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-----------------------------------------------------------ABSTRACT----------------------------------------------------------- 

It is very important to maintain supply reliability under the deregulated environment. The transient stability 

problem is one of the major concerns in studies of planning and operation of power systems. Although the equal-

area criterion method is useful in determining the stability as a transient stability evaluation method, the method 

is only applicable to a one-machine system connected to an infinite bus or to a two machine system and the time 

domain simulation is the best available tool for allowing the use of detailed models and for providing reliable 

results. The main limitations of this approach involve a large computation time. This paper describes a method 

for estimating a normalized power system transient stability of a power system that is four machines, six bus 

system and three machines, nine bus systems.  The critical clearing time is evaluated using corresponding 

energy function Therefore, the transient energy function (TEF)  is constructed for large power system. 
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I. INTRODUCTION 
An interconnected power system consists of generating units  run by prime-movers (including turbine-

governor and excitation control systems) plus transmission lines, loads, transformers, static reactive 

compensators, and high-voltage direct-current lines. The size of the interconnection varies depending on the 

system but the technical problems are the same. At the planning level, the planner would invariably study the 

stability of the system for a set of disturbances ranging from a three-phase-to-ground fault (whose probability of 

occurrence is rare) to single-phase faults, which constitute about 70 percent of the disturbances. The planner 

desires to determine if a potential fault has an adequate margin of safety without the system losing synchronism. 

A system is said  to be synchronously stable (i.e.,  retain synchronism) for a given fault if the system variables 

settle down to some steady-state values as time approaches infinity after the fault is removed. These simulation 

studies are called transient stability studies. Transient stability is one of the important items which should be 

investigated in power System planning and its operation. Present day transient stability analyses are mainly 

performed by simulations. This method is very reliable method, but it does not suit calculations of many cases 

because it takes much computing time. As a substitute, direct method was proposed, and many papers have been 

reported for this method. It has reached to some level for a simple model in which generators are represented by 

constant voltages behind transient reactance. Since the time of [1], there has been considerable progress made in 

the development of the appropriate tools necessary to address stochastic transient stability. There have been 

numerous recent advances in the application of Lyapunov stability methods to stochastic differential equation 

systems [4]–[6]. Furthermore, the past decade has seen significant advances in the development of numerical 

integration methods to simulate stochastic (ordinary) differential equations [7]. In this paper, these advances in 

stochastic Lyapunov stability methods and the numerical solution of systems of stochastic differential equations 

are merged to present a novel approach to developing a quantitative measure of stability that is suitable for 

power system risk assessment.Transient stability analysis programs are MATLAB, PSCAD, ETAP, etc... In 

these simulation programs, the  behavior  of  a  power  system  is evaluated to determine its stability and/or its 

operating limits, or eventually, in order to determine the need for additional facilities. Important decisions are 

made based only on the results of stability studies. It is therefore important to ensure that the results of stability 

studies are as timely and accurate as possible. Thus, it is important for a power system to remain in a state of 

operating equilibrium under normal operating conditions as well as during the presence of a disturbance. 
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The main  purpose of this  paper is to investigate the transient stability  of four  machine six bus power 

system  and  three  machine nine  bus power system  with energy function method, when subjected to 

disturbances .The transient energy consists of two components: kinetic and potential energy. In the post- 

disturbance period, profiles of the kinetic energy (VKE), the potential energy (VPE) are obtained. These are 

used to develop a criterion for the degree of stress on a disturbed but stable machine, and to assess the extent of 

instability for an unstable machine.   

 

II. STRUCTURED PRESERVED STOCHASTIC TRANSIENT ENERGY FUNCTIONS 
The concept of transient stability is based on whether, for a given disturbance, the trajectories of the 

system states during the disturbance remain in the domain of attraction of the post-disturbance equilibrium when 

the disturbance is removed. Transient instability in a power system is caused by a severe disturbance which 

creates a substantial imbalance between the input power supplied to the synchronous generators and their 

electrical outputs. Some of the severely disturbed generators may “swing” far enough from their equilibrium 

positions to lose synchronism. Such a severe disturbance may be due to a sudden and large change in load, 

generation, or network configuration. Since large disturbances may lead to nonlinear behavior, Lyapunov 

functions are well-suited to determine power system transient stability. Since true Lyapunov functions do not 

exist for lossy power systems, so-called “transient energy functions” are frequently used to assess the dynamic 

behavior of the system [8]. From a modeling point of view, the structure preserved model allows a more realistic 

representation of power system components  including load behaviors and generator dynamic models. 

To better understand how the structure preserved transient energy function will be developed and analyzed; a 

brief review of Lyapunov functions for stochastic differential equations is first presented. 

Consider the nonlinear stochastic system: 

 

                                                          (1) 

 

Whose solution can be written in the sense of : 

 

                       (2) 

 

Where  is the state ; is an  -dimensional standard Wiener process defined on the complete 

probability space ; the functions  are locally bounded and locally Lipschitz continuous in  

with  ,for all ; and the matrix   is nonnegative-definite for each  . These 

conditions ensure uniqueness and local existence of strong solutions to equation 1 [4], [9].As with many 

nonlinear deterministic systems, Lyapunov functions can provide guidance regarding the stability of stochastic 

differential equation (SDE) systems. An SDE system is said to satisfy a stochastic Lyapunov condition at the 

origin if there exists a proper Lyapunov function  defined in a neighborhood  D of the origin in  such 

that : 

 

                                                                    (3) 

 

for any  where the differential generator 𝓛 is given by : 

 

                   (4) 

 

If (3) is satisfied, then the equilibrium solution  of the stochastic differential equation 1 is considered to 

be stable in probability[10].To accurately include the effects of the loads in the system, the so-called structure-

preserved, center-of-intertia model of the power system is used, such that [2], [3]. 
 

                                         (5) 

 
                                                  (6) 

                                          (7) 

 
                                      (8) 
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Where, 

 

 
And 

 

 

 
                        (9) 

 

Where, 

 

  generator rotor angle 

 

   COI bus angle 

 

   generator angular frequency 

 

   COI angular frequency 

 

    inertia constant 

 

   mechanical output 

 

    bus voltage 

 

  th entry of the reduced lossless admittance matrix 

 

     positive sensitivity coefficient representing the  load frequency dependence 

 

    number of generators in the system 

 

     number of total buses in the system 

 

   synchronous speed in radians and  and  are the load demands at each bus in the system. 

 

and  and  are the load demands at each bus in the system. 

 

The corresponding energy function is [18] 

 

 

 

 
                                       (10) 

 

Where is usually 2 and the superscript “  ” indicates the stable equilibrium point. It is assumed that the power 

system frequency deviations can be represented by an appropriately scaled Wiener process  (i.e., zero 

mean, finite covariance). Note that this is why the load variation is represented by wiener process as opposed to 

a Gaussian noise input . Therefore a frequency dependent load gives rise to: 

 



A Novel Approach To Transient Stability Using… 

www.theijes.com                                                The IJES                                                                           Page 43 

                                                                 (11) 

                                                  (12) 

                                                                (13)

                                                                          (14) 

 

Where . Similarly (but less commonly) 

 

 
 

 

 

 
 

                                                                                      (15) 

 

                                                                                     (16) 

 

 

 
 

Figure 1. Total energy VTOT versus the potential energy VPE  

 

Critical clearing time is the time at which the total energy equals the maximum potential energy. 
 

Now compute the energy function given in equation 10 and if the energy is less than the critical energy then the 

system is stable else the system is not stable. 

 

III. SIMULATION AND RESULTS 
Four machine six bus system 

The validity of the proposed method is shown by Simulation studies. For the simulation studies, we use 

four machine six bus systems shown in Fig. 2. 

 

 

Figure 2. Four machine six bus system 
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 TABLE I:  Line data for 6 bus system 

 
Transmission Line Data 

From  

Bus 

To  

Bus 

R 

(p.u) 

X 

(p.u) 

B 

(p.u) 

Transformer Tap 

Setting Value (p.u) 

1 2 0.05 0.2 0 1 

2 3 0.10 0.5 0 1 

3 4 0.20 0.8 0 1 

4 5 0.10 0.3 0 1 

5 6 0.20 0.4 0 1 

6 1 0.10 0.15 0 1 

2 5 0.20 0.5 0 1 

 

TABLE II: Bus data for 6 bus system 
 

Bus Data 

Bus No Bus Type |V| (p.u) ɵ 

(degree) 

PG 

(MW) 

QG 

(MVAR) 

PL 

(MW) 

QL 

(MVAR) 

1 1 1 0 33.2 0 0 0 

2 2 1 0 10 0 20 10 

3 2 1 0 30 0 0 0 

4 2 1 0 20 0 0 0 

5 3 1 0 0 0 40 15 

6 3 1 0 0 0 30 10 

 

TABLE III: Generator data for 6 bus system 
 

Generator Data 

Generator bus # Transient reactance Inertia constant Generation 

1 0.004 100.0 33.2 

2 1.0 1.5 10.0 

3 0.5 3.0 30.0 

4 0.4 2.0 20.0 

 

The above TABLE I, II and III gives the line, bus and generator data for three machine six bus system 

respectively. 

 

TABLE IV: Energy variations of a 6 bus system 

 
Time (sec) Total Energy (p.u) Potential Energy(p.u) 

0.0000      1.2443          1.2188        

0.0000      1.2443          1.2188        

0.0001      1.2443          1.2188        

0.0003      1.2443          1.2188        

0.0014     1.2443          1.2188        

0.0064      1.2454         1.2195        

0.0114      1.2480         1.2211        

0.0164      1.2519         1.2236        

0.0214      1.2572         1.2270        

0.0264      1.2639          1.2313        

0.0314      1.2720          1.2365        

0.0364      1.2815          1.2426        

0.0414      1.2924          1.2495        

0.0464      1.3047          1.2574        

0.0500      1.3143          1.2636        

0.0500      1.3143          1.2636        

0.0517 1.3189    1.2665        

0.0599 1.3418     1.2812        

0.0910 1.4245     1.3341        

0.1161 1.4856     1.3730        

0.1322 1.5212     1.3956        

0.1448 1.5468     1.4117        

0.1574 1.5701     1.4265        

0.1730 1.5958     1.4426        
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0.1921 1.6218     1.4588        

0.2132 1.6431     1.4719        

0.2381 1.6573     1.4803        

0.2683 1.6581     1.4800        

0.2982 1.6407     1.4681        

0.3243 1.6110     1.4486        

0.3396 1.5874     1.4333        

0.3550 1.5595     1.4154        

0.3740 1.5196     1.3898        

0.3987 1.4594     1.3515        

0.4276 1.3794     1.3010        

0.4541 1.2996     1.2509        

0.4784 1.2230     1.2030        

 

Critical Clearing Time = 0.1161 sec 

 

From the TABLE IV, we see that the system is stable with tcr=0.1161 sec and system becomes unstable after this 

tcr . Therefore the critical clearing time  0.1161 sec.  is proved when critical energy (Vcr) is equal to the total 

energy, therefore critical clearing time at this point is 0.1161sec. 

 

 
 

Figure 3. Total energy (VTOT) and potential energy (VPE) versus time for 6 bus system. 

 

Critical clearing time is the time at which the total energy equals the maximum potential energy. From the Fig. 3 

the critical clearing time is determined as 0.1161 sec. 

 

Three machine nine bus system 

The validity of the proposed method is shown by Simulation studies. For the simulation studies, we use three 

machine nine bus systems shown in Fig. 4 

. 

 
 

Figure 4. Three machine nine bus system 
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TABLE V:  Line data for 9 bus system 

 

No Type |V| 

(p.u) 

ɵ 

(deg) 

PG 

(MW) 

QG 

(MVAR) 

PL 

(MW) 

QL 

(MVAR

) 

QMIN(MVAR

) 

QMAX(MVA

R) 

1 1 1.04 0 0 0 0 0 0 0 

2 2 1.025 0 163 0 0 0 -500 500 

3 2 1.025 0 85 0 0 0 -500 500 

4 3 1 0 0 0 0 0 -500 500 

5 3 1 0 0 0 125 50 -500 500 

6 3 1 0 0 0 90 30 -500 500 

7 3 1 0 0 0 0 0 -500 500 

8 3 1 0 0 0 100 35 -500 500 

9 3 1 0 0 0 0 0 0  

 

TABLE VI: Bus data for 9 bus system 

 
Branch no From bus To bus R(p.u) X(p.u) B/2(p.u) Tx. 

Tap 

1 2 7 0.0 0.063 0.0 1 

2 1 4 0.0 0.058 0.0 1 

3 3 9 0.0 0.059 0.0 1 

4 4 6 0.017 0.092 0.079 0 

5 4 5 0.01 0.085 0.088 0 

6 5 7 0.032 0.161 0.153 0 

7 6 9 0.039 0.17 0.179 0 

8 9 8 0.012 0.101 0.105 0 

9 8 7 0.009 0.072 0.0745 0 

 

TABLE VII: Energy variations of 9 bus system 

 

Time (sec) Total Energy (p.u) Potential Energy (p.u) 

0.1039      3.0790          2.1101        

0.1325 3.5906     2.4743        

0.1616      4.1355         2.8703        

0.1899      4.6691         3.2682        

0.2116      5.0724         3.5768        

0.2334      5.4620         3.8822        

0.2602      5.9128          4.2461        

0.2908      6.3797          4.6369        

0.3252      6.8293          5.0301        

0.3661     7.2424          5.4119        

0.4161 7.5504      5.7223        

0.4732      7.6252          5.8331        

0.5242      7.4418          5.6948        

0.5695      7.0885          5.3860        

0.6104      6.6281          4.9712        

0.6382      6.2465          4.6268        

0.6575      5.9531          4.3638        

0.6768      5.6394          4.0854        

0.6944      5.3386          3.8220        

 

Critical Clearing Time = 0.2602 sec 

From the TABLE VII, we see that the system is stable with tcr=0.2602 sec and system becomes unstable after 

this tcr . Therefore the critical clearing time  0.2602 seconds  is proved when critical energy (Vcr) is equal to the 

total energy, therefore critical clearing time at this point is 0.2602 sec. 
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Figure 5. Total energy (VTOT) and  potential energy (VPE) versus time for 9 bus system. 

 

 Critical clearing time is the time at which the total energy equals the maximum potential energy. From the fig. 5 

the critical clearing time is determined as 0.2602 sec. 

 

IV. CONCLUSION 
This paper develops an approach to analyze the impact of random load and generation variations on the 

transient stability of a structure preserved power system. The well-known energy function method for power 

system transient stability is used as a basis to explore the stochastic power system stability through a stochastic 

Lyapunov stability analysis. The stability of the system is analyzed based on the Critical Clearing Time of the 

system. It is concluded that this type (direct method) of analysis provides fast computing time compared to other 

type of analysis. Further work may include exploring the impact of non-Gaussian distributions on critical 

clearing times. An additional area of study would include modeling the stochastic behavior of generation 

scheduling. 
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