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--------------------------------------------------------ABSTRACT----------------------------------------------------------------  

The exact solution of three nonlinear partial differential equations viz: Burgers-Fisher, Burgers-Huxley and 

modified Korteweg-de Vries equations are investigated theoretically using the first integral method. The 

equations were first converted to ordinary differential equation using the FIM routine and the resulting ODE 

was further transformed into a system of equations using new independent variable. With the aid of the Hilbert-

Nullstellensatz theorem, the resulting system is solved for first integral solution to the ordinary differential 

equation.  
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I. INTRODUCTION 
The study of nonlinear sciences which is the branch of science that studies nonlinear partial differential 

equations (NLPDEs) which models physical phenomenon in science, engineering, hydrodynamics, Biology, 

chemistry, physics, optical fibre, plasma physics and chemical kinetics have enjoyed an intense period of 

attention over two decades now, Tascan et al [1], Feng [2]. Most of these NPDEs hitherto does not have close 

form or analytical solution, but due to the advent of powerful Computer technology, these PDEs can now be 

routinely solved for both approximate and exact solutions Wazwaz [3]. 

Due to the important nature of these NPDEs to both industry and the academia, several reliable and 

effective ansatz methods have been proposed to find the explicit and exact solutions. Some of these methods 

includes, trigonometric function series method Zhang [4], Ma and Fuchssteiner [5], the modified mapping and 

extended mapping method Liu et al [6], bifurcation method and the dynamical system approach Chen et al [7], 

Chen and Ma [8],  the exp-function method Pinar and Yildirum [9], Sakthivel and Lee [10], the transformed 

rational method Lee and Ma [11], the Lie point symmetries consisting of the symmetry algebra Cheng and Ma 

[12], the linear superposition principle Fan and Ma [13], the tanh-coth and Banach contraction method 

Ebiwareme [14], Lie classical approach and (𝐺/𝐺) − expansion Kumar et al [15], Lie transform perturbation 

method Nanayakkara [16], the trial expansion method Sonmezoglu et al [17], the modified tanh-coth method 

Prasad et al [18], the auxiliary equation method Zhang and Zhang [19], the homogenous balance method 

Abdulwahhab et al [20], the tanh method Parkes and Duffy [21], Malfiet et al [22], Raslan and Evans [23], the 

generalized hyperbolic function Zahran et al [24], Titan and Gao [25], Tan and Guo [26], the variable separation 

method Tang and Lou [27], Lou and Tang [28], the hyperbolic function method Xia and Wang [29], the 

exponential rational function Kaplan et al [30], sub-equation method Zhang et al [31], Shasha et al [32]. 

The first integral method was first proposed by Feng [33] by applying the ring theory of commutative 

algebra to present elegant treatment of exact solutions of NPDEs. In the first integral method, the division 

theorem is used to find the first integral solution in explicit form that has polynomial coefficients. FIM has 

caught the attention of many researchers because it  

gives explicit exact solutions of NPDEs without complex and lengthy calculations Javeed et al [34], 

Waheed et al [35]. The first integral method has been extensively applied to solve diverse nonlinear partial 

differential equations Feng [36], Feng [37], Wang and Feng [38], Li and Guo [39], Mirzazadeh et al [40], Jafar 

et al [41], Elsayed and Yasser [42], Aslan [43]. 

In this article, we employ the first Integral method based on the theory of commutative algebra to seek 

for exact solutions of the Burgers-Fisher, Burgers-Huxley and modified Korteweg-de Vries equations. From 

both previous and contemporary literatures, these equations have not been studied before. The result reveal, the 

method is reliable, efficient, easily computable and widely applicable to solving a large class of nonlinear partial 
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differential equations in engineering and sciences. The benchmark solution is in agreement with those in 

literature and provide a reference guide to other problems. 

 

II. FENG INTEGRAL METHOD (FIM) 
The first integral method based on the ring theory of commutative algebra, proposed by Feng is a direct 

algebraic method for obtaining exact solutions of nonlinear partial differential equations. This method is 

applicable to both integrable and nonintegrable equations. 

Following Aslan [43], the basics of the first Integral method are summarised as follows 

Step 1. Consider a nonlinear PDE of the form 

𝑃 (𝑢,
𝜕𝑢

𝜕𝑡
,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑥𝜕𝑡
, … ) = 0                                                 (1) 

Step 2. Using the wave transformation of the form 

𝑢(𝑥, 𝑡) = 𝑓(𝑧),   𝑧 = 𝑥 − 𝑐𝑡                      (2) 

Where 𝑢(𝑥, 𝑡) is the solution of the PDE in Eq. (1) 

Step 3. In view of Step 2, the change in derivative with respect to the independent variables, 𝑥 and 𝑡 
𝜕

𝜕𝑡
(. ) = −𝑐

𝑑

𝑑𝑧
(. )

𝜕

𝜕𝑥
(. ) =

𝑑

𝑑𝑧
(. )

𝜕2

𝜕𝑥2
(. ) =

𝑑2

𝑑𝑧2
(. ) }

 
 

 
 

                                                  (3) 

Step 4. Using step 3, the PDE in Eq. (1) changes to an ODE in the form 

𝑄 (𝑓,
𝑑𝑓

𝑑𝑧
,
𝑑2𝑓

𝑑𝑧2
, … . . ) = 0                                                                                (4) 

Step 5. Introducing a new independent variable 

𝑋(𝑧) = 𝑓(𝑧), 𝑌 =
𝜕𝑓(𝑧)

𝜕𝑧
                                                         (5) 

Step 6. Utilizing step 5 leads to a system of an ODE of the form 
𝑑𝑋(𝑧)

𝑑𝑧
= 𝑌(𝑧)

𝑑𝑌(𝑧)

𝑑𝑧
= 𝐹(𝑋(𝑧), 𝑌(𝑧))

}                                                   (6) 

 

Division Theorem 

Suppose that 𝑄(𝑥, 𝑦)  and 𝑅(𝑥, 𝑦) be polynomials in the complex domain 𝐶[𝑥, 𝑦],  and 𝑄(𝑥, 𝑦) is irreducible in 

𝐶[𝑥, 𝑦]. If  𝑅(𝑥, 𝑦) vanishes at all zero points of 𝑄(𝑥, 𝑦), then there exists a polynomial 𝐻(𝑥, 𝑦) in 𝐶[𝑥, 𝑦] such 

that  𝑅(𝑥, 𝑦) = 𝑄(𝑥, 𝑦)𝐻(𝑥, 𝑦) 
 

Hilbert-Nullstellensatz Theorem  

Let 𝑘 be a field and 𝐿 be an algebraic closure of 𝑘 

(𝑖) Every ideal 𝛾 of 𝑘[𝑋1, … . , 𝑋𝑛] not containing 1 admits at least one zero in 𝑳𝑛 

(ii) Let 𝑥 = (𝑥1, … . . , 𝑥𝑛) and 𝑦 = (𝑦1, … . . , 𝑦𝑛) be two elements of 𝑳𝑛; for the set of polynomials of 

𝐾[𝑋1, … . . , 𝑋𝑛] zero at 𝑥 to be identical with the set of polynomial s of 𝑘[𝑋1, …… , 𝑋𝑛] zero at 𝑦, it is necessary 

and sufficient that there exists a 𝑘 −automorphism 𝑠 of 𝐿 such that 𝑦𝑖 = 𝑠(𝑥𝑖) for 1 ≤ 𝑖 ≤ 𝑛. 
(iii) For an ideal 𝛼 of 𝑘[𝑋1, … . . , 𝑋𝑛] to be maximal, it is necessary and sufficient that there exists an 𝑥 in 𝑳𝑛 

such that 𝛼 is the set of polynomials of 𝑘[𝑋1, …… . , 𝑋𝑛] zero of 𝑥. 

(iv) For a polynomial 𝑄 of  𝑘[𝑋1, …… . , 𝑋𝑛] to be zero on the set of zeros in 𝑳𝑛 of an ideal 𝛾 of 

𝑘[𝑋1, … . . , 𝑋𝑛], it is necessary and sufficient that there exists an integer 𝑚 > 0 such that 𝑄𝑚 ∈ 𝛾. 

In the ring theory of commutative algebra, the division theorem follows from the Hilbert-Nullstellensatz 

theorem. The central idea of the FIM method is to construct a first integral with polynomial coefficients of an 

explicit form an equivalent autonomous planar system, using the division theorem in the complex domain to Eq. 

(1), which can reduce Eq. (4) to a first-order  

integrable ordinary differential equation. An exact solution to Eq. (6) can then be obtained directly by solving 

the equation 

 

III. NUMERICAL APPLICATIONS 
In this section, the exact solutions of three nonlinear partial differential equations namely: Burgers-

Fisher, Burgers-Huxley and modified Korteweg-de Vries equations are presented using the first integral method. 

The result shows the method is flexible, accurate, efficient and has wide applicability, which converges rapidly 

to the exact solution.  
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Example 3.1  The Burgers-Fisher Equation  

In the description of physical phenomena on nonlinear sciences especially in Mathematical physics and 

engineering, partial differential equations are pivotal to model the interaction between reaction mechanism, 

convective effects and diffusion transport Rabboh et al [44]. Burgers-Fisher equation which is the prototypical 

model has useful applications in the field of gas dynamics, number theory, heat conduction, financial 

mathematics, physics application, traffic flow and fluid mechanics Chandraker et al [45], Kocacoban et al [46]. 

Consider the Burgers-Fisher equation as follows 

𝜕𝑢

𝜕𝑡
−
𝜕2𝑢

𝜕𝑥2
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑢(1 − 𝑢) = 0 

Rearranging the above we have 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢(1 − 𝑢)                     (7) 

Using the wave transformation 

𝑢(𝑥, 𝑡) = 𝑓(𝑧), 𝑧 = 𝑥 − 𝑐𝑡                            (8) 

Putting Eq. (8) into Eq. (7), we obtain 

−𝑐
𝑑𝑓(𝑧)

𝑑𝑧
=

𝑑2𝑓(𝑧)

𝑑𝑧2
− 𝑓(𝑧)

𝑑𝑓(𝑧)

𝑑𝑧
+ 𝑓(𝑧)(1 − 𝑓(𝑧))                                          (9) 

Using Eq. (5), the above equation reduced to the form 

−𝑐𝑌(𝑧) = 𝑌′(𝑧) − 𝑋(𝑧)𝑌(𝑧) + 𝑋(𝑧)(1 − 𝑋(𝑧))                               (10) 

With resulting first order differential equations below 
𝑑𝑋(𝑧)

𝑑𝑧
= 𝑌(𝑧)                                  (11) 

𝑑𝑌(𝑧)

𝑑𝑧
= −𝑐𝑌(𝑧) + 𝑋(𝑧)𝑌(𝑧) − 𝑋(𝑧)(1 − 𝑋(𝑧))                                (12) 

According to the first integral method, let us assume that 𝑋(𝑧) and 𝑌(𝑧) be nontrivial solutions of Eqs (11) and 

(12) and 𝑞(𝑋, 𝑌) = ∑ 𝑎𝑘(𝑋)𝑌
𝑘 = 0𝑚

𝑘=0  be an irreducible polynomial in the complex domain 𝐶[𝑋, 𝑌] such that     

𝑞[𝑋(𝑧), 𝑌(𝑧)] = ∑ 𝑎𝑘(𝑋)𝑌
𝑘 = 0𝑚

𝑘=0                     (13) 

Where 𝑎𝑘(𝑋), 0 ≤ 𝑘 ≤ 𝑚 is a polynomial of 𝑋 and 𝑎𝑘(𝑋) ≠ 0 

Eq. (13) is the first integral of Eqs. (11) and (12) 

Assuming that 𝑘 = 2 in Eq. (13). Owing to the Division Theorem, there exists a polynomial of the form 𝑔(𝑋) +
ℎ(𝑋)𝑌 in the complex domain 𝐶[𝑋, 𝑌] such that 

𝑑𝑞

𝑑𝑧
=

𝜕𝑞

𝜕𝑋

𝜕𝑋

𝜕𝑧
+

𝜕𝑞

𝜕𝑌

𝜕𝑌

𝜕𝑧
= (𝑔(𝑋) + ℎ(𝑋)𝑌)∑ 𝑎𝑘(𝑋)𝑌

𝑘2
𝑘=0                           (14) 

For the analysis of this problem, we consider only two possible cases of 𝑘 = 1 and 2 in Eq. (13) 

 

Case 1. Putting 𝑘 = 1 in Eq. (14) and comparing the coefficients of 𝑌𝑘  (𝑘 = 0,1,2) on both sides of Eq. (14), 

we obtain the following equations. 

𝑌0:  𝑔(𝑋)𝑎0(𝑋) =  𝑎1(𝑋){𝑋(𝑧)[(𝑋 − 𝑐)𝑋 + 𝑋 − 1]}                          (15) 

𝑌1 :  
𝑑𝑎0(𝑋)

𝑑𝑋
= 𝑔(𝑋)𝑎1(𝑋) + h(𝑋)𝑎0(𝑋)                           (16) 

𝑌2 :   
𝑑𝑎1(𝑋)

𝑑𝑋
= ℎ(𝑋)𝑎1(𝑋)                            (17) 

Since 𝑎𝑘(𝑋) (𝐾 = 0,1,2) are polynomials, then we deduce from Eq. (14) that 𝑎1(𝑋) is a constant and ℎ(𝑋) = 0. 

For simplicity, we take 𝑎1(𝑋) = 1. Balancing the degrees of 𝑔(𝑋) and 𝑎0(𝑋), we conclude that deg (𝑔(𝑋)) = 1 

only. 

Now suppose that 

𝑔(𝑋) = 𝐴1𝑋 + 𝐵0 and 𝐴1 ≠ 0, we find that 𝐴0(𝑋) on integration gives 

𝑎0(𝑋) =
𝐴1

2
𝑥2 + 𝐵0𝑋 + 𝐴0                    (18) 

Putting the values of 𝑎0(𝑋), 𝑎1(𝑋) and 𝑔(𝑋) into Eq. (15) and setting all coefficients of the powers of 𝑋 to zero, 

we obtain a nonlinear system of algebraic equation in the form 

𝑋:   𝐴0𝐴1 + 𝐵0
2 = −1                     (19) 

𝑋2 :  
3

2
𝐴1𝐵0 = 1 − 𝑐                          (20) 

𝑋3 :   
𝐴1
2

2
= 1                     (21) 

Solving the systems in Eqs. (19) − (21) gives the constants      

𝐴0 =
−9−2(1−𝑐)2

9√2
,    𝐴1 = √2,      𝐵0 =

√2(1−𝑐)

3
                                  (22) 

Putting Eq. (22) into Eq. (13), we obtain the solution for 𝑌(𝑧) in the form 

𝑌(𝑧) =
−9−2(1−𝑐)2

9√2
+ √2 𝑋2(𝑧)                           (23) 

Combining Eq. (23) with (11), the exact solution of Eq. (7) become 
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𝑋(𝑧) =
3

√2
𝑋3(𝑧)                                      (24) 

Hence the solitary solution to the Burgers-Huxley equation is given by 

𝑢(𝑥, 𝑡) =
3

√2
𝑋3(𝑥 − 𝑐𝑡)                         (25) 

Case II: Putting 𝑘 = 2 and equating the coefficients of 𝑌𝑘𝑠 (𝑘 = 0,1,2,3) on both sides of Eq. (14), we get the 

following 

𝑎1(𝑋)𝑌̇ =  𝑔(𝑋)𝑎0(𝑋) =  𝑎1(𝑋){𝑋(𝑧)[(𝑋 − 𝑐)𝑋 + 𝑋 − 1]}                          (26) 
𝑑𝑎0(𝑋)

𝑑𝑋
= −2𝑎2(𝑋){𝑋(𝑧)[(𝑋 − 𝑐)𝑋 + 𝑋 − 1]} + 𝑔(𝑋)𝑎1(𝑋) + ℎ(𝑋)𝑎0(𝑋)                 (27) 

𝑑𝑎1(𝑋)

𝑑𝑋
= 𝑔(𝑋)𝑎2(𝑋) + ℎ(𝑋)𝑎1(𝑋)                                                      (28) 

𝑑𝑎2(𝑋)

𝑑𝑋
= ℎ(𝑋)𝑎2(𝑋)                         (29) 

Assuming 𝑎2(𝑋) is a polynomial of 𝑋, then from Eq. (29), we deduce that 𝑎2(𝑋) is a constant and ℎ(𝑋) = 0. To 

simplify the calculation, we take 𝑎2(𝑋) = 1. Balancing the degrees of 𝑔(𝑋) and 𝑎0(𝑋), hence we conclude that 

𝑑𝑒𝑔(𝑔(𝑋)) = 1 only. Thus, we assume that 𝑔(𝑋) = 𝐴1(𝑋) + 𝐵0 and 𝐴1 ≠ 0, then the values of the remaining 

constant, 𝑎1(𝑋) and 𝑎0(𝑋) as 

𝑎1(𝑋) =
𝐴1

2
𝑋2 + 𝐵0𝑋 + 𝐴0                   (30) 

𝑎0(𝑋) = (
𝐴1
2

8
) 𝑋4 + (

𝐴1𝐵0

2
−

2

3
)𝑋3 + (

𝐴1𝐴0

2
+

𝐵0
2

2
+ 𝑐 − 1)𝑋2 + (𝐴0𝐵0 + 2)𝑋 + 𝛼              (31) 

Substituting the values of 𝑎0(𝑋), 𝑎1(𝑋), 𝑎2(𝑋) and 𝑔(𝑋) into Eq. (26) and setting all the coefficients of powers 

of 𝑋 to zero, then a system of nonlinear algebraic equation is obtained. Solving these equations yield the 

constants,  

𝐵0 = 0, 𝐴0 =
11

3
, 𝐴1 = 1, 𝑐 =

7

3
 and 𝛼 = −

11

3
                                              (32) 

Putting Eq. (32) into Eq. (13), we obtain 

𝑌(𝑧) =
11

3
+ 𝑋2(𝑧)                        (33) 

Combining Eqs. (33) and (11), the resulting exact solution for the equation become 

𝑢(𝑥, 𝑡) =
11

3
𝑋 +

𝑋3

3
(𝑥 −

7

3
𝑡)       (34) 

 

Example 3.2  The Burgers-Huxley Equation 

This is a nonlinear advection-diffusion partial differential equation which model reaction mechanism, transport 

and nerve propagation of waves in diverse fields of science like Physics, economics and ecology Murray [47], 

Zhu et al [48]. It is applicable in acoustic turbulence, hydrodynamic theory, traffic flow, general mechanics, 

chemistry, metallurgy, mathematics, engineering. Satsuma [49], Timilehin and Adedapo [50]. The basics of the 

Burgers-Huxley equation is given below 
𝜕𝑢

𝜕𝑡
−

𝜕2𝑢

𝜕𝑥2
= 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢(𝑘 − 𝑢)(𝑢 − 1), 𝑘 ≠ 0                        (35) 

Taking 𝑘 = 1, the above equation in rearranged form become 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑢(𝑢 − 1)2                                                           (36) 

Let 𝑢(𝑥, 𝑡) = 𝑓(𝑧), 𝑧 = 𝑥 − 𝑐𝑡 be a solution of Eq. (36)                                 (37) 

−𝑐
𝑑𝑓(𝑧)

𝑑𝑧
=

𝑑2𝑓(𝑧)

𝑑𝑧2
+ 𝑓(𝑧)

𝑑𝑓(𝑧)

𝑑𝑧
− 𝑓(𝑧)(𝑓(𝑧) − 1)2                                            (38) 

Introducing a new independent variable of the form 

𝑋(𝑧) = 𝑌(𝑧), 𝑌(𝑧) =
𝜕𝑓(𝑧)

𝜕𝑧
                              (39) 

The equation now reduced to the system of equations of the form 
𝜕𝑋(𝑧)

𝜕𝑧
= 𝑌(𝑧)                                         (40) 

𝜕𝑌(𝑧)

𝜕𝑧
= (−𝑐 − 𝑋(𝑧))𝑌(𝑧) + 𝑋(𝑧)(𝑋(𝑧) − 1)2                                             (41) 

According to the first integral method, let us assume that 𝑋(𝑧) and 𝑌(𝑧) be nontrivial solutions of Eqs (40) and 

(41) and 𝑞(𝑋, 𝑌) = ∑ 𝑎𝑘(𝑋)𝑌
𝑘 = 0𝑚

𝑘=0  be an irreducible polynomial in the complex domain 𝐶[𝑋, 𝑌] such that     

𝑞[𝑋(𝑧), 𝑌(𝑧)] = ∑ 𝑎𝑘(𝑋)𝑌
𝑘 = 0𝑚

𝑘=0                        (42) 

Where 𝑎𝑘(𝑋), 0 ≤ 𝑘 ≤ 𝑚 is a polynomial of 𝑋 and 𝑎𝑘(𝑋) ≠ 0 

Eq. (42) is called the first integral of Eqs. (40) and (41) 

Assuming that 𝑘 = 2 in Eq. (42). According to the Division Theorem, there exists a polynomial of the form 

𝑔(𝑋) + ℎ(𝑋)𝑌 in the complex domain 𝐶[𝑋, 𝑌] such that 
𝑑𝑞

𝑑𝑧
=

𝜕𝑞

𝜕𝑋

𝜕𝑋

𝜕𝑧
+

𝜕𝑞

𝜕𝑌

𝜕𝑌

𝜕𝑧
= (𝑔(𝑋) + ℎ(𝑋)𝑌)∑ 𝑎𝑘(𝑋)𝑌

𝑘2
𝑘=0                               (43) 

For the analysis that follow, we consider two possible cases of 𝑘 = 1 and 2 in Eq. (42) 
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Case 1. Setting 𝑘 = 1 in Eq. (43) and compare coefficients of 𝑌𝑘  (𝑘 = 0,1,2) on both sides, we obtain the 

following equations. 
𝑑𝑎1(𝑋)

𝑑𝑋
= ℎ(𝑋)𝑎1(𝑋)                     (44) 

𝑑𝑎0(𝑋)

𝑑𝑋
= 𝑔(𝑋)𝑎1(𝑋) + h(𝑋)𝑎0(𝑋)                          (45)     

𝑎1(𝑋)[(−𝑐 − 𝑋)𝑋 + 𝑋(𝑋 − 1)
2] =  𝑔(𝑋)𝑎0(𝑋)                        (46) 

Clearly 𝑎𝑘(𝑋) (𝐾 = 0,1,2) are polynomials, so we deduce from Eq. (43) that 𝑎1(𝑋) is a constant and ℎ(𝑋) = 0. 

For simplicity, we take 𝑎1(𝑋) = 1. Balancing the degrees of 𝑔(𝑋) and 𝑎0(𝑋), we conclude that deg (𝑔(𝑋)) = 1 

only. 

Now suppose that 

𝑔(𝑋) = 𝐴1𝑋 + 𝐵0 and 𝐴1 ≠ 0, we find that 𝐴0(𝑋) on integration yield 

                                                          𝑎0(𝑋) = 𝐴0 + 𝐵0𝑋 +
𝐴1

2
𝑥2                         (47) 

Substituting the values of 𝑎0(𝑋), 𝑎1(𝑋) and 𝑔(𝑋) into Eq. (44) and setting all coefficients of the powers of 𝑋 to 

zero, we obtain a nonlinear system of algebraic equation in the form 

                                                           𝑋:   𝐴0𝐴1 + 𝐵0
2 = 1 − 𝑐                                  (48) 

𝑋2 :  
3

2
𝐴1𝐵0 = −3                           (49) 

𝑋3 :   
𝐴1
2

2
= 1                          (50) 

Solving the system in Eqs. (47) − (50) yield the constants      

𝐴0 = 0,   𝐴1 = √2,      𝐵0 = −√2, 𝑐 = −1            (51) 

Putting Eq. (51) into Eq. (42), we obtain the solution for 𝑌(𝑧) in the form 

𝑌(𝑧) = √2(1 − 𝑋2(𝑧))                                             (52) 

Combining Eq. (52) with (40), the exact solution of Eq. (36) become 

𝑋(𝑧) =
√2

3
(3 − 𝑋3(𝑧))                          (53) 

Hence the solitary solution to the Burgers-Huxley equation is given by 

𝑢(𝑥, 𝑡) =
√2

3
(3 − 𝑋3(𝑥 + 𝑡))                        (54) 

Case II: Setting 𝑘 = 2 and equating the coefficients of 𝑌𝑖𝑠 on both sides of Eq. (43), we get the following 

 𝑎1(𝑋)𝑌̇ =  𝑔(𝑋)𝑎0(𝑋) =  𝑎1(𝑋)[(−𝑐 − 𝑋)𝑋 + 𝑋(𝑋 − 1)
2]            (55) 

 
𝑑𝑎0(𝑋)

𝑑𝑋
= −2𝑎2(𝑋){𝑋(𝑧)[(𝑋 − 𝑐)𝑋 + 𝑋 − 1]} + 𝑔(𝑋)𝑎1(𝑋) + ℎ(𝑋)𝑎0(𝑋)         (56) 

   
𝑑𝑎1(𝑋)

𝑑𝑋
= 𝑔(𝑋)𝑎2(𝑋) + ℎ(𝑋)𝑎1(𝑋)                    (57) 

𝑑𝑎2(𝑋)

𝑑𝑋
= ℎ(𝑋)𝑎2(𝑋)                         (58) 

Assuming 𝑎2(𝑋) is a polynomial of 𝑋, then from Eq. (58), we deduce that 𝑎2(𝑋) is a constant and ℎ(𝑋) = 0. To 

simplify the calculation, we take 𝑎2(𝑋) = 1. Balancing the degree of 𝑔(𝑋) and 𝑎0(𝑋), we conclude that 

𝑑𝑒𝑔(𝑔(𝑋)) = 1 only. Thus, we assume that 𝑔(𝑋) = 𝐴1(𝑋) + 𝐵0 and 𝐴1 ≠ 0, then the values of the remaining 

constant become. 

𝑎1(𝑋) = 𝐴0 + 𝐵0𝑋 +
𝐴1

2
𝑋2                        (59) 

𝑎0(𝑋) = (
𝐴1
2

8
+

1

4
) 𝑋4 + (

𝐴1𝐵0

2
−

4

3
) 𝑋3 + (

𝐴1𝐴0

2
+

𝐵0
2

2
+ 𝑐 +

1

2
) 𝑋2 + 𝐴0𝐵0𝑋 + 𝛽                  (60) 

Substituting the values of 𝑎0(𝑋), 𝑎1(𝑋), 𝑎2(𝑋) and 𝑔(𝑋) into Eq. (55) and setting all the coefficients of powers 

of 𝑋 to zero, then a system of nonlinear algebraic equation is obtained. Solving these equations yield the 

constants,  

 𝐵0 =
5√2

3
, 𝐴0 =

√2

3
, 𝐴1 = √2, 𝑐 = −

41

9
 and 𝛽 = 0     (61) 

Putting Eq. (61) into Eq. (42), we obtain 

𝑌(𝑧) =
√2

3
+ √2𝑋(𝑧) +  

5√2

3
 𝑋2(𝑧)                   (62) 

Combining Eqs. (62) and (40), the resulting exact solution for the equation become 

𝑢(𝑥, 𝑡) =
11

3
𝑋 +

𝑋3

3
(𝑥 −

7

3
𝑡)                         (63) 

 

3.3       The Modified Korteweg-de Vries Equation (mKDV) 

The modified Korteweg-de Vries equation denoted (mKDV) is a variant of the traditional KDV equation which 

differs only in the nonlinear term but includes the dispersion term (𝑢𝑥𝑥𝑥). 

𝑢𝑡 + 6𝑢
2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0                                       (64) 

We seek a travelling wave transformation of Eq. (64) as follows  
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𝑢(𝑥, 𝑡) = 𝑓(𝑧), 𝑧 = 𝑥 − 𝑐𝑡                         (65) 

Putting Eq. (65) into Eq. (64), the PDE above is transformed into an ODE of the form 

−𝑐
𝑑𝑓(𝑧)

𝑑𝑧
+ 6(𝑓(𝑧))

2 𝑑𝑓(𝑧)

𝑑𝑧
+
𝑑3𝑓(𝑧)

𝑑𝑧3
= 0 

−𝑐𝑓 ′(𝑧) + 6(𝑓(𝑧))
2
𝑓 ′(𝑧) + 𝑓 ′′′(𝑧) = 0                 (66) 

Integrating both sides of Eq. (66), we obtain 

−𝑐𝑓(𝑧) + 2(𝑓(𝑧))
3
+ 𝑓 ′′(𝑧) = 0                 (67) 

Rearranging Eq. (67), we get the highest derivative in the form 

𝑓 ′′(𝑧) = 𝑐𝑓(𝑧) − 2(𝑓(𝑧))
3
                          (68) 

Introducing a new independent variable using Eq. (5) of the form 

𝑋(𝑧) = 𝑌(𝑧), 𝑌(𝑧) =
𝜕𝑓(𝑧)

𝜕𝑧
                                                            (69) 

The resulting system of equations takes the form 
𝜕𝑋(𝑧)

𝜕𝑧
= 𝑌(𝑧)                                                                   (70) 

𝜕𝑌(𝑧)

𝜕𝑧
= 𝑐𝑋(𝑧) − 2(𝑋(𝑧))

3
                                        (71) 

According to the first integral method, let us assume that 𝑋(𝑧) and 𝑌(𝑧) be nontrivial solutions of Eqs (70) and 

(71) and 𝑞(𝑋, 𝑌) = ∑ 𝑎𝑘(𝑋)𝑌
𝑘 = 0𝑚

𝑘=0  be an irreducible polynomial in the complex domain 𝐶[𝑋, 𝑌] such that     

𝑄[𝑋(𝑧), 𝑌(𝑧)] = ∑ 𝑎𝑘(𝑋)𝑌
𝑘 = 0𝑚

𝑘=0                    (72) 

Where 𝑎𝑘(𝑋), 0 ≤ 𝑘 ≤ 𝑚 is a polynomial of 𝑋 and 𝑎𝑘(𝑋) ≠ 0 

Eq. (72) is called the first integral of Eqs. (70) and (71) 

Assuming that 𝑘 = 2 in Eq. (72). According to the Division Theorem, there exists a polynomial of the form 

𝑔(𝑋) + ℎ(𝑋)𝑌 in the complex domain 𝐶[𝑋, 𝑌] such that 
𝑑𝑄

𝑑𝑧
=

𝜕𝑄

𝜕𝑋

𝜕𝑋

𝜕𝑧
+

𝜕𝑄

𝜕𝑌

𝜕𝑌

𝜕𝑧
= (𝑔(𝑋) + ℎ(𝑋)𝑌)∑ 𝑎𝑘(𝑋)𝑌

𝑘2
𝑘=0                 (73) 

For the analysis that follow, we consider two possible cases of 𝑘 = 1 and 2 in Eq. (72) 

Case 1. Setting 𝑘 = 1 in Eq. (73) and compare coefficients of 𝑌𝑘  (𝑘 = 0,1,2) on both sides, we obtain the 

following equations. 
𝑑𝑎1(𝑋)

𝑑𝑋
= ℎ(𝑋)𝑎1(𝑋)                     (74) 

𝑑𝑎0(𝑋)

𝑑𝑋
= 𝑔(𝑋)𝑎1(𝑋) + h(𝑋)𝑎0(𝑋)                           (75)     

𝑎1(𝑋) [𝑐𝑋(𝑧) − 2(𝑋(𝑧))
3
] =  𝑔(𝑋)𝑎0(𝑋)                          (76) 

Clearly 𝑎𝑘(𝑋) (𝐾 = 0,1,2) are polynomials, so we deduce from Eq. (73) that 𝑎1(𝑋) is a constant and ℎ(𝑋) = 0. 

For simplicity, we take 𝑎1(𝑋) = 1. Balancing the degrees of 𝑔(𝑋) and 𝑎0(𝑋), we conclude that deg (𝑔(𝑋)) = 1 

only. 

Now suppose that 

𝑔(𝑋) = 𝐴1𝑋 + 𝐵0 and 𝐴1 ≠ 0, we find that 𝐴0(𝑋) on integration yield 

𝑎0(𝑋) = 𝐴0 + 𝐵0𝑋 +
𝐴1

2
𝑥2                    (77) 

Substituting the values of 𝑎0(𝑋), 𝑎1(𝑋) and 𝑔(𝑋) into Eq. (74) and setting all coefficients of the powers of 𝑋 to 

zero, we obtain a nonlinear system of algebraic equation in the form 

𝑋:   𝐴0𝐴1 + 𝐵0
2 = 𝑐                     (78) 

𝑋2 :  
3

2
𝐴1𝐵0 = 0                                 (79) 

𝑋3 :   
𝐴1
2

2
= −2                      (80) 

Solving the system in Eqs. (77) − (80) yield the constants      

𝐴0 =
𝑐

2𝑖
         𝐴1 = 2𝑖     𝐵0 = 0, 𝑐 = 0     (81) 

Putting Eq. (81) into Eq. (72), we obtain the solution for 𝑌(𝑧) in the form 

𝑌(𝑧) =
𝑐

2𝑖
+ 2𝑖𝑋(𝑧)                     (82) 

Combining Eq. (82) with (70), the exact solution of Eq. (64) become 

𝑋(𝑧) =
1

2𝑖
(𝑐 + 4𝑋(𝑧))                         (83) 

Hence the solitary solution to the Burgers-Huxley equation is given by 

𝑢(𝑥, 𝑡) = ±√𝑐 sec √𝑐 (𝑥 − 𝑐𝑡)                    (84) 

Case II: Setting 𝑘 = 2 and equating the coefficients of 𝑌𝑖𝑠 on both sides of Eq. (73), we get the following 

 𝑎1(𝑋)𝑌̇ =  𝑔(𝑋)𝑎0(𝑋) =  𝑎1(𝑋) [𝑐𝑋(𝑧) − 2(𝑋(𝑧))
3
]                              (85) 

 
𝑑𝑎0(𝑋)

𝑑𝑋
= −2𝑎2(𝑋) [𝑐𝑋(𝑧) − 2(𝑋(𝑧))

3
] + 𝑔(𝑋)𝑎1(𝑋) + ℎ(𝑋)𝑎0(𝑋)                    (86) 
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𝑑𝑎1(𝑋)

𝑑𝑋
= 𝑔(𝑋)𝑎2(𝑋) + ℎ(𝑋)𝑎1(𝑋)                                             (87) 

𝑑𝑎2(𝑋)

𝑑𝑋
= ℎ(𝑋)𝑎2(𝑋)                                                           (88) 

Assuming 𝑎2(𝑋) is a polynomial of 𝑋, then from Eq. (88), we deduce that 𝑎2(𝑋) is a constant and ℎ(𝑋) = 0. To 

simplify the calculation, we take 𝑎2(𝑋) = 1. Balancing the degree of 𝑔(𝑋) and 𝑎0(𝑋), we conclude that 

𝑑𝑒𝑔(𝑔(𝑋)) = 1 only. Thus, we assume that 𝑔(𝑋) = 𝐴1(𝑋) + 𝐵0 and 𝐴1 ≠ 0, then the values of the remaining 

constant become. 

           𝑎1(𝑋) = 𝐴0 + 𝐵0𝑋 +
𝐴1

2
𝑋2                                                           (89) 

𝑎0(𝑋) = (
𝐴1
2

8
+ 1)𝑋4 + (

𝐴1𝐵0

2
) 𝑋3 + (

𝐴1𝐴0

2
+

𝐵0
2

2
− 𝑐)𝑋2 + 𝐴0𝐵0𝑋 + 𝑑                (90) 

Substituting the values of 𝑎0(𝑋), 𝑎1(𝑋), 𝑎2(𝑋) and 𝑔(𝑋) into Eq. (85) and setting all the coefficients of powers 

of 𝑋 to zero, then a system of nonlinear algebraic equation is obtained. Solving these equations yield the 

constants,  

 𝐵0 = 0, 𝐴0 = √2, 𝐴1 = 0, 𝑐 = 2 and 𝑑 = 0                    (91) 

Putting Eq. (91) into Eq. (72), we obtain 

𝑌(𝑧) = √2 +  
√3

2
 𝑋2(𝑧)                           (92) 

Combining Eqs. (92) and (70), the resulting exact solution for the equation become 

𝑢(𝑥, 𝑡) = √2 +
√3

2
(𝑥 − 2𝑡)                         (93) 

 

IV. CONCLUDING REMARKS 
In this paper, three nonlinear evolution partial differential equations have been investigated using the 

first integral method. The basics of the method was extensively discussed and its efficiency has been confirmed 

by applying it to the selected problems. The results obtained show that the method is valid, efficient, powerful, 

applicable and showed ability to handle several other nonlinear equations    
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