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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

A common procedure in solving multi-objective structural optimization problems consists mainly of two phases. The 

first phase is to generate an approximate Pareto-optimal front of non-dominated solutions, while the second is to 

apply an appropriate technique, such as TOPSIS to rank the potential solutions and select one by the decision 

maker. In this way, there is no guarantee to find a single optimal solution as the best with respect to all design 

objectives because improving one of them usually deteriorate another. This paper introduces a novel approach to 

overcome such uncertainty by determining the optimal relative importance of each objective based on making the 

attained optimization gains in all objectives too close to each other. As a practical application of optimizing 

engineering structures, the developed mathematical model is implemented to solve the benchmark problem of a 

two-bar truss structure constructed from thin-walled circular tubes. Optimal solutions are obtained by applying 

a robust hybrid genetic algorithm and sequential quadratic programming.  
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I. INTRODUCTION  
A real structural engineering problem includes several design objectives to be minimized (or maximized) 

simultaneously. These objectives are often in conflict with each other so that improving one of them will 

deteriorate another. Therefore, there is no single optimal solution as the best with respect to all the objective 

functions. Instead, there is a set of optimal solutions, known as Pareto optimal solutions or Pareto front for multi-

objective optimization (MOO) problems [1]. The major obstacle is that these optimal solutions are non-dominant 

to each other but are superior to the rest of solutions in the design space. This means that it is not possible to find 

a single solution to be superior to all other solutions with respect to all objectives. The change in the design 

variables in Pareto front could not lead to the improvement of all objectives simultaneously. Consequently such a 

change will lead to deterioration of at least one design objective. There are many techniques for obtaining 

approximate Pareto-optimal solutions, such as TOPSIS method, in which the attained optimal solutions are ranked 

and one of them may be selected as the best by the decision maker [2, 3]. 

 The most popular method for solving MOO problems is known as the weighting method or weighted 

sum technique because of its ease in application [4]. Weights are usually selected randomly for a specific design 

problem. Some researchers have argued that it is difficult to obtain proper weights for certain problem, and 

therefore, preferred to use the fuzzy theory [5], where the objective functions are characterized with values 

between zero and one (pseudo-goal). The pseudo-goal has a membership function one if the design is optimum 

and zero if the design is not optimum. However, a designer cannot differentiate between the improvement gains 

of each objective function.  

In this paper a novel technique for MOO based on the weighted sum method is presented. It is called the 

multi-objective balancing (MOB) technique, in which the percentage improvement of each objective function is 

recorded with respect to the optimal values of the weighting factors, which ensure fair level of importance among 

all conflicting design goals. The method can hopefully overcome the problems of both of the Pareto-optimal and 

fuzzy techniques by searching for a design point that guarantee simultaneous and balanced improvements in all 

objective functions or at least improvement in some of them with certain degree without degrading others. Such 

a new approach can be implemented to several engineering applications dealing with design optimization of 

mechanical elements and structures. A practical case study considers structural multidisciplinary optimization of 

a two-bar truss structure constructed from thin-walled circular tubes, which was considered by many investigators 

as a very basic benchmark problem [3, 5, 6, and 7]. 
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II. OPTIMIZATION MODEL 
Two major conflicting design objectives are considered in this study: the minimum structural mass and 

the maximum buckling load subject to weight, strength and deflection as well as side constraints imposed on 

cross-sectional dimensions. In order to build a naturally scaled optimization model with all variables and 

parameters have the same order of magnitude, the various variables are normalized with respect to a known 

baseline design (refer to Appendix A).Therefore, the overall objective function can be defined by a weighted sum 

of the dimensionless structural mass and the critical buckling load, where the selected design variables encompass 

the dimensionless mean diameter and wall thickness of the truss member cross sections. The various 

dimensionless quantities are defined in the following: 

 

Mean diameter                𝐷̂ = 𝐷/𝐷𝑜         (= 𝑥1 )   

Wall thickness                 ℎ̂ = ℎ/ℎ𝑜          (= 𝑥2 )  

Structural mass               𝑀̂ = 𝑀/𝑀𝑜       (𝐹1 = 𝑥1 ∗ 𝑥2 ) 

Critical buckling force   𝐹̂𝑐𝑟 = 𝐹𝑐𝑟/𝐹𝑐𝑟𝑜   (𝐹2 = −𝑥1
3 ∗ 𝑥2) 

Applied stress                   𝜎̂ = 𝜎/𝜎𝑜        (= (𝑥1 ∗ 𝑥2)−1 ) 

Vertical deflection           𝛿̂ = 𝛿/𝛿𝑜        (= (𝑥1 ∗ 𝑥2)−1 ) 

 

The baseline design parameters are denoted by subscript ‘o’. Details are given in Appendix A, Table A-1. 

The normalized multi-objective optimization model of the present truss problem is cast in the following: 

Find the design variables vector 𝑥⃗ = (𝑥1, 𝑥2) which minimizes:  

                      𝐹(𝑥⃗) = 𝛼 ∗ 𝐹1(𝑥⃗) + (1 − 𝛼) ∗ 𝐹2(𝑥⃗); = [0, 1]           (1) 

Subject to the constraints 

                                   Mass       :                  𝐹1 − 1.0 ≤ 0.0               (2a) 

                                  Buckling  :                    𝐹2 + 1.0 ≤ 0.0               (2b) 

                                  Stress       :    (𝜎/𝜎𝑎𝑙𝑙𝑜𝑤) − 1.0 ≤ 0.0               (2c) 

                                  Deflection:   (𝛿/𝛿𝑎𝑙𝑙𝑜𝑤)) − 1.0 ≤ 0.0               (2d) 

             Lower and upper limits:                 (𝑥⃗)𝐿 ≤ 𝑥⃗ ≤ (𝑥⃗)𝑈             (2e) 

 

where  is a weighting factor to be determined iteratively based on achieving balanced improvements in 

all the selected design objectives. 

 

III. OPTIMIZATION METHOD 
One of the most robust techniques is genetic algorithm (GA), which is classified as a global, non-gradient 

optimization algorithm based on the process of natural selection. It has been improved in several ways to make it 

faster and more efficient. Another powerful technique is the sequential quadratic programming (SQP), which is a 

gradient-local method widely used in many engineering applications. However, a global version is available in 

the MATLAB optimization toolbox. The combination of both GA and SQP are found to be more powerful than the 

single use of each of them [8]. The hybrid algorithm (GA-SQP), which is implemented in this study, works as 

follows: 

 

a. Initial values for the design variables are randomly generated. 

b. Optimization is executed using GA to determine the best solution for the optimization problem. 

c. The best solution of GA is employed in the SQP method to search for a better feasible solution. 

 

IV. RESULTS AND DISCUSSIONS 
The baseline design, to which the attained optimum designs are compared, shall have the same layout, 

material properties and subjected to the same vertical load P (refer to Appendix A).It is appropriately designed to 

have conservative strength satisfying all design requirements. 

The attained optimal solutions for continuous variation of the weighting factor 𝛼 are given in Table 1 

and plotted in Fig.1. Three domains based on the range of the weighting factor can be observed: 

a. =0.0 to 0.835: Buckling dominates producing the strongest truss designs with the maximum stability 

gain of 77.76%. The structural mass cannot be minimized below its baseline value resulting in zero mass 

saving. Therefore, the MOO model is equivalent to a single optimization model in the form: 𝐹(𝑥⃗) =
𝐹2  (= −𝐹̂𝑐𝑟). 

b. =0.0.835 to 0.836: Favorable transition range, where a remarkable change occurs in both mass and 

buckling load. It can be observed that the shape of the overall objective function level curves inside the 

defined design space change very significantly, as depicted in Fig. 2. This range represents a real MOO 
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problem. It encompasses the balanced optimum point “BOP”𝛼𝑜𝑝𝑡 = 0.8358, at which the achieved 

optimization gains are nearly equal (mass saving  stability gain = 13.82%), as shown in Fig.1. 

c. α=0.836 to 1.0: Structural mass dominates with maximum mass saving of 17.45%. The critical buckling 

load cannot be maximized above its baseline value. This case is equivalent to a single-objective 

optimization model in the form: 𝐹(𝑥⃗) = 𝐹1  (= 𝑀̂). 

 

 𝑥⃑ = (𝑥1, 𝑥2) 𝐹1 = 𝑥1𝑥2 𝐹2 = 𝑥1
3𝑥2 Mass Saving % Stability Gain % 

0.0 – 0.835 

0.8358 

0.836 – 1.0 

(1.333, 0.75) 

(1.143, 0.75) 

(1.1006, 0.75) 

1.0 

0.8575 

0.8255 

1.7776 

1.1425 

1.0 

0.0 

13.82 

17.45 

77.76 

13.81 

0.0 

 

Table 1. Optimal solutions for continuous variation of the weighting factor. 
 

 

 

 
 

 

Fig.1. Balanced multi-objective optimization of two-bar truss structure 

Mass saving =(𝟏. 𝟎 − 𝑴̂)𝒙𝟏𝟎𝟎%, Stability gain =(𝑭̂𝒄𝒓 − 𝟏. 𝟎)𝒙𝟏𝟎𝟎% 
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(b) 

 
 

Fig.2. Design spaces at the bounds of the weighting factor favorable range: (a)  = 0.385 and (b)  = 0.386. 

 

 
Fig.3.Balanced optimal solution located on Pareto-front curve. 

Design objectives space (𝑭𝟏 = 𝑴̂, 𝑭𝟐 = −𝑭̂𝒄𝒓) 

 

Figure3 depicts the calculated Pareto-optimal front within the favorable range of the design objectives 

space. The attained balanced optimal point (BOP), which represents a unique MOO, is seen to occur at a 

dimensionless structural mass = 0.862 and dimensionless buckling load = -1.138, ensuring balanced improvements 

in both objectives. 

 

V. CONCLUSION 
In this paper, a novel approach is given for achieving balanced multi-objective optimization of structural 

mass and buckling strength, which are crucial in most thin-walled structures. The developed methodology 

eliminates the uncertainty in ranking and selecting a solution from the set of non-dominated Pareto-optimal 

solutions and guarantees the determination of the best unique design point that result in equal optimization gains 

for all conflicting design objectives. In addition, the proposed approach eliminates the complication in TOPSIS 

method for determining the required ideal and nadir solutions [2]. Current work considers balanced structural 

multidisciplinary optimization of thin-walled composite beams, plates and shells. 
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Appendix A: Base Line Design of a Two-Bar Truss Structure 

 

 
 

Fig. A-1. Symmetrical two-bar truss structure under vertical load p. 

 
Parameter Notation  Numerical Value 

Layout and cross-sectional parameters 

Truss span 

Truss height 
Mean diameter 

Wall thickness 

 

B  

H  
Do * 

ho 

 

1.50   m 

0.75   m 
5x10-2   m 

0.4 x10-2  m 

Material of construction 
 

Mass density 

Modulus of elasticity 
Allowable stress 

High strength steel  
(ASTM A514) 

 
E   

allow (=0.6 yield) 

 
 

8050  Kg/m3 

200    GPa 
410    MPa 

Allowable deflection allow 0.635x10-2 m 

Applied load  P  300     KN 

Axial compressive force F      (=PL/2H) 212.13 KN 

Critical buckling force Fcr,o  (=
2EIo/L

2) 344.3   KN 

Applied stress o    (=F/Ao) 338      MPa 

Maximum deflection o    (=PL3/2AoH
2E) 0.25 x 10-2 m 

Structural mass Mo  (=2AoL) 10.725  Kg 

* (𝐷̂, ℎ̂)𝐿 = (0.75, 0.75), (𝐷̂, ℎ̂)𝑈 = (1.75, 1.75) 

Table A-1: Baseline design parameters 
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