

On Invariance of ϵ - Orthogonality, ϵ - Approximation And ϵ - Coapproximation In Metric Linear Spaces

¹Meenu Sharma & ²T.D. Narang*

¹Principal, A.S.College for Women, Khanna-141401 India ²Emeritus Fellow UGC Department of Mathematics Guru Nanak Dev University Amritsar-143005, India,

-----ABSTRACT-----

We discuss ϵ — approximation , ϵ - coapproximation, ϵ - orthogonality, ϵ - approximation

preserving, ϵ - coaaproximation preserving and ϵ -orthogonality preserving maps in metric linear spaces. The results proved in the paper generalize and extend several known results on the subject.

The Notion of othorgonality introduced by G.birkhoff [1] was used to characterize elements of best approximation in normed linear spaces (see [21], p.92). This notion of Orthogonality, extended to metric linear spaces was used to characterize elements of best approximation in [9]. A new kind of approximation, called best co-approximation was introduced and discussed in normed linear spaces by Franchetti and Furi [4] and subsequently many results on co-approximation appeared in normed linear spaces, metric linear spaces, metric spaces and other abstract spaces (see e.g.[10], [15]- [20] and reference cited therein). The notion of invariant best approximation in normed linear spaces was introducted and discussed by Meinardus [8] and thereafter Broswski [2] generalized result of Meinardus and proved some interesting results on invariance of best approximation. Various generalizations of their results appeared in literature since then in normed linear spaces (see e.g. [5]). Mazaheri and zadeh [7] discussed certain maps which preserve othrothogonality, best approximation and best co-approximation in normed linear spaces. The author in [12] extend the invariance principle of Meinardus to metric spaces and also discussed invariance of best approximation, best coapproximation and othorgonality in metric linear spaces in [14].

*The research of the second author has been supported by University Grants Commission, India under Emeritus Fellowship

I. INTRODUCTION

R.C. Buck [3] (see also [21], p.162) introduced and discussed the notion of ϵ - approximation (called good approximation in [3]) in normed linear spaces and this notion was extended to metric spaces in [13]. Very little has been done so far concerning ϵ - approximation. This theory can be developed to a large extent parallel to the theory of best approximation. The notion of ϵ - co-approximation in metric spaces was introduced in [11]. It will be interesting to study elements of ϵ - co-approximation and develop a parallel theory, simillar to the theory of ϵ - approximation. Mazahari and Vaezpour [6] introduced the notion of ϵ - othrogonality and thereafter, Mazaheri and Zadeh [7] discussed ϵ - approximation preserving, ϵ - co-approximation preserving and ϵ - othrogonality preserving maps in normed linear spaces.

In this paper, we discuss ϵ - approximation, ϵ -co-approximation, ϵ - orthogonality, ϵ -approximation preserving, ϵ - co-approximation preserving and ϵ - othrogonality preserving maps in metric linear spaces. The proved results generalize and extend several results of [6], [7], [13] and [14].

To start with, we recall a few definitions.

Let G be a non-empty subset of a metric linear space (X,d) and $x \in X$. For a given $\varepsilon > 0$, an element $g_0 \in G$ is said to be an ϵ -approximation (ϵ -coapproximation) to x if $d(x, g_0) \le d(x, g) + \varepsilon$ for all $g \in G$ i.e. $d(x, g_0) \le d(x, g) + \varepsilon$ for all $g \in G$ i.e. $d(x, g_0) \le d(x, g_$

 g_0) $\leq d(x, G) + \varepsilon$ (d(g_0, g) $\leq d(x, g) + \varepsilon$) for all $g \in G$. The set of all ϵ -approximation (ϵ coapproximation) to x in G is denoted by $P_{G,\varepsilon}(x)$ ($R_{G,\varepsilon}(x)$).

For $\varepsilon = 0$, we find elements of best approximation (best coapproximation) of x and respectively the sets $P_{\sigma}(x) (R_{\sigma}(x))$. The set G is said to be ϵ -proximinal (ϵ -coproximinal) if $P_{\sigma}(x) (R_{\sigma}(x))$ is non-empty for all $x \in X$. It is easy to see that elements of ϵ -approximation always exist but elements of ϵ -coapproximation may or may not exist.

For $x, y \in X$, we say that x is ε -orthogonal to y, $x^{\perp} \varepsilon$ y if $d(x, 0) \leq d(x, \alpha y) + \varepsilon$ for all scalars α . For nonempty subsets A and B of X, we say that A is ε -orthogonal to B, $A^{\perp} \varepsilon$ B, if $a^{\perp} \varepsilon$ b for all $a \in A$, $b \in B$. We define sets

For a linear subspace G of a metric linear space (X,d) and $\varepsilon > 0$. we have

Proposition 1 $g_0 \in G$ is an ϵ -approximation to $x \in X$ if and only if $x - g_0 \in G_{\epsilon}$.

Proof $\mathbf{x} \cdot g_0 \in G_{\varepsilon} \Leftrightarrow \mathbf{x} \cdot g_0 \perp_{\varepsilon} \mathbf{G}$ $\Leftrightarrow \mathbf{x} \cdot g_0 \perp_{\varepsilon} \mathbf{g} \text{ for all } \mathbf{g} \in \mathbf{G}$ $\Leftrightarrow \mathbf{d}(\mathbf{x} \cdot g_0, \mathbf{0}) \leq \mathbf{d}(\mathbf{x} \cdot g_0, \alpha_{\mathbf{g}}) + \varepsilon \text{ for all } \mathbf{g} \in \mathbf{G}, \text{ for all scalars } \alpha$ $\Leftrightarrow \mathbf{d}(\mathbf{x}, g_0) \leq \mathbf{d}(\mathbf{x}, g_0 + \alpha_{\mathbf{g}}) + \varepsilon \text{ for all } \mathbf{g} \in \mathbf{G}, \text{ for all scalars } \alpha$ $\Leftrightarrow \mathbf{d}(\mathbf{x}, g_0) \leq \mathbf{d}(\mathbf{x}, g') + \varepsilon \text{ for all } \mathbf{g} \in \mathbf{G}, \text{ for all scalars } \alpha$ $\Leftrightarrow \mathbf{d}(\mathbf{x}, g_0) \leq \mathbf{d}(\mathbf{x}, g') + \varepsilon \text{ for all } \mathbf{g}' \in \mathbf{G}, \text{ for all scalars } \alpha$ $\Leftrightarrow \mathbf{g}_0 \in P_{G,\varepsilon}(\mathbf{x})$

Proposition 2 $g_0 \in P_{G,\varepsilon}(\mathbf{X}) \Leftrightarrow 0 \in P_{G,\varepsilon}(\mathbf{X} - g_0)$.

Proof $g_0 \in P_{G,\varepsilon}(\mathbf{x}) \Leftrightarrow \mathbf{x} \cdot g_0 \in G_{\varepsilon}$ $\Leftrightarrow (\mathbf{x} \cdot g_0) \cdot \mathbf{0} \in G_{\varepsilon}$ $\Leftrightarrow \mathbf{0} \in P_{G,\varepsilon}(\mathbf{x} \cdot g_0)$

Proposition 3 If $x g_0 \in G_{\varepsilon}$ then $g_0 \in G$ is an ϵ -coapproximation to x.

Proof
$$(X - g_0) \in G_{\varepsilon} \Rightarrow G_{\perp_{\varepsilon}} (X - g_0)$$

 $\Rightarrow g^{\perp_{\varepsilon}} (X - g_0)$ for all $g \in G$
 $\Rightarrow d(g, 0) \le d(g, \alpha (x - g_0)) + \varepsilon$ for all $g \in G$, for all scalars α
 $\Rightarrow d(g + \alpha g_0, \alpha g_0) \le d(g + \alpha g_0, \alpha x) + \varepsilon$ for all $g \in G$, for all α
 $\Rightarrow d(g', \alpha g_0) \le d(g', \alpha x) + \varepsilon$ for all $g' \in G$, for all α
 $\Rightarrow d(g_0, g') \le d(x, g') + \varepsilon$ for all $g' \in G$
 $\Rightarrow g_0 \in R_{G,\varepsilon} (x)$
 $\Rightarrow g_0 \in G$ is an ϵ -coapproximation to x

Proposition 4 Let G be a subspace of a metric linear space (X,d) and $x \in X$. Then for $g_0 \in G$, G^{\perp}_{ε} (x- g_0) $\Leftrightarrow \alpha \ g_0 \in R_{G,\varepsilon}$ ($\alpha \ x$) for every scalar α . **Proof** Let $\alpha \ g_0 \in R_{G,\varepsilon}$ ($\alpha \ x$) for all scalars $\alpha \ i.e. \ d(\alpha \ g_0, g) \le d(\alpha \ x, g) + \varepsilon$ for all $g \in G$, for all scalars α . This implies $d(\alpha \ x - \alpha \ g_0, g - \alpha \ g_0) + \varepsilon \ge d(g - \alpha \ g_0, 0)$ for all $g \in G$, for all scalars α i.e. $d(g', \alpha \ (x - g_0)) + \varepsilon \ge d(g', 0)$ for all $g' \in G$ and all scalars α i.e. $G^{\perp}_{\varepsilon} (x - g_0)$

Conversity, let $G^{\perp_{\varepsilon}}(x - g_0)$ i.e. $g^{\perp_{\varepsilon}}(x - g_0)$ for all $g \in G$. This implies $d(g, \alpha_{(x - g_0)}) + \varepsilon \ge d(g, 0)$ for all $g \in G$ and all scalars α . Therefore $d(g + \alpha_{g_0}, \alpha_{x}) + \varepsilon \ge d(g, 0)$ for all $g \in G$ and all scalars α i.e. $d(g', \alpha_{g_0}) \le d(g', \alpha_{x}) + \varepsilon$ for all $g' \in G$ and all scalars α .

Therefore $\alpha g_0 \in R_{G,\varepsilon}$ (αx) for all scalars α .

Proposition 5 $g_0 \in R_{G,\varepsilon}(\mathbf{x}) \Leftrightarrow 0 \in R_{G,\varepsilon}(\mathbf{x}-g_0)$

Proof $g_{0} \in R_{G,\varepsilon} (\mathbf{x}) \Leftrightarrow d(g_{0},g) \leq d(\mathbf{x},g) + \varepsilon \text{ for all } g \in G$ $\Leftrightarrow d(g_{0},g,0) \leq d(\mathbf{x},g_{0},g,g_{0}) + \varepsilon \text{ for all } g \in G$ $\Leftrightarrow d(0,g,g_{0}) \leq d(\mathbf{x},g_{0},g,g_{0}) + \varepsilon \text{ for all } g \in G$ $\Leftrightarrow d(0,g') \leq d(\mathbf{x},g_{0},g') + \varepsilon \text{ for all } g' \in G$ $\Leftrightarrow 0 \in R_{G,\varepsilon} (\mathbf{x},g_{0})$

For isometric mappings, we have

Theorem 1 let T be an isometery on a metric space (X,d) i.e. d(Tx, Ty) = d(x, y) for all $x, y \in X$, $\varepsilon > 0$ and G be a subset of X such that T(G)=G. Then

(a) $T[R_{G,\varepsilon}(\mathbf{x})] \subseteq R_{G,\varepsilon}[T\mathbf{x}]$

(b) If x is T-invariant then $T[R_{G,\varepsilon}(x)] \subseteq R_{G,\varepsilon}(x)$

(c) If x is T-invariant and if $R_{G,\varepsilon}(x) = \{g_0\}$ then T $g_0 = g_0$

(d) If x is T-invariant and if $\{g \in G: Tg=g\} \cap R_{G,\varepsilon}(x) = \emptyset$ then either

 $R_{G,\varepsilon}(\mathbf{x}) = \emptyset$ or $R_{G,\varepsilon}(\mathbf{x})$ has more than one point.

Proof (a) Let $T(g_0) \in T[R_{G,\varepsilon}(x)]$ i.e. $g_0 \in R_{G,\varepsilon}(x)$.

Let $g \in G$ be arbitrary. Then T(G) = G implies the existence of $u \in G$ such that g=T(u). Consider

 $\begin{array}{l} d(T \, {}^{g} \, _{_{0}} \, , \, g) = \ d(T \, {}^{g} \, _{_{0}} \, , \, Tu) = \ d(\, {}^{g} \, _{_{0}} \, , \, u) \, \leq \, d(\, x, u \,) \, + \, {}^{\mathcal{E}} \\ = \, d(\, Tx, Tu) \, + \, {}^{\mathcal{E}} \\ = \, d(\, Tx \, , \, g) \, + \, {}^{\mathcal{E}} \, \text{ for all } g \in G \end{array}$

This implies that T(g_0) \in T[$R_{G,\varepsilon}$ (x)]whenever g_0 is an ε -coapproximation to x.

(b) Suppose $g_0 \in R_{G,\varepsilon}(\mathbf{x})$. Then (a) implies $T(g_0) \in R_{G,\varepsilon}[T\mathbf{x}]$ i.e. $T(g_0) \in R_{G,\varepsilon}(\mathbf{x})$ i.e.

$$T[R_{G,\varepsilon}(\mathbf{x})] \subseteq R_{G,\varepsilon}(\mathbf{x})$$

(c) By (b), T(g_0) $\in \{g_0\}$ i.e. T(g_0) $= g_0$

(d) By (b), $T(g_0) \in R_{G,\varepsilon}$ (x). But by the hypothesis, no invariant element can be an ε -coapproximation, therefore $T(g_0) \neq g_0$, So, if $T(g_0) = g_0$ then an ε -coapproximation to x does not exist i.e. $R_{G,\varepsilon}(x) = \emptyset$, If $T(g_0) \neq g_0$ then x has at least two ε -coapproximations to x.

Remarks It is easy to see that similar results are true for $P_{G,\varepsilon}(\mathbf{x})$.

The next result will be useful in our subsequent discussion:

Lemma Let (X,d) be a metric linear space. If T:X \rightarrow X is an isometry then for all subspaces G of X and $x \in X$, T[$P_{G,\varepsilon}(x)$]= $P_{T(G),\varepsilon}[Tx]$ and T[$R_{G,\varepsilon}(x)$]= $R_{T(G),\varepsilon}[Tx]$

Proof Since T is an isometry, d(Tx,Ty) = d(x,y) for all $x, y \in X$. The proof now follows from

 $d(x, g_0) \leq d(x, g_{+}\varepsilon \text{ for all } g \in G \Leftrightarrow d(Tx, Tg_0) \leq d(Tx, Tg_0) \text{ for all } Tg \in T(G) \text{ and } d(g_0, g_0) \leq d(x, y_0) + \varepsilon \text{ for all } g \in G \Leftrightarrow d(Tg_0, Tg) \leq d(Tx, +Tg_0) + \varepsilon \text{ for all } T(g) \in T(G).$

Definition Suppose X and Y are metric linear spaces and $\varepsilon > 0$. A map T:X \rightarrow Y is called ϵ -**approximation preserving** (ϵ - coapproximation preserving) if for all subspaces G of X and all $x \in X$, T[$P_{G,\varepsilon}(x)$]= $P_{T(G),\varepsilon}$ [Tx] (T[$R_{G,\varepsilon}(x)$]= $R_{T(G),\varepsilon}$ [Tx])

Above lemma shows that if (X,d) is a metric linear space then every isometry $T:X \to X$ is ϵ -approximation (ϵ -coaproximation) preserving .As a consequence of the above lemma, we obtain

Theorem 2 Suppose (X , d) and (Y, d') are two metric linear spaces and T:X \rightarrow Y is a linear map which is an isometry. Then

(a) A subspace G of X is ϵ -proximinal (ϵ -coproximinal) if and only if T(G) is ϵ -proximinal (ϵ -coproximinal)

(b) A subspace G of X is ϵ -Chebyshev (ϵ -coChebyshev) if and only if T(G) is ϵ -Chebyshev (ϵ -coChebyshev)

Theorem 3 Suppose X and Y are metric linear spaces, $\varepsilon > 0$ and T: X \rightarrow Y is a linear onto isometry. Then

(a) $x \perp_{\varepsilon} y \Leftrightarrow T x \perp_{\varepsilon} T y$

(b) For a subspace G of X, $T(G_{\varepsilon}) = T(G)_{\varepsilon}$

(c) For a subspace G of X, $T(G_{\varepsilon}) = T(G)_{\varepsilon}$

Proof

(a) $x \perp_{\varepsilon} y \Leftrightarrow d(x, 0) \le d(x, \alpha_{y}) + \varepsilon$ for all scalars α $\Leftrightarrow d(Tx, T0) \le d(Tx, T(\alpha_{y})) + \varepsilon$ for all scalars α $\Leftrightarrow d(Tx, T0) \le d(Tx, \alpha_{T(y)}) + \varepsilon$ for all scalars α $\Leftrightarrow Tx \perp_{\varepsilon} Ty$

(b) Let
$$y \in T$$
 (G_{ε}). Then $y = Tx$, $x \in G_{\varepsilon}$. Now $x \in G_{\varepsilon} \Rightarrow x \perp_{\varepsilon} G_{\varepsilon}$

 $\Rightarrow \operatorname{Tx}_{\varepsilon} \operatorname{T}(G) \Rightarrow \operatorname{y}_{\varepsilon} \operatorname{T}(G) \Rightarrow \operatorname{y}_{\varepsilon} \operatorname{T}(G)_{\varepsilon} \cdot \operatorname{Therefore} T(G_{\varepsilon}) \subseteq T(G)_{\varepsilon} \cdot \operatorname{Conversely}, \text{ suppose } \operatorname{y}_{\varepsilon} = T(G)_{\varepsilon} \cdot \operatorname{Conversely}, \operatorname{suppose} \operatorname{y}_{\varepsilon} = T(G)_{\varepsilon} \cdot \operatorname{Then} \operatorname{y}_{\varepsilon} \operatorname{T}(G) \cdot \operatorname{Since} T \text{ is onto } \operatorname{y}_{\varepsilon} = \operatorname{Tx}, \operatorname{x}_{\varepsilon} \operatorname{X} \text{ and so } \operatorname{Tx}_{\varepsilon} \operatorname{T}(G) \text{ i.e } \operatorname{Tx}_{\varepsilon} \operatorname{Tg} \text{ for all } \operatorname{g}_{\varepsilon} \operatorname{G}.$ Therefore d(Tx, 0) $\leq \operatorname{d}(\operatorname{Tx}, \alpha \operatorname{T}(\operatorname{g})) + \varepsilon$ for all $\operatorname{g}_{\varepsilon} \operatorname{G}$ and all scalars $\alpha_{\varepsilon} \operatorname{I.e.} \operatorname{T}(G) = \operatorname{d}(\operatorname{Tx}, \operatorname{T}(\alpha_{\varepsilon})) + \varepsilon$ for all $\operatorname{g}_{\varepsilon} \operatorname{G}$ and all scalars $\alpha_{\varepsilon} \operatorname{I.e.} \operatorname{x}_{\varepsilon} \operatorname{g}$ for all $\operatorname{g}_{\varepsilon} \operatorname{G}$ and all scalars $\alpha_{\varepsilon} \operatorname{I.e.} \operatorname{x}_{\varepsilon} \operatorname{T}(\sigma) = \operatorname{Tx}(\operatorname{G}_{\varepsilon}) = \operatorname$

(a) G is ϵ -proximinal $\Leftrightarrow X = G + G_{\epsilon}$

(b) G is ϵ -Chebyshev \Leftrightarrow $X = G \oplus G_{\epsilon}$

(c) G is ϵ -semi Chebyshev \Leftrightarrow each x ϵ X has atmost one sum decomposition as G + G

Proof (a) Suppose $_{G is} \epsilon$ -proximinal and $x \in X$ is arbitrary. Since $_{G is} \epsilon$ -proximinal, there exists $g_0 \in P_{G,\epsilon}$

(x) and so x- $g_0 \in G_{\varepsilon}$ and x= $g_0 + (x - g_0) \in G + G_{\varepsilon}$. Hence $X = G + G_{\varepsilon}$.

Conversity, suppose $X = G + G_{\varepsilon}$. Let $x \in X$ be arbitrary. Then $x = g_0 + (x - g_0)$. Now $x - g_0 \in G_{\varepsilon} \Rightarrow g_0 \in P_{G,\varepsilon}(x)$ and hence G is ϵ -proximinal in X.

Let G be ϵ -Chebyshev in X. Then G is ϵ -proximinal in X and so by (a), $X = G + G_{\varepsilon}$. Let $x \in X$ be such that $x = g_1 + y_1 = g_2 + y_2$; $g_1 \in G$, $g_2 \in G$, $y_1 \in G_{\varepsilon}$, $y_2 \in G_{\varepsilon}$. This gives $g_1 - g_2 = y_2 - y_1 \in G$. Now $y_1 \in G_{\varepsilon}$ $\Rightarrow y_1 - 0 \in G_{\varepsilon} \Rightarrow 0 \in P_{G,\varepsilon}(y_1) \Rightarrow g_1 \in P_{G,\varepsilon}(y_1 + g_1)$ i.e. $g_1 \in P_{G,\varepsilon}(x)$. Similarly, $g_2 \in P_{G,\varepsilon}(x)$. Since G

is ϵ -Chebyshev, $g_1 = g_2$ and so $y_2 = y_1$ i.e. $x \in X$ has a unique representation and hence $X = G \oplus G_{\epsilon}$

Conversely, suppose $X = G \oplus G_{\varepsilon}$. To show that G is ϵ -Chebyshev. Since $X = G + G_{\varepsilon}$, G is ϵ proximinal by (a).Suppose $x \in X$ has two distinct ϵ -approximations in G, say g_1 and g_2 . Then $x - g_1$, $x - g_2 \in G_{\varepsilon}^{\uparrow}$. But then $x = g_1 + (x - g_1)$ and $x = g_2 + (x - g_2)$. This contradicts $X = G \oplus G_{\varepsilon}^{\uparrow}$. (c) follows from proofs of (a) and (b).

Remarks Can we prove similar results for co- approximation ?We know that ϵ - approximation always exists but ϵ - coapproximation may or may not exist. However, we have

Theorem 5 If G is a linear subspace of a metric linear space (X,d) such that $X = G + G_s$ then G is ϵ -coproximinal in X.

Proof Let $x \in X$ be arbitrary. Then $x = g_{0+y} \in G + G_{\varepsilon}$. Now $y = y = 0 \in G_{\varepsilon} \Rightarrow 0 \in R_{G,\varepsilon}$ (y) i.e. $0 \in R_{G,\varepsilon}$ (x- g_{0}) and so $g_{0} \in R_{G,\varepsilon}$ (x). Hence G is ϵ -coproximinal in X.

REFERENCES

- [1] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. (1935), 169-172.
- [2] Bruno Brosowski, Fixpunktsatze in der approximations theorie, Mathematics (Cluj), 11 (1969), 195-220.
- [3] R.C. Buck, Applications of duality in approximation theory (Ed.H.L. Barabedian), Elsevier, Amsterdam-London-New York (1965), 27-42.
- [4] C. Franchetti and M.Furi, Some characteristic properties of real Hilbert spaces, Rev. Roum. Math Pures Appl. 17 (1972), 1045-1048.
- [5] L.A. Khan and A.R. Khan, An extension of Brosowski-Meinardus theorem on invariant approximation, Approx. Theory & Appl. 11 (1995), 1-5.
- [6] H. Mazaheri and S.M. Vaezur, Orthogonality and e-orthogonality in Banach spaces, The Australian Journal of Mathematical Analysis and Applications 2 (2005), 1-5.
- [7] H. Mazaheri and M. Hossein Zadeh, The maps preserving approximation, 2 (2007), 905-909
- [8] G. Meinardus, Invariance bei linearen approximation, Arch. Rational Mech. Anal. 14 (1963), 301-303.
- [9] T.D. Narang, On certain characterizations of best approximation in metric linear spaces, Pure Appl. Mathematica Sciences, 4(1976), 121-124.
- [10] T.D. Narnag, On best coapproximation in normed linear spaces, Rocky Mountain Journal of Mathematics 22 (1991),

- [11] T.D.Narang, On good approximation, Journal of Scientific Research, 49 (1999), 25-43.
- [12] T.D.Narang, Invariant approximation in metric spaces, Mathematics Today, 23 (2007),19-24.
- [13] T.D.Narang, On simultaneous characterization of set of elements of good approximation in metric spaces, Affrican Diaspora Journal of Mathematics, 10 (2012), 1-8
- [14] T.D.Narang, On invariance of approximation and coapproximation in metric linear spaces, communicated
- [15] T.D.Narang and S.P. Singh, Best coapproximation in metric linear spaces, Tamkang Journal of Mathematics, 30 (1999), 241-252
- [16] P.L. Papini and I. Singer, Best approximation in normed linear spaces, Math. Mh. 88 (1979), 27-44.
- [17] Geetha S. Rao, Tools and techniques in approximation theory, The Mathematics Student, 81 (2012), 115-133.
- [18] Geetha S. Rao, A new Tool in approximation theory, The Mathematics Student, 83 (2014), 5-20.
- [19] Geetha S. Rao and R. Sarvanan, Some results concerning uniform best coapproximation, J. Inequel. Pure Appl. Math 3 (2002), 1-13.
- [20] Greth. S Rao and R. Sarvan, Strongly unique best coapproximation, Kyungpook Math. J. 43 (2003), 519-538
- [21] I. Singer, Best approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.