [ (yy <G+ @)= b) = (v < fx + @) - g(@))
bsg(a)

Next, by considering our previous definitions and results, we can see that,

sPes@= (] sPwn= (] @»N-@b:y<re}

(a,b)es(g) aeDg,b<g(a)

=[] [ @»ysra+a-n= )@y sra+a-g@y

a€Dg b=g(a) a€Dy
= stfa-g@i=s5 | ]\ (fa —g(a))],
a€Dg a€Dy

where the last equality follows from Lemma 2. Thus,

N\ - g(a))D = \Fa-g(@
aeDg aeby

=09k = /\{f(x +a) — g(a)} where (x + a) € Dy .

a€Dgy

f®g=f/"(5(f)@5(g))=7<5

Finally, by Definition 12 and Theorem 1, it turns out that, Dy, = Naen, (Df)-a=Df© Dy m

Corollary 1. The shadow of the erosion of f,g € Fisgivenby S(f © g) = S(f) © S(g) .

Proof: From the final equations in the proof of Theorem 5 we see that,

sNes@=5|\fa-g@)|=sF0gm

a€Dgy

Definition 14. The dilation function of f, g € F, denoted by, f ® g: Drg4 — R, is defined as the top of the
dilation of their corresponding shadows sets, symbolically, f @ g = T(S(f) ® S(g)) .

Theorem 6. The dilation of f by g is equivalent to the expression given by,

F®gk) = \/{f(x —a)+ g(a)} where (x —a) € Dy and Drgq = Dy @ Dy,.

a€Dgy
Proof: Let x = x" + aand y = y’ + b be new variables, thus we can see that,
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{(x’,y’) + (a,b):y' < f(x"),x" € Df} = {(x,y):y <f(x—-—a)+b(x—a)e Df}.

Again, we dismiss the fact that (x — a) € D to shorten intermediate expressions and at the end we point out the
same condition. For all b < g(a) we have the following subset relation,

U {y)y<sfix—a)+b}c{(xy)y<flx—-a)+g(a)}
bsg(a)

= | J iy ra-o+b) =@y < fx-a) + g@).
b=g(a)

From our previous definitions and results, we have that,

sp@s@= ) shan= ] @n+@hry<r)

(a,b)es(g) aeDg,b<g(a)

- U wnysra-a+n=Jawnysra-a+g@y

a€Dg b=g(a) a€Dy

= U Slfutg@]=8 \/(fa+g(a))“'

a€Dgy a€Dy

where the last equality follows from Lemma 2. Therefore,

\/ ¢+ 9@

a€Dgy

) = \/ i+ 9@

a€Dgy

f®g=T(5(f)®S(g))=T<5

= @9 =\/ (- +g(@) where x—a) €Dy,

aEDg

Also, from Definition 12 and Theorem 2, it follows that, Dy, = Uaen, (Df)a=Dr @Dy m

Corollary 2. The shadow of the dilation of f,g € Fisgivenby S(f ® g) = S(f) @ S(g) .

Proof: From the final equations in the proof of Theorem 6 we conclude that,

NGIHOEE [\/ (fa + g(a))‘ =s(f@g)m

a€Dy
Opening and Closing of Functions

Definition 15. Let f, g € F, the opening and closing of a function f by a function g are given respectively, by,

feg=(fOgDgand feg=(fD9gOg.
Corollary 3. The shadow of the opening and closing of f by g, where f, g € F, is given correspondingly by,

S(feg)=8(f)eS(@ys(fe9)=5()S(.

Proof: As a consequence of Corollaries 1 and 2 it is not difficult to see that,
SFegd)=S(fON®Y=5((fO9) DS =(5(f) ©5(9) ®S(g) =5(f)°S(g) and
SFe=8(F®9O9)=S(F®P)OSY =) D) O =S5 *S.

Theorem 7. The morphological operations of opening and closing of two functions f, g € F are found in terms
of their shadows and the top function, i.e., fe g =T (S(f) 2 S(g)) and fe g =T(S(f) * S(9)).
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Proof: Applying the top function to the result obtained in Corollary 3 for both opening and closing in terms of
their corresponding shadows, it follows that,

feg=TES(feog)=T(S(f)oS8(9) and feg=T(S(f*9) =T(S(f)*S(9).

The algebraic properties of the mathematical morphology operations with functions are similar to the properties
of the mathematical morphology operations with sets. Except for terminology and notation, the proof of these
properties are the same and can be based on the equalities established between shadow sets according to
Corollaries 1, 2 and 3. We remark the important fact that all equalities established involving the shadow of a
morphological operation between functions and the corresponding shadows using the same operation with sets
are the algebraic mechanism that associates the mathematical morphological operations on functions with the
same operations acting on sets. Also, the domain of the erosion and dilation functions is expressed by the same
morphological operation between the domain sets of the respective functions. By analogy of nomenclature,
function g is called a structuring function that interacts with f. The mathematical expressions given in
Theorems 5 y 6 are of capital importance for applications in digital and image processing as well as in the
mathematical analysis and numerical evaluation of erosion and dilation as will be detailed next by implementing
their corresponding computer algorithms using any programming language [19,20].

V. ANALYIS AND NUMERICAL EVALUATION
In this section, which is the central part of our paper, we first exhibit an example of the analysis
required to find the algebraic expressions for the elementary morphological operations of erosion and dilation
between two simple functions f and g. We include in this example the correponding graphs of the algebraic
results. Secondly we give simple algorithms written with the programming constructs provided by PTC’s
(Parametric Technology Corporation) Mathcad Prime software working environment [24]. Additional
functional graph examples are provided to illustrate the corresponding numerical evaluation.

An Example of Algebraic Determination of Erosion and Dilation

Consider the following functions, f: R — R such that f(x) = x2 and g: [—¢, €] - R such that g(x) = —x2 + 1
(see Fig. 1). Our goal is to find the erosion and dilation of these functions by means of the mathematical
formulae given in Theorems 5y 6. For the erosion of f by g, let h,(a) = f(x + a) — g(a) where a € [—¢, ¢].
After substitution of the given functions, doing some simple calculations and simplifying, we have that h,(a) =
2a”® + 2ax + x* — 1. Therefore, hi(a) =4a+2x and hY(a) =4>0 Va€ (—¢¢€). Thus, hi(a) =0 &
a=—> Vx € (~2¢2¢). Since h{ >0 and a = — is the only relative extremum in [—e, ], then a = —.is

the absolute minimum in [—¢, €]. Hence, Vx € (—2¢, 2¢), h; has an absolute minimum at a = —g. On the other

hand, if x > 2& then h} > 0, so that h is strictly increasing and its absolute minimum occurs at a = —¢ and
h,(—¢g) = x% — 2ex + 2¢? — 1. However, if x < —2¢ then h, < 0 and the funtion h, is strictly decreasing and
attains its minimum at a = € where h,(¢) = x? + 2ex + 2¢% — 1. In consequence,

X2+ 2ex+2e2 -1 if x<—2¢,
2

FONE® =121 if —2e<x <2
x? —2ex+2e2 -1 if x> 2.
For the dilatation of f by g, let h,(a) = f(x — a) + g(a) where a € [—¢, €], then h.(a) = x* — 2ax + 1.

Thus, if x >0, function h, is decreasing and reaches its maximum at a = —¢ and if x < 0, then h, is
increasing and its absolute maximum happens at a = €. Therefore,

x%?—2ex+1 if x<0,
o9k =
x*>+2ex+1 if x>0
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i-t i.'% 3\1\__,4/3 .'Ii -it _/I/E .'ii -it

Figure 1: Graphs of the functions: source function f (red), structuring function g (green), erosion function f © g
(magenta) and dilation function f @ g (blue); function f has the same domain in both cases although the domain of function
g is different, in the left graph € = 1 and in the right graph e = 1/2.

For the selected structuring function g we can see in the graphs of Fig. 1, that the morphological erosion
diminishes the values of f and the morpholical dilation augments its values. Hence, f © g and f @ g, are
separated from f below and above respectively. The numerical change in the values of f depends on the
semilength ¢ of the interval domain of g as well as its parabolic shape.

Corollary 4. 1If g =0 and if B = Dy, then the definitions for morphological erosion and dilatation between
functions are simplified, respectively, to the following expressions:

(f © B)(x) = /\f(x+b) - /\f_b with (x +b) € D; and

beEB bEB

(f(—DB)(x)=\/f(x—b)=\/fb with (x — b) € D;.

bEB beEB

In the simplified formulae, the functional value of the erosion and dilation at point x is the minimum or
maximum, respectively, taking into account that the origin of the window set defined by the structuring element
B (support domain of g) is translated to x. Also, Drgp = Df © B and Dygp = Dy @ B. Since g = 0 the
domain set D, = B is called a flat structuring element and in this case we speak of “flat mathematical
morphology” or “plane mathematical morphology”.

Examples of Numerical Evaluation of Erosion and Dilation

The software used to do the numerical evaluation of the morphological operations with functions
including the resulting graphs is PTC’s Mathcad Prime which is a professional computational environment for
scientists, engineers, and technicians. Besides its numerical, functional, and graphical capabilities it also has
built-in programming constructs to design and test algorithms. The specific implementation of the algebraic
results obtained in our previous example using Mathcad consists of the following steps:

1) Source and structuring functions definition. From our example, f(x) == x? and g(x, &) = if(|x| <
g,—x? + 1,0), where if(condition, then clause, else clause) is a programming built-in construct. When
condition evaluates to true the then clause is executed, otherwise the else clause is considered. Mathcad
uses := as the definition operator.

2) Establish the domain corresponding to f in such a way that includes the domain of g for different
values of the e parameter since D, = [—¢, €]. For our example, we selected D, = [—4.25,4.25] with a
step size of 0.001 written implicitly in Mathcad by specifying the domain interval as
x = —4.25,—-4.249. .4.24. Mathcad uses two low dots to specify a numerical range where the second
comma separated value establishes the desired step size for numerical evaluation along the given range.

3) Code the the erosion and dilation functions, f © g and f @ g, as parametric functions, i. e.,
ero(x,e) =if(x < —2-&x?+2-e-x+2-e2—1,if(x>2-5x?—-2-c-x+2-¢2-1,05-
x?—1)) and dil(x, &) =if(x <0,x>—2-e-x+1,x*+2--x+1).
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4) Based on Mathcad’s graphical capabilities, trace functions f, g, ero, dil as 2D plots considering the
specified x numerical domain for € = 0.5,1,1.5. Fig. 2 displays the corresponding graphs. Observe that
the erosion and dilation functions change their values as the parameter e changes.

825

825

825
6.35 6.35 6.35
f(x) f(x) f(x)
- 4.45 - 4.45 — 45
2(x.0.3) 2(x.1) 2(x.1.3)
ero(x.0.5) ero(x.1) ero(x. 1.5)
dil(x,0.5) 2.55 dil(x.1) 255 dil(x,1.5) 2.55
0.65 0.65 0.65
—-1.25 —-1.25 -1.25
—425 -2.125 0 2125 425 —-425 2125 0 2125 —-425 -2125 0 2125 425
X x X

Figure 2: Graphs of the functions: source function f (red), structuring function g (green), eroded function ero (magenta)
and dilated function dil (blue); function f has the same domain in all cases but the domain of function g is different,
specifically, e = 0.5 (left graph), e = 1 (middle graph), and € = 1.5 (right graph).

In the following example we find numerically the erosion and dilation of a positive semicircle function of radius
o with a structuring function that also is a positive semicircle of radius & where & < g, meaning that the
structuring semicircle is smaller then the source semicircle. Thus, for computational purposes, the source and
structuring functions are defined in Mathcad as f(x,0) = if(|x| < 0,4/02 —x2,0) and g(x,¢) = if(|x] <
g,Ve? — x2,0). Fig. 3 shows the graphs of f(x, ¢) and g(x, &) where ¢ = 4 is fixed and € = 0.5,1,1.5.

9 9 91

8 8

7 7 M

61 61 61
o 5 Co 5 I
flx.4) flx.4)
elx,0.5) glx.1)

3 3

2 2

N N \

45-4-342-1101 2 3 4 5 4514342101 253 4 5 01 2 3 4 5
—1 =1 3
X X x

Figure 3: Graphs of the source and structuring semicircle functions, f(x, ¢) (red) and g(x, €) (green). For the source
semicircle the radius ¢ = 4 whereas for the smaller semicircle the radius takes values ¢ = 0.5,1,1.5.

To find numerically the erosion (f, © g.)(x) = f(x,0) © g(x,¢) and the dilation (f,®g.)(x) =
f(x,0)®g(x, €) the simple Mathcad code shown below is used to perform the calculations:

/,[(—OO
fora € —s,—c¢+h..¢c

ero(x,h,0,¢) =
u < min(y, f(x + a,0) — g(a,€)

U —o0
fora € —s,—s+h..¢c

dil(x, h, 0,¢) =
u e« max(y, f(x —a,0) + g(a,e)

Page 43

DOI:10.9790/1813-12013346 www.theijes.com



Analysis and evaluation of real-valued functions in mathematical morphology

The top to bottom programming instructions in each Mathcad procedure show two steps. The first step
initializes vector p with the maximum or minimum machine number. In Mathcad, o = 103°7 and —oo =
—10397, The second step is a finite for loop that increases the value of a € [—¢, €] by the predefined step size
h = 0.001 as selected for this example. Once the for loop ends, vector u contains the function values
respectively of erosion or dilation. Fig. 4 displays the results obtained for the parameters ¢ and € as given in Fig.
3. To simplify parameter passing in the Mathcad procedures ero and dil, the values of the step size h and of the
source semicircle radius o are declared as constants which in Mathcad are specified as h = 0.001, ¢ := 4,
before invoking either procedure.

o o 127
el el 1
101
7 7 ol
fi’xA} § fI’xA:I § fi’x=4] i‘
Ko.s) 5 glx.1) 7 Kl 5) 6]
erolx.b.p,05) erolx.b.p,1) erolx.h.p.15) 5
E;h;p;ﬂ,ﬂ 3 dillx,h,p,1) ditlx,h,p,1.5) 5
B B A

5403 -2-1/? 1 2 3% 5 l6lsafs2l1fo1 2545 6 ErESEAII01ag 45878

= L2

=1
Figure 4: Graphs of the erosion numerical function (magenta) and dilation numerical function (blue) between the source
semicircle function f (x, o) (red) by the structuring semicircle function g(x, €) (green). The source semicircle radius is 4
whereas for the structuring semicircle the radius takes values 0.5, 1. And 1.5.

Our last example illustrates the case of a flat structuring function for a numerical application of Corollary 4. In
particular, in the context of Mathcad, the chosen source function is periodic defined by f (x) = cos (mx/2) + 1,
the flat structuring function is defined as g(x, €) = if(|x| < ¢,0,—0.5), and the domain variable runs along the
numerical range specified as x := —6,—5.99 .. 6. Note that g = 0 in the interval [—¢, €] and that the assigned
value of —0.5 outside it is for graphing purposes only since it is not considered during computation of the
morphological erosion or dilation. Fig. 5 display the graphs of both functions where the support of function g, i.
e., Dy varies in length by changing the value of .

To find numerically the erosion (f © g,.)(x) = f(x) © g(x, €) and dilation (f®g,)(x) = f(x)Dg(x, €), the
Mathcad code given below, in which g, does not appear (since it is zero), is used to perform the calculations:

'[,[(—OO
fora € —g,—s+h..¢c
p < min(y, f (x + a))

erol(x, h,¢) ==

U« —oo
fora € —g,—c+h..¢
p < max(y, f(x — a))

dil1(x, h, &) =

f(x)

glx.1.5)

f(x)
e(x.0.5)

Figure 5: Graphs of the source and flat structuring functions, f(x) (red) and g(x, €) (green). Although f is a periodic
function only a portion of it is shown; the length values where g = 0 are given by 2¢ = 1,2,3.
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In similar fashion to the previous explanation, the for loop increases the value of a € [—¢, €] by the predefined
step size h = 0.01 as selected for this last example. When the for cycle ends, vector u contains the function
values respectively of erosion or dilation. Fig. 6 provides the results obtained for the parameter ¢ as given in Fig.
5. Again, to simplify parameter passing in the Mathcad procedures erol and dill, the value of the step size h is
declared as the constant specified as h := 0.01 before calling either procedure.

25 25

[
in

f(x)

f(x)

in

f(x)

in

g(x,05) elx,1) glx.15)
erol(x.0,0.5) erot(x, . 1) 1 erol(x,1,15) 1
dill(x.h 05) dilt(x.n 1) dill(x,h,1.5)
— 0 — ’ 0.5
-6 2 4 6 26 -4 2| lo| 2 4 6 6 -4 -3 o |2 4 6
=05 =05 05
X X X

Figure 6: Graphs of the erosion numerical function (magenta) and dilation numerical function (blue) between the source
periodic function f(x) (red) by the flat structuring function g(x, &) = 0 (green). The greater the value of € extending the
domain of g, the more pronounced is the “flattening” of the corresponding eroded and dilated function envelopes.

VI. CONCLUSION

In this paper we have exposed with sufficient detail the conceptual background and the basic theory of
mathematical morphology, giving a detailed example of algebraic determination and additional ones for the
numerical evaluation using PTC’s Mathcad Prime software in the case of morphological erosion and dilation
with functions. Also, we have consider a step by step development in several proofs on the basic morphological
operations using functions (erosion, dilation, opening, and closing). The ideas of the top function and the
shadow set are key concepts to build a bridge connecting function morphology with set morphology including
the case of flat structuring elements which are the most employed in signal and image grayscale processing. To
get more knowledge in this scientific field within applied mathematics we suggest to the interested reader to
consult the classic references [1], [3] and [13], or more recent developments in the technical literature such as
[10], [15], [21], [22] and [23].
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