

On Uniformly Continuous Uniformity On A Topological Space

¹Dr. S.M.Padhye , ²Ku. S.B.Tadam ^{1,2}Shri R.L.T. College of Science, Akola

-----ABSTRACT:-----

Given a topological space (X,\mathcal{T}) we define uniformity \mathcal{U} on X such that (X,\mathcal{U}) is

uniformly continuous uniform space and it becomes the smallest uniformly continuous uniformity with respect to which set of continuous functions is larger than set of \mathcal{T} –continuous functions.

Keywords: Pseudo-metric space, Uniform space, Uniformly continuous function. Subject code classification in accordance with AMS procedures: 54E15.

Date of Submission: 12 April 2014	Date of Publication: 20 July 2014

INTRODUCTION

Let X be any non empty set. Let \mathcal{P} be the family of all pseudo metrics on X. Then $\mathcal{P} \neq \emptyset$ since discrete metric on X is a pseudo metric. For any subfamily \mathcal{Q} of \mathcal{P} define the uniformity on X whose subbase is the family of all sets

$$V_{p,r} = \{(x,y) \in XxX / p(x,y) < r\}, p \in \mathcal{Q} \text{ and } r > 0\}$$

 $\therefore \mathcal{B} = \{B \subset X \times X / B = \bigcap_{i=1}^{n} V_{p_{i,r_i}}, p_i \in \mathcal{P}, r_i > 0, n \ge 1\} \text{ is a base for uniformity on } X.$

Now let (X,\mathcal{T}) be a topological space. Let $\mathcal{C}(X)$ be the set of all continuous complex valued functions on X. For every $f \in \mathcal{C}(X)$, define $d_f : XxX \to \mathbb{R}$ as $d_f(x,y) = I f(x) - f(y) I$. Then d_f is a pseudo -metric on X. With the help of pseudo-metric d_f on X define an open sphere $S_r(x), x \in X, r > 0$ as $S_r(x) = \{ y: d_f(x,y) < r \}$

As the intersection of any two open spheres contains an open sphere about each of its pts , the family { $S_r(x) / x \in X$ } is a base for topology for X. This topology is the pseudo-metric topology for X generated by pseudo-metric d_f on X say \mathcal{T}_{d_f} .

Let P be the family of pseudo metrics d_f on X as $f \in \mathcal{C}(X)$. Then P defines a unique uniformity on X such that S = { $V_{f,r} / f \in \mathcal{C}(X)$ and r > 0 } forms a subbase where $V_{f,r} = \{(x,y) \in XxX / d_f(x,y) < r\}$ We denote this uniformity on X by \mathcal{U} .

Definition: Uniformly continuous uniform space:

A uniform space is said to be Uniformly continuous uniform space if every real valued continuous function is uniformly continuous.

Theorem1: Let (X, \mathcal{T}) be a topological space and \mathcal{U} be the uniformity defined on X as above then (X, \mathcal{U}) is a Uniformly continuous space.

Proof: For proving this theorem we require following two lemmas.

Lemma1. Every \boldsymbol{u} -continuous mapping is $\boldsymbol{\mathcal{T}}$ -continuous.

Proof: Let f: $X \to \mathbb{C}$ be any \mathcal{U} -continuous mapping, where \mathcal{U} is the above defined uniformity on X. Then we show that f is \mathcal{T} -continuous. Let G be any open set in \mathbb{C} . Then $f^{1}(G)$ is \mathcal{U} - open in X. i.e. $f^{-1}(G) \in \mathcal{T}_{\mathcal{U}}$ where $\mathcal{T}_{\mathcal{U}} = \{T \subset X / \forall x \in T \exists \ U \in \mathcal{U} \text{ s.t. } U[x] \subset T\}$. Now we show that $\mathcal{T}_{\mathcal{U}} \subseteq \mathcal{T}$.

Suppose $T \in \mathcal{T}_{\mathcal{U}}$ and $x \in T$. Then we have $U \in \mathcal{U}$ s.t. $U[x] \subset T$. Since $U \in \mathcal{U}$ by defⁿ of $\mathcal{U} \exists f_1, f_2, \dots, f_n \in \mathcal{C}(X)$ and r_1, r_2, \dots, r_n all positive such that $V = \bigcap_{i=1}^n V_{f_i r_i} \subset U$. Then $V[x] \subset U[x] \subset T$.

But
$$V[x] = \{ y: (x,y) \in V \}$$

 $= \{ y: (x,y) \in \bigcap_{i=1}^{n} V_{f_i,r_i} \}$
 $= \{ y: (x,y) \in V_{f_i,r_i} \forall i = 1,2,...,n \}$
 $= \{ y: f_i(y) \in S(f_i(x), r_i) \forall i = 1,2,...,n \} \}$
 $= \{ y: y \in f_i^{-1}(S(f_i(x), r_i)) \forall i = 1,2,...,n \} \}$
 $= \{ y: y \in \bigcap_{i=1}^{n} f_i^{-1}(S(f_i(x), r_i)) \}$

Now for each i, $(S(f_i(x), r_i))$ is an open subset of \mathbb{C} and each f_i is \mathcal{T} -continuous hence $f_i^{-1}(S(f_i(x), r_i))$ is \mathcal{T} – open. $\therefore \bigcap_{i=1}^n f_i^{-1}(S(f_i(x), r_i))$ is \mathcal{T} – open. *ie*. $\mathcal{V}[x]$ is \mathcal{T} – open. *ie*. *for every* $x \in T \exists \mathcal{T}$ – open set V[x] such that $x \in \mathcal{V}[x] \subset T$. This proves that $T \in \mathcal{T}$. Hence $\mathcal{T}_{\mathcal{U}} \subseteq \mathcal{T}$. Lemma2: If f is \mathcal{T} –continuous then f is \mathcal{U} -uniformly continuous function. **Proof:** Since f is \mathcal{T} -continuous function, $d_f(x,y)=1$ f(x)-f(y) 1, $x, y \in X$ defines a pseudo metric on X and hence $d_f \in P$. Then for any r > 0 $U_{f,r} = \{(x,y)/d_f(x,y) < r\}$ is a subbase member of the uniformity \mathcal{U} . i.e. $U_{f,r} \in \mathcal{U}$ such that $(x,y) \in U_{f,r} \Leftrightarrow 1$ f(x)-f(y) 1 < r. Thus f is \mathcal{U} -uniformly continuous function.

Proof of Theorem 1: Suppose f is \mathcal{U} - continuous complex valued function on X. By lemma1 f is \mathcal{T} - continuous. By Lemma 2 f is *then* \mathcal{U} - uniformly continuous function. Hence (X, \mathcal{U}) is uniformly continuous uniform space.

Note: From lemmal $C_{\mathcal{T}_{\mathcal{U}}} \subset C_{\mathcal{T}}$. But from lemma2 every \mathcal{T} -continuous function is \mathcal{U} -uniformly continuous and hence it is \mathcal{U} -continuous function. ie. $C_{\mathcal{T}} \subseteq C_{\mathcal{T}_{\mathcal{U}}} \Rightarrow C_{\mathcal{T}} = C_{\mathcal{T}_{\mathcal{U}}}$.

Theorem2: Suppose (X, \mathcal{V}) is a uniformly continuous uniform space such that $\mathcal{C}_{\mathcal{T}} \subseteq \mathcal{C}_{\mathcal{T}_{\mathcal{V}}}$ then $\mathcal{U} \subset \mathcal{V}$ where \mathcal{U} is the uniformity on X determined by \mathcal{T} -continuous functions on X. i.e. \mathcal{U} is the smallest uniformly continuous uniform space such that $\mathcal{C}_{\mathcal{T}} \subseteq \mathcal{C}_{\mathcal{T}_{\mathcal{U}}}$.

Proof: To show that $\mathcal{U} \subset \mathcal{V}$, let $\bigcup \in \mathcal{U}$. Then there are \mathcal{T} -continuous functions f_1, \dots, f_n on X and $\epsilon_i > 0$, $i = 1, 2, 3, \dots, n$ such that $W = \bigcap_{i=1}^n \{ (x, y) : | f_i(x) - f_i(y) | < \epsilon_i \} \subset \bigcup \dots \dots (1)$. Since each \mathcal{T} -continuous function f_i is $\mathcal{T}_{\mathcal{V}}$ -continuous and \mathcal{V} is a uniformly continuous uniform space, each f_i is \mathcal{V} - uniformly continuous for $i = 1, 2, 3, \dots, n$. Hence for each $\epsilon_i > 0 \exists V_i \in \mathcal{V}$ such that $(x, y) \in V_i => |f_i(x) - f_i(y)| < \epsilon_i . i. e. \mathcal{V} = \bigcap_{i=1}^n V_i \subset \mathcal{W}$. But $\mathcal{V} = \bigcap_{i=1}^n V_i \in \mathcal{V} \therefore \mathcal{U} \in \mathcal{V}$ (by definition of uniform space) i.e. $\mathcal{U} \subset \mathcal{V}$... ie. \mathcal{U} is the smallest uniformly continuous uniform space such that **Corollary:** Suppose (X, \mathcal{V}) is a uniformly continuous uniform space such that

 $\mathcal{T} \subseteq \mathcal{T}_{\mathcal{V}}$ then $\mathcal{U} \subset \mathcal{V} \dots$

References:

- [1]. J.L.Kelley, General Topology, Van Nostrand, Princeton, Toronto, Melbourne, London 1955.
- [2]. W.J. Pervin, Foundations of General Topology, Academic Press Inc. New York, 1964.
- [3]. Russell C. Walker, The Stone-Cech Compactification, Springer-Verlag Berlin Heidelberg New York 1974