On Ternary Quadratic Equation

$$
3\left(x^{2}+y^{2}\right)-5 x y=11 z^{2}
$$

M.A.Gopalan ${ }^{1}$, R.Anbuselvi ${ }^{2}$, N.Ahila ${ }^{3}$
${ }^{1}$ Department Of Mathematics, Shrimati Indira Gandhi College, Thiruchirappalli - 620 002, Tamil Nadu, India.
${ }^{2}$ Department Of Mathematics, A.D.M. College For Women (Autonomous), Nagapattinam - 600 001, Tamil Nadu, India.
3. Department Of Mathematics, Thiru.Vi. Ka. Govt. Arts College, Tiruvarur- 610003, Tamil Nadu, India.

\qquad
The Ternary Quadratic Diophantine Equation given by $3\left(x^{2}+y^{2}\right)-5 x y=11 z^{2}$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.
Keywords: Ternary, Quadratic, Integral solutions.
Date of Submission: 26 May 2015
Date of Accepted: 25 July 2015

I. INTRODUCTION

The Ternary Quadratic Diophantine Equation offers an unlimited field for research because of their variety [1-5].For an extensive review of various problems, one may refer [6-20]. This communication concerns with yet another interesting ternary quadratic equation $3\left(x^{2}+y^{2}\right)-5 x y=11 z^{2}$ for determining its infinitely many non-zero integral solutions. Also a few interesting relations among the solutions have been presented.

Notations Used

- $\mathrm{T}_{\mathrm{m}, \mathrm{n}}$-Polygonal number of rank n with size m .
- P_{n}^{k} - Pentagonal number of rank n with size k .
- $S q P_{n}$ - Square Pyramidal number of rank n.

Method Of Analysis

The Ternary Quadratic Diophantine Equation to be solved for its non-zero distinct integral solution is

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right)-5 x y=11 z^{2} \tag{1}
\end{equation*}
$$

The substitution of linear transformations $(u \neq v \neq 0)$

$$
\begin{equation*}
x=u+v, y=u-v \tag{2}
\end{equation*}
$$

in
(1) leads to $u^{2}=11\left(z^{2}-v^{2}\right)$

Different patterns of solutions of (1) are illustrated below

Pattern I

Equation (3) is equivalent to the system of double equations

$$
\begin{aligned}
& u B-11 v A-11 z A=0 \\
& u A+v B-z B=0
\end{aligned}
$$

This is satisfied by

$$
\mathrm{u}=22 \mathrm{AB} ; \mathrm{v}=\mathrm{B}^{2}-11 \mathrm{~A}^{2} ; \mathrm{z}=\mathrm{B}^{2}+11 \mathrm{~A}^{2}
$$

Hence in view of (2), the corresponding solutions of (1) are given by

$$
\begin{aligned}
& x=x(A, B)=22 A B+B^{2}-11 A^{2} \\
& y=y(A, B)=22 A B-B^{2}+11 A^{2} \\
& z=z(A, B)=B^{2}+11 A^{2}
\end{aligned}
$$

A few interesting properties observed are as follows:
$1 \cdot x(2, B)+z(2, B)-128 T_{3, B}+T_{126, B} \equiv 0(\bmod 83)$
$2 . x(A, A(A+1))+y(A, A(A+1))=88 P_{A}^{5}$
$3 \cdot y(A, 3)+z(A, 3)-160 T_{3, A}+T_{118, A} \equiv 0(\bmod 71)$
4. $y(B(B+1), B)+y(B(B+1), B)-44 P_{B}^{5}+88 T_{3, B}-T_{86, B} \equiv 0(\bmod 85)$
5. $\mathrm{y}(\mathrm{A}, 5)-200 \mathrm{~T}_{3, \mathrm{~A}}+178 \mathrm{~T}_{3, \mathrm{~A}} \equiv-25(\bmod 89)$
6. Each of the following expressions represents a Nasty number
a) $3\{\mathrm{x}(\mathrm{b},-\mathrm{b})+3 \mathrm{z}(\mathrm{b},-\mathrm{b})\}$
b) $6\{x(\mathrm{a}, 2 \mathrm{a})-\mathrm{y}(\mathrm{a}, 2 \mathrm{a})+2 \mathrm{z}(\mathrm{a}, 2 \mathrm{a})\}$
c) $y(a, 3 a)-x(a, 3 a)+z(a, 3 a)$

It is observed that, by rewriting (3) suitably, one may arrive at the following patterns of solutions to (1).

Pattern II

Equation (3) is equivalent to the following equations

$$
\begin{gathered}
\mathrm{Bu}-\mathrm{Av}-\mathrm{Az}=0 \\
\mathrm{Au}+11 \mathrm{Bv}-11 \mathrm{Bz}=0
\end{gathered}
$$

From which we get

$$
\begin{aligned}
& x=x(A, B)=22 A B+11 B^{2}-A^{2} \\
& y=y(A, B)=22 A B-11 B^{2}+A^{2} \\
& z=z(A, B)=11 B^{2}+A^{2}
\end{aligned}
$$

A few interesting properties observed are as follows:

1. $x(A(A+1),(2 A+1))+y(A(A+1),(2 A+1))=\operatorname{SqP}_{A}$
2. $y(A, A(A+1))+z(A, A(A+1))-44 P_{A}^{5}-48 T_{3, A}+T_{46, A} \equiv 0(\bmod 45)$
3. $x((B+1)(B+2), B)+z((B+1)(B+2), B)-132 P_{B}^{3}-86 T_{3, B}+T_{44, B} \equiv 0(\bmod 64)$
4. $\mathrm{x}(2, \mathrm{~B})-108 \mathrm{~T}_{3, \mathrm{~B}}+\mathrm{T}_{88, \mathrm{~B}} \equiv-4(\bmod 53)$
5. Each of the following expressions represents a Nasty number
a) $3\{x(a, 3 a)+y(a, 3 a)-z(a, 3 a)\}$
b) $x(2 a, a)-3 z(2 a, a)$
c) $3\{y(a,-a)+2 z(a,-a)\}$

Pattern III

Equation (3) is equivalent to the following algebraic equations

$$
\begin{gathered}
B u+11 A v-11 A v=0 \\
A u-B v-B z=0
\end{gathered}
$$

From which we get

$$
\begin{aligned}
& x=x(A, B)=22 A B-B^{2}+11 A^{2} \\
& y=y(A, B)=22 A B+B^{2}-11 A^{2}
\end{aligned}
$$

$$
\mathrm{z}=\mathrm{z}(\mathrm{~A}, \mathrm{~B})=\mathrm{B}^{2}+11 \mathrm{~A}^{2}
$$

A few interesting properties observed are as follows:

$$
\begin{aligned}
& \text { 1. } x(A, A(A+1))+z(A, A(A+1))-44 P_{A}^{5}-96 T_{3, A}+T_{54, A} \equiv 0(\bmod 73) \\
& \text { 2. } y((B+1)(B+2), B)+z((B+1)(B+2), B)-132 P_{B}^{3}-28 T_{3, B}+T_{26, B} \equiv 0(\bmod 25) \\
& \text { 3. } x\left(A^{2}+1, A\right)-x\left(A^{2}-1, A\right)-130 T_{3, A}+T_{44, A} \equiv 0(\bmod 41) \\
& \text { 4. } x(A, 1)+y(A, 1)-z(A, 1)+114 T_{3, A}-T_{94, A} \equiv-1(\bmod 147)
\end{aligned}
$$

5. Each of the following expressions represents a Nasty number
a) $x(a, 3 a)-y(a, 3 a)+z(a, 3 a)$
b) $y(b, b)+z(b, b)$
c) $3\{\mathrm{x}(\mathrm{a},-\mathrm{a})+\mathrm{y}(\mathrm{a},-\mathrm{a})+\mathrm{z}(\mathrm{a},-\mathrm{a})\}$

Pattern IV

Equation (3) is equivalent to the following two equations

$$
\begin{aligned}
& \mathrm{Bu}+\mathrm{Av}-\mathrm{Az}=0 \\
& \mathrm{Au}-11 \mathrm{Bv}-11 \mathrm{Bz}=0
\end{aligned}
$$

From which we get

$$
\begin{aligned}
& x=x(A, B)=22 A B-11 B^{2}+A^{2} \\
& y=y(A, B)=22 A B+11 B^{2}-A^{2} \\
& z=z(A, B)=11 B^{2}+A^{2}
\end{aligned}
$$

A few interesting properties observed are as follows:

1. $\mathrm{x}(\mathrm{B}(\mathrm{B}+1), \mathrm{B})-\mathrm{z}(\mathrm{B}(\mathrm{B}+1), \mathrm{B})-44 \mathrm{P}_{\mathrm{B}}^{5}+68 \mathrm{~T}_{3, \mathrm{~B}}-\mathrm{T}_{26, \mathrm{~B}} \equiv 0(\bmod 45)$
2. $x(A(A+1), A+2)+y(A(A+1), A+2)=264 P_{A}^{3}$
3. $x(3, B)-y(3, B)+z(3, B)+T_{88, B}-T_{66, B} \equiv 9(\bmod 11)$
4. $\mathrm{x}(\mathrm{A}, 1)-20 \mathrm{~T}_{3, \mathrm{~A}}+\mathrm{T}_{20, \mathrm{~A}} \equiv-11(\bmod 4)$
5. Each of the following expressions represents a Nasty number
a) $4\{y(b, 2 b)-2 z(b, 2 b)\}$
b) $6\{x(a, a)-y(a, a)+2 z(a, a)\}$
c) $3(\{x(a, 3 a)+y(a, 3 a)-z(a, 3 a)\})$

Pattern V

Assume $\mathrm{z}=\mathrm{a}^{2}+11 \mathrm{~b}^{2}$
Where a, b are non-zero distinct integers.
Write 11 as $11=(i \sqrt{11})(-i \sqrt{11})$
Use (4) and (5) in (3) and employing the method of factorization. Define

$$
\begin{equation*}
(\mathrm{u}+\mathrm{i} \sqrt{11} \mathrm{v})=(\mathrm{i} \sqrt{11})(\mathrm{a}+\mathrm{i} \sqrt{11} \mathrm{~b})^{2} \tag{6}
\end{equation*}
$$

Equating real and imaginary parts in (6) and using (2) ,the values of x and y satisfies (1) are given by

$$
\begin{align*}
& x=x(a, b)=-22 a b+a^{2}-11 b^{2} \tag{7}\\
& y=y(a, b)=-22 a b-a^{2}+11 b^{2} \tag{8}
\end{align*}
$$

Thus (7), (8) and (4) represents non-zero distinct integral solutions of (1) in two parameters.
A few interesting properties observed are as follows:
$1 \cdot \mathrm{x}(3, \mathrm{~b})+\mathrm{z}(3, \mathrm{~b})-168 \mathrm{~T}_{3, \mathrm{~b}}+\mathrm{T}_{166, \mathrm{~b}} \equiv 0(\bmod 231)$
$2 \cdot y(1, b)+z(1, b)-108 T_{3, b}+T_{66, b} \equiv 0(\bmod 107)$
3. $x(a,(a+1)(a+2))+y(a,(a+1)(a+2))=-264 P_{a}^{3}$
$4 \cdot \mathrm{x}(\mathrm{b}(\mathrm{b}+1), \mathrm{b})-\mathrm{z}(\mathrm{b}(\mathrm{b}+1), \mathrm{b})+44 \mathrm{P}_{\mathrm{b}}^{5}+136 \mathrm{~T}_{3, \mathrm{~b}}-\mathrm{T}_{94, \mathrm{~b}} \equiv 0(\bmod 113)$
$5 \cdot y(a,(a+1)(a+2))-y(a,(a+1)(a+2))-132 P_{a}^{3}-46 T_{3, a}-T_{44, a} \equiv 0(\bmod 43)$
6. Each of the following expressions represents a Nasty number
a) $x(a,-a)+z(a,-a)$
b) $6\{x(a, a)-y(a, a)+z(a, a)\}$
c) $x(b, 3 b)-y(b, 3 b)+z(b, 3 b)$

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCE

[1] L.E. Dickson, History of Theory of numbers, Vol.2, Chelsea Publishing Company, New York, 1952.
[2] L.J. Mordell, Diophantine Equations, Academic press, London, 1969.
[3] Andre Weil, Number Theory: An approach through history: from hammurapi to legendre / Andre weil: Boston (Birkahasuser boston, 1983.
[4] Nigel P. Smart, The algorithmic Resolutions of Diophantine equations, Cambridge university press, 1999.
[5] Smith D.E History of mathematics vol.I and II, Dover publications, New York 1953
[6] M.A. Gopalan, Note on the Diophantine equation $x^{2}+a x y+b y^{2}=z^{2}$ Acta Ciencia Indica, Vol.XXVIM, No: 2, 2000, 105-106.
[7] M.A. Gopalan, Note on the Diophantine equation $x^{2}+x y+y^{2}=3 z^{2}$ Acta Ciencia Indica, Vol.XXVIM, No: 3, 2000,265-266.
[8] M.A. Gopalan,R.Ganaathy and R.Srikanth on the Diophantine equation $z^{2}=A x^{2}+B y^{2}$, Pure and Applied Mathematika Sciences Vol.LII,No: 1-2, 2000, 15-17.
[9] M.A. Gopalan and R.Anbuselvi On Ternary Quadratic Homogeneous Diophantine equation $x^{2}+$ Pxy $+y^{2}=z^{2}$, Bulletin of Pure and Applied Sciences Vol.24E, No:2, 2005,405-408.
[10] M.A. Gopalan, S.Vidhyalakshmi and A.Krishanamoorthy, Integral solutions Ternary Quadraticax ${ }^{2}+$ $b y^{2}=c(a+b) z^{2}$, Bulletin of Pure and Applied Sciences Vol.24E, No: 2, (2005), 443-446.
[11] M.A. Gopalan , S.Vidhyalakshmi ands,Devibala, Integral solutions of $k a\left(x^{2}+y^{2}\right)+b x y=$ $4 k \alpha^{2} z^{2}$, Bulletin of Pure and Applied Sciences Vol. 25 E,No:2,(2006),401-406.
[12] M.A. Gopalan , S.Vidhyalakshmi ands,Devibala, Integral solutions of $7 x^{2}+8 y^{2}=9 z^{2}$, Pure and Applied Mathematika Sciences, Vol.LXVI, No:1-2, 2007,83-86.
[13] M.A. Gopalan , S.Vidhyalakshmi,An observation on $k a x^{2}+b y^{2}=c z^{2}$, Acta Cienica Indica Vol.XXXIIIM, No:1,2007, 97-99.
[14] M.A.Gopalan, Manju somanath and N.Vanitha, Integral solutions of $k x y+m(x+y)=z^{2}$, Acta Cienica Indica Vol.XXXIIIM, No:4,2007, 1287-1290.
[15] M.A.Gopalan and J.Kaliga Rani, Observation on the Diophantine Equation $y^{2}=D x^{2}+y^{2}$, Impact J.Sci. Tech, Vol (2), No: 2, 2008, 91-95.
[16] M.A.Gopalan and V.Pondichelvi, On Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}+1$, Impact J.Sci. Tech,Vol (2), No:2,2008,55-58.
[17] M.A.Gopalan and A.Gnanam , Pythagorean triangles and special polygonal numbers, International Journal of Mathematical Science,Vol. (9) No:1-2,211-215, Jan-Jun 2010.
[18] M.A.Gopalan and A.Vijayasankar, Observations on a Pythagorean Problem, Acta Cienica Indica Vol.XXXVIM, No:4,517-520,2010
[19] M.A.Gopalan and V.Pandichelvi, Integral Solutions of Ternary Quadratic Equation $Z(X-Y)=4 X Y$, Impact J.Sci. Tech; Vol (5), No: 1, 01-06, 2011.
[20] M.A.Gopalan and J.Kaligarani, On Ternary Quadratic Equation $X^{2}+Y^{2}=Z^{2}+8$, Impact J.Sci. Tech,Vol (5), No: 1,39-43,2011.

