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---------------------------------------------------- ABSTRACT ----------------------------------------------------- 
In this paper, the dynamics of a discrete-time prey-predator system with a disease in the prey population is 

analyzed. The existence, the boundedness and the stability of equilibrium points were studied algebraically and 

proved that the system is qualitatively stable. The purpose of this work is to provide a mathematical framework 

to study the response of a predator – preymodel to a disease in the prey population and harvesting  of  diseased  

prey. Numerical Simulations reveal that the reasonable harvesting prevents the spread of disease. 

 

Keywords: Discrete Model, Qualitative Stability, Diseased Prey, Equilibrium Points, Harvesting 

--------------------------------------------------------------------------------------------------------------------------- 
Date of Submission: 16 July 2015                                                                    Date of Accepted: 26 July 2015 

---------------------------------------------------------------------------------------------------------------------------  

 

I. Introduction 
Many examples of a predator – prey interaction among species can be easily observed in ecological 

system throughout the world. In normal life, predator and prey species exhibit regular cycles of abundance or 

population increase and decrease. The dynamics of predator – prey interactions have been studied extensively in 

the recent years by researchers [1-3]. Epidemiological models have received much more attention from many 

researchers and these models care about the analytical study of the spread of infectious diseases between the 

species. The key role in epidemiological models is played by the ‘incidence rate’ which is a function describing 

the mechanism of transmission of the disease from infectious individual to susceptible individual. Several 

epidemic models with such different types of incidence rates have been extensively studied by many researchers 

[4-6]. This paper will explore the dynamics of such epidemiological system. Although the number is still 

limited, some modified predator – prey models with disease have been introduced, for example, the disease in 

prey, predators consume only infected preys, predators avoid infected prey, the disease in predators only, 

predators consume both healthy and infected preys [7-11,13, 19].Also, this paper investigates the complex 

effects in discrete time prey-predator model with harvesting on diseased prey. 

 

II. The Model 
We make the following assumptions to formulate the mathematical model of prey-predator system with 

diseased prey population. 

(i) The predator consumes the susceptible prey only. 

(ii) The infected prey is harvested. 

(iii) There is no other food supply for the predator other than the susceptible prey. 

(iv) The predator cannot be infected and if there is no susceptible prey, then the predator will die. 

(v) The prey population grows according to logistic equation. 

(vi) Theinfected prey populationdoes not recover from the disease. 

Based on the assumptions, the proposed mathematical model is formulated as follows. 
   

  
        

  

  

               

   

  
        

  

  
                                                       (1) 

  

  
         

With the initial densities   (0)  0,   (0)  0 and y(0)  0. Here  (t),   (t) and y(t)  denote the numbers 

of Susceptible prey, Infected prey and Predator respectively and parameters are all positive. 

Model parameters are described below. 
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Parameters Description 

a Logistic growth of susceptible prey (S.Prey) 

b Logistic growth of infected prey (I.Prey) 

K1 Carrying capacity of susceptible prey 

K2 Carrying capacity of infected prey 

P1 Predation rate of susceptible prey 

α Rate of infection of disease 

h Rate of harvesting of infected prey 

c Growth rate of predator due to its interaction with the susceptible prey 

d Natural death rate of predator 

 

III.Analysis 
 We investigate the stabilityofsystem (1) using both qualitative and quantitative stability conditions. 
3.1 Qualitative Analysis 

 This section deals with the stability of system (1) considering only the structure of the food web. The 

food web for this system is as follows: 

  
    
 

 

 

 

 

 

 
 Model structure is described by an iteration matrix which summarizes the interactions between species 

in the web and for n species, this matrix has n
2
 elements. Each pairwise element in this matrix, aij , can be 

negative, zero, or positive ( that is, aij -, 0,or + ) depending on whether the population of species i is decreased, is 

unaffected, or is increased by the presence of species j [18, 13]. 

The iteration matrix for system (1) is given by 

P =  

   
   
   

  

Weinvestigatethestabilityof system (1) using the following conditions. 

 

Qualitative Stability Conditions: Mathematically, the necessary and sufficient conditions for the existence of 

qualitative stability [13] in an n×n matrix, A are 

i) aii ≤ 0 for all i. 

ii) aii ≠ 0 for atleast one i. 

iii) the product aijaji ≤ 0 for all i ≠ j. 

iv) For any sequence of three or more indices, i, j, k, …..,q, r (with i ≠ j ≠ k ≠……≠ q ≠ r), the product  

aij .ajk…….aqr .ari = 0. 

v) The determinant of the matrix, detA ≠ 0. 

If the conditions (i) – (v) are not satisfied, then it does not imply that the matrix is unstable, but rather that a 

complete knowledge about the magnitude of the interaction coefficients is needed. 

It is clear that the matrix P satisfies all the required conditions and hence the system (1) is qualitatively stable. 

 

3.2 Quantitative Analysis 

Many people have made numerical analysis of stability conditions of specific multispecies 

communities[13,20]. These works have considered the actual magnitudes of the interactions between species in 

the system.In this section, we analyze the complex behavior of the model (1) using linear stability conditions. 

 
3.2.1 Boundedness of the System 
 In this section, we discuss the solution of the system(1) when it is bounded. 

 

 

 

Susceptible Prey Infected Prey 

Predator 
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Theorem: 1The Sound prey population is bounded. 

Proof: 

 From (1), we have 
   

  
        

  

  

               

   <
   

  
          

By simple argument, we have                K1. Hence, the sound prey population is bounded. 

 

3.2.2 Equilibrium Points 
 In this section, we will study the stability behavior of the system (1) at equilibrium points which are 

given below. 

i) Trivial Equilibrium: E0 (0, 0, 0 ) 

ii) Axial Equilibrium: E1 (K1, 0, 0 ) 

iii) Boundary Equilibrium: E2 (
 

 
, 
          

    
     

iv) Boundary Equilibrium: E3 ( 
   

 
, 0, 

             

            
 ) 

v) Boundary Equilibrium: E4 (0,    
   

 
  

             

   
 ) 

vi) Positive Interior Equilibrium: E5 ( 
 

 
, 
  

 
      

  

 
    , 

 

  
     

 

   
   

   

   
    

  

 
    ) 

 

3.2.3 Linear stability Analysis 
 At this stage, we analyze the local behavior of the model (1) around each fixed point. 

The Jacobian matrix of the model (1) at state variable is given by 

 

J = 

 
 
 
    

    

  
               

       
    

  
        

            
 
 
 

 

 

 Now, we use the linearized stability technique for quantitative analysis of the non-linear system (1). 

 

Theorem: 2 

Let                 + D . There are atmost three roots of the equation      = 0. Then the 

following statements are true: 

a) If every root of the equation has absolute value less than one, then the fixed point of the system is 

locally asymptotically stable and fixed point is called a sink. 

b) If at-least one of the roots of the equation has absolute value greater than one, then the fixed point of 

the system is unstable and fixed point is called saddle. 

c) If every root of the equation has absolute value greater than one, then the system is source. 

d) The fixed point of the system is called hyperbolic if no root of the equation has absolute value equal to 

one. Ifthere exists a root of the equation with absolute value equal to one, then the fixed point is called  

non-hyperbolic. 

 

3.2.4 Complex behavior of the Model 

 In this part, we investigate the local stability around each fixed point of the system (1). 

 

Proposition: 1 The trivial equilibrium point E0( 0, 0, 0 ) is locally asymptotically stable only when a < 1 and  

b < h. 

Proof: The Jacobian matrix J (E0 ) at E0 is  

J ( E0) =  
   
     
    

  

 The eigen values of J (E0 ) at E0 are  1 = a,  2  = b – h, and  3 = -d. By theorem (1), it follows that E0 is 

locally asymptotically stable if  a < 1 and b < h. 

 

Proposition: 2 The axial equilibrium point E1( K1, 0, 0 ) is locally asymptotically stable if c <
   

  
 and  
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b<1 + h – α K1. 

Proof: The Jacobian matrix J (E1 ) at E1 is given by 

J ( E1) =   

    
             
           

  

One of the eigen values of the above matrix is  1 = cK1 – d. Remainingeigen values are obtained from the 

following characteristic Equation 

 
2
 + ( a - b – αK1 + h )   - a ( b + αK1 – h ) = 0 

andtheireigen values are  2 = b + αK1 – h and  3 = -a. 

E1 is locally asymptotically stable if         < 1.This holds when  cK1 – d < 1 and b + αK1 – h < 1. Therefore, 

E1  is locally asymptotically stable if and only if c <
   

  
 and b < 1 + h – α K1. 

 

Dynamic behavior of the Model around the fixed point E2: In this section, we analyze the stability of the 

system(1) at E2(
 

 
, 
          

    
      The Jacobian matrix J (E2 ) at E2 is given by 

J ( E2) =   

         

         

         

  

wherea11 = 
   

   
 , a12 = a - 

  

   
, a13 = 0, a21 = 

   

 
, a22 = b - 

   

   
 + 

    

      
 + 

  

 
 – h , a23 = 0, a31 =  

    

 
, a32  = 0 and 

a33 = 0. 

The Characteristic Equation  of J (E2) is   
3
 + A1 

2
 + A2  + A3 = 0, where  A1 = -( a11  + a22 + a33 ),   

A2  = a11a12 – a12 a21 – a23 a32 +a11 a33, and A3 = a11 a23 a32 – a11 a22 a33 + a12 a21 a33. 

  According to the Routh–Hurwitz criterion, E2(
 

 
, 
          

    
     is locally asymptotically stable 

only when A1> 0, A3> 0 and A1 A2>A3[14, 15]. 

 

Proposition: 3  Theboundary equilibrium  E3 ( 
   

 
, 0, 

             

            
 ) is locally asymptotically stable only when  

c( h – b ) < α (1 + d) and 
   

   
 + 

        

 
>  ( 1- 

 

 
 ). 

 

Proof: The Jacobian matrix J(E3) at E3 is given by 

J( E3 ) =    

  
              

            

     
         

 
   

   

 
   

  

The eigen values of the above matrix are  1 = c ( 
   

 
) – d,  2 = 0 and  3= ,  where  

 = 
                                       

           
. By theorem (1), the fixed point E3 is stable only if       < 1. This is 

possible  only when  c ( 
   

 
) – d < 1 and < 1. 

 Now, < 1 implies that 
                                       

           
< 1. 

                                  <
           

 
 

            
         

 
         

         

 
      

  
   

   
 + 

        

 
>  - 

  

 
 

  
   

   
 + 

        

 
>   ( 1- 

 

 
 ) 

Therefore, the boundary equilibrium  E3 ( 
   

 
, 0, 

             

            
 ) is locally asymptotically stable only when  

c( h – b ) < α (1 + d) and 
   

   
 + 

        

 
>  ( 1- 

 

 
 ). 

 

Proposition: 4 The boundaryequilibrium  E4 (0,    
   

 
 ,

              

   
 ) is locally asymptotically stable only if 

h < b.  

Proof:The Jacobian matrix J(E4) at E4 is given by 
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J( E4 ) =    
      

   

 
 

                 

   

     
    

  

 

The eigen values of the above matrix are  1 = 0,  2 = h - b and  3 = -d. 

E4is  locally asymptotically stable if         < 1.This is possible only when h - b < 1. Hence, E4  is locally 

asymptotically stable when h < b. 

 

Dynamic behavior of the Model around the fixed point E5: In this section, we analyze the stability of the 

system(1) at E5( 
 

 
, 
  

 
      

  

 
    , 

 

  
     

 

   
   

   

   
    

  

 
    ) 

 The Jacobian matrix J (E5) at E5 is given by 

J ( E2) =   

         

         

         

  

 

Where b11=
   

   
, b12 = 

   

 
     

  

 
      b13 = 

  

  
     

 

   
   

    

   
     

  

 
      b21 = 

   

 
, b22 = -b - 

  

 
 

 , 

 b23 = 0, b31=
    

 
, b32  = 0, and b33 = 0. 

The eigen values of the above matrix are  1=
   

   
,  2 = -b -

  

 
 + h  and  3 = 0. 

E4 is  locally asymptotically stable if         < 1.This is possible only when  -b - 
  

 
 + h  < 1.Therefore, the 

system(1) shows local asymptotic stability at E5 only when h < b +
  

 
. 

 

IV. Numerical Simulation 
 In this section, all our important analytical findings are numerically verified using MATLAB. First of 

all, we fixed all parameters to ensure all populations survive. Then, we find the effect of harvest on the disease. 

Numerical simulations explain the effect of the parameters on the behavior of the three classes of populations 

and also guarantees that all solutions of the system lie within the region. It is also observed that the infected prey 

increases when there is a low harvest and decreases when there is a large harvest.  
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V. Conclusion 
 In this paper, we   have developed  an  epidemiological  prey - predator model where only the prey 

population is infected by an infectious disease. In order to maintain a healthy population, the infected prey was 

harvested. We have shown that the proposed system is qualitatively stable. Conditions for stability at various 

equilibrium points were obtained. It is also observed that the increase in harvest affects the disease and thus 

prevents the occurrence of an epidemic. We have performed numerical simulation for the positive equilibrium 

of the proposed system. So, all important analytical findings are numerically verified  by using MATLAB. 

 Finally, we conclude that the system (1) of   prey - predator model with infectious disease in the prey 

population exhibits very interesting dynamics. Venturino   considered   recovery from the disease, which is not 

considered herein [16]. So, as a part of future work to improve the model, we can incorporate this factor in the 

proposed model to make it more realistic. 
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