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--------------------------------------------------------ABSTRACT-------------------------------------------------------------- 

We present FAQCase, a Textual Case-Based Reasoning system for solving Frequently Asked Questions. The 

system uses an adapted Lesk algorithm to disambiguate senses of query terms and then transform the query 

with synonyms from WordNet. This is to improve matching at the retrieval phase since, in natural languages; 

the same information can be expressed using lexically different words. An evaluation of the system shows that 

there is significant retrieval improvement over a baseline system with no query transformation. 
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I. INTRODUCTION 
Frequently asked questions (FAQs) are question-answer pairs usually maintained by organizations to 

help provide first hand answers to recurring questions in the organization. In formulation of FAQs, questions 

are solved once and stored together with their respective answers, and for any recurrence of any such questions, 

its already stored answer is reused instead of treating the question as a new problem. For FAQs to effectively 

serve the purpose for which they are stored, an effective and efficient storage and retrieval technique has to be 

used for their indexing. There are several methods and techniques that could be used for the storage and 

retrieval of FAQs which ranges from the use of web pages for display and manual lookup to the use of 

information retrieval (IR) techniques.  

 

In many organizations, FAQs are stored as web pages and searched manually. This is inefficient and 

time consuming. Indexing and retrieval using a database can be more efficient; however queries cannot be 

issued in natural language. Although queries can be issued in natural languages using the IR approach, it may, 

however, not be very effective as some keywords in the FAQs may have domain-specific importance which 

cannot be captured based on term frequency alone. 

 

In this work, we investigate the suitability of using case-based reasoning (CBR) approach to the 

storage and retrieval of FAQs. The CBR problem-solving approach [1] is suited to this task as it advocates the 

reuse of previous cases to solve new problems. Here the previous cases are the stored FAQs while the problem 

would be a new question. It, also, allows for the integration of more knowledge during the case comparison 

stage to improve retrieval performance. Accordingly, we use WordNet to expand user query with synonyms to 

improve retrieval matching with the stored FAQs. The rest of this paper is organized as follows. The next 

section reviews the process of developing textual CBR systems. We present the application (FAQCase) in 

section 3 while experimental setup and results are presented in section 4. The paper ends with conclusion and 

future work in section 5. 

  

II. TEXTUAL CBR SYSTEMS AND OVERVIEW OF PREVIOUS WORK 
 CBR is a branch of Artificial Intelligence (AI) that solves problems based on experience (i.e. 

previously encountered problems and their solutions). According to [2], a case is a “contextualized piece of 

knowledge representing an experience that teaches a lesson fundamental to achieving the goals of the 

reasoner”.  CBR system can also perform more creative problem-solving, that is, it can be applied to solve 

problems that are quite different from its prior experience. The notion of CBR is based on two world tenets, 

first, the world is regular; thus, similar problems have similar solutions, and second, the problems an entity 

encounters tend to recur [3]. These two tenets make it worthwhile to retain solved problems and their solutions 

so that when such problems recur, their respective solutions can be reused repeatedly.  
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 The CBR problem-solving cycle in figure 1 typically consists of the following four stages [1]:  

Retrieve: This involves retrieving cases from memory that relevant to solving problem case. 

Reuse: This involves reusing the retrieved cases in order to try and solve the current problem. 

Revise: This involves revising the proposed solution and adapting it, if necessary. 

Retain: This involves retaining the final solution as a new experience. 

 

 

 
 

Figure 1: The CBR Cycle 

 In practice, many of the experiences that a CBR system is to reason with, are collected and stored as 

textual documents, for example, incidence reports, Frequently Asked Questions (FAQs), Legal cases, 

documentations and manuals of equipments [4]. This gives rise to textual CBR as a subfield of the standard 

CBR. Textual CBR (TCBR) can be viewed as a specialised CBR in which the focus is on cases that are in 

unstructured natural language format, it also allows interaction with the user in the same format. Such 

flexibility of TCBR systems adds the additional challenge of dealing with free text [5]. Such challenges include 

the following: 

 Mapping text into a structured representation 

 Indexing of textual cases to allow fast, efficient and effective comparison/ retrieval 

 Measuring similarity between two pieces of text using their grammatical/semantic information as well     as 

 specialised knowledge which varies from one domain to another 

 Adaptation of retrieved similar textual cases to solve a new problem 

 Building a TCBR system involves knowledge acquisition process, in terms of the knowledge container 

model introduced by Richter [4], this includes: 

(a) The collection of cases; 

(b) The definition of index vocabulary for cases; 

(c) The construction of similarity measure; and 

(d) The specification of adaptation knowledge. 

Taking these into account, we discuss the process of developing textual CBR systems as follows: 

 

2.1 Case Acquisition 

 This stage in developing a TCBR system involves collecting solved problems with their solutions on 

which the system is to base its judgement when solving a new problem, i.e. the experience. Ideally it is 

assumed that these cases already exist either in structured or unstructured format. 

 

2.2 Indexing Vocabulary 

 In TCBR, there is a need to extract vocabulary of the domain from the textual description of cases 

(documents). Usually the vocabulary is not just independent keywords or terms but may contain phrases and 

expressions, e.g. coursework submission. Each case can then be described based on the features (i.e. keywords, 

terms, expressions etc.)  that are in the vocabulary. Such features may be identified manually by classifying the 

documents based on some properties with the help of the domain expert or, automatically by allowing the 

machine to analyse the documents and identify the keywords or terms that are indicative of discriminating 

different cases described by the documents. For example, the keyword coursework may be a good feature in 

discriminating coursework-related FAQs from others. This stage is crucial because only the keywords/features 

in the vocabulary can be used to represent the case-base and problem case to be solved, hence only these 

features can be used to compare cases to a problem.  
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2.3 Case Representation 

 Upon identification of the appropriate vocabulary to be used to represent cases in a domain, the next 

step is to use an appropriate model to represent cases. The manner in which cases are represented at this stage 

can affect the manner in which similarity could be assessed during retrieval [6]. The basic model for document 

representation in Information Retrieval (IR), i.e. the vector space model [7] can also be used to represent cases 

in TCBR. However,  there are other approaches to case representation  which include  frame-based and object-

oriented representations; both uses data modelling approach of object-oriented paradigm which include 

inheritance principles (i.e. is-a and is-part-of  relations). They are suitable for complex domains where cases 

with different structure occur [6]. Other advanced approaches such as hierarchical case representation, 

generalised cases, cases in case-based design and cases in case-based planning have been investigated. 

 

2.4 Similarity Measures: 

 Similarity measure provides a means of quantifying similarity between cases and a problem during 

retrieval. It is a function that computes the degree of similarity between two vectors. In TCBR, a number of 

similarity measures could be used in order to capture similarity which is not limited to term occurrence. Cases 

may be similar based on term occurrence or based on meaning, this makes it important to consider both the 

similarity based on term occurrence (statistical similarity) and similarity based on meaning (semantic 

similarity) when comparing cases. 

 

Statistical similarity: This is the measure of term matches between cases, i.e. the more the common terms 

between the cases, the higher the similarity. There are a number of methods that can be used to measure 

statistical similarity between cases. These include Inner Product and Cosine Similarity measures [8]. Statistical 

similarity may suffer from problem of ambiguity, where the set of terms between two cases may be highly 

similar, but the actual meaning of both differs significantly, and paraphrase problem, where the same meaning 

may be expressed using different terms. 

 

Semantic Similarity: Semantic similarity is the measure of meaning between to documents/cases. Thus, it can 

reduce the problems of ambiguity and paraphrase. An efficient and effective strategy of capturing semantic 

similarity between words is by the use of synonym relationship [9]. 

 

2.5 Evaluation in Textual CBR 

 TCBR systems often comprise of multiple aspects (e.g. coverage similarity component, semantic 

similarity component etc), thus, evaluation has to be designed to measure the performance of the component 

which is the focus of the research. According to Bruninghaus and Ashley [10], there are three major issues to 

be considered when evaluating a TCBR system, these are: What performance measure should be chosen? What 

should the performance be compared to? and What to focus the evaluation on? 

 

2.6 Previous Work 

 One of the TCBR systems closely related to our work is the FAQFinder [9]. The system uses a part of 

a usenet FAQs archive as cases. The FAQFinder system uses a combination of statistical and semantic 

techniques in its similarity computation between new problem and stored FAQs. The computation of semantic 

similarity and the entire retrieval matching in FAQFinder was however limited to the question part of the 

FAQs. Considering the question part of FAQs is generally shorter than the answer part. In this work, we 

extend the matching to include the answer part of FAQs. 

 

III. THE FAQCASE SYSTEM 
The system consists of three basic components namely the Interface, the Search module and the 

Semantic module as illustrated by Figure 1. 
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Figure 1: Components of the FAQCase 

 

3.1 The Interface 

 The interface is the window through which the user interacts with the system, in IR, there are some 

standard approaches of designing user interface in order to enhance usability of the system. Similarly, in order 

to facilitate the information seeking process in TCBR, a number of user interface design principles have to be 

considered. These include provision of informative feedback on the process, relationships between objects (i.e. 

query and retrieved documents), easy reversal of actions, internal locus of control (i.e. give user control over 

system where appropriate), reduce working memory (i.e. keep track of progress, save result etc) and alternative 

interfaces for different users (i.e. novice, expert etc). A typical best match retrieval system (such as TCBR 

system) consists of query input, search button, retrieved documents list and document display [9]. The query 

input is a text field through which the user sends query to the system. A good query input text field allows 

simple editing of query. Furthermore, the size of the input area affects the length of query users will type, 

therefore, it should be as wide as possible to attract richer queries from users. The search button triggers the 

indexing/search process when clicked. The retrieved documents list display retrieved documents deemed to be 

relevant to the user query. Finally, the document display area displays the content of a retrieved document. 

In FAQCase, the aforementioned design is adopted with extension to incorporate other components. The added 

components are: display area and user word sense disambiguation pane. The display area displays synonym 

sets (synsets) extracted from WordNet and new query formulated using the synsets. This allows the user to see, 

for each query word, the synset deemed to be of the right sense of the word, and if not satisfied with the 

systems judgement, the user can change the word sense. The user word sense disambiguation pane contains all 

the query terms found in WordNet dictionary and the senses of each term. This gives the user the facility to 

change the sense of word and repeat the search. 

 

 
 

Figure 2: Screenshot of the proposed system (FAQCase) 
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3.2 The Search Module 

 This consists of a search engine implemented based on standard IR techniques. On running the 

application, the search engine generates an inverted file of the stored FAQs after performing a sequence of text 

pre-processing operations on them. An inverted file is an index structure storing a mapping from words to 

their locations in a document or a set of documents. We apply the following text pre-processing operations on 

the collection as well as queries. 
 

Lexical Analysis: At this stage the FAQs were tokenized (i.e. broken down into discrete tokens). These tokens 

are words, numbers, and punctuations. Here, we adopt the simple approach of ignoring all numbers and 

punctuation and use only case-insensitive unbroken strings of alphabetic characters as tokens. The resulting 

tokens from this operation are then passed to the subsequent operation of stop-word removal. 

 

Stop-words Removal: In this stage, language dependent high-frequency words called stop-words are removed 

from the input tokens. Example of such words are function words: “a”, “the”, “in”, “to”; pronouns: “I”, “he”, 

“she”, “it”. Stop-words removal is generally preferable even though it may give rise to other issues, for 

example the question “is grade 6 equivalent to A”, the token “A” will be reduced to its lower case equivalent 

“a” during lexical analysis and then considered to be a stop-word at this stage and therefore removed. But then, 

the “a” in this example is not the same as the function word “a”. 

 

STEMMING: Stemming is the process of reducing a token to its “root” form, this reduce the number of distinct 

terms which results in having smaller index size. It also helps to identify words with similar meaning which 

enhances recall. 

 After performing text pre-processing operations, inverted index of tf-idf weighted term-document vectors 

is generated. We use cosine similarity metric to compute relevance of a given query q to any of the indexed 

FAQs dj as follows: 

           (1) 

 Where wij and wiq are the weights of the ith term in the document/case and query/problem vectors 

respectively. 

  

3.3 The Semantic Module 

 This module uses WordNet [11], to transform query terms with synonyms. This is to improve matching 

with the indexed FAQs since, in natural languages; the same information can be expressed using lexically 

different words. The module begins with word sense disambiguation (WSD) in order to identify the right 

synonyms to be extracted from WordNet. We propose a variant of Lesk algorithm [12] for this purpose (see 

below). Preliminary evaluation of the algorithm shows that it is as effective as the original Lesk algorithm and 

computationally less expensive as the original Lesk algorithm. 

 

3.3.1 The WSD Algorithm 

 WordNet is a machine readable lexical database. It can also be seen as a dictionary, but, unlike most 

dictionaries, WordNet contains only open-class words (i.e. nouns, verbs adjectives and adverbs), it does not 

contain any other word which is not in this category. Words‟ part-of-speech (PoS) have to be identified before 

being passed to WordNet.We use QTAG [13] to assign PoS to words. The basic relationship between words in 

WordNet is the Synonym relation called Synset. Words in the same synset are synonymous in a particular 

sense. Word sense is the meaning a word can take depending how it is used. For example the word “bank” 

could mean a financial institution in one sense and a river bank in another sense. Each synset of a word 

contain one or more words including the word itself and has a gloss associated with it. A gloss for a word sense 

is the definition of the word in that particular sense and typically includes example sentence(s). For instance, 

one of the synsets of „bank‟ is {depository financial institution, bank, banking concern, banking company} and 

its gloss is (a financial institution that accepts deposits and channels the money into lending activities; "he 

cashed a check at the bank"; "that bank holds the mortgage on my home"). In this work, we use WordNet 3.0 

for the implementation of WSD component of FAQCase. This version contains about 152,000 different words 

which have a total of about 203,000 different senses. It has over 115,000 synsets, of these synsets about 80,000 

are noun synsets, 13,500 are verb synsets, 18,500 are adjective synsets and 3,700 are adverb synsets. 
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 Lesk [12] proposes WSD algorithm known as the Lesk Algorithm. The basic idea behind the Lesk 

Algorithm is based on the assumption that words that appeared in the same context are likely to have 

overlapping words in their dictionary definitions.  When comparing the dictionary definitions or glosses of two 

words, the Lesk algorithm counts up the number of tokens that occur in both glosses and assigns a score equal 

to the number of words thus matched to this gloss–pair.  In our implementation of the algorithm score of 

matched gloss-pair is not the count of overlapped words between the glosses rather cosine similarity between 

them. The following is an outline of the implemented Lesk Algorithm: 

1: Function diambiguateAllWords(words) returns bestSense 

2: for all wt in input do {wt is known to WordNet and not found in stoplist} 

3:   bestSenset = diambiguateSingleWord(wt) 

4: end for  

5: end procedure 

6:   function disambiguateSingleWord(wt) return sense s 

7:   for all sti of target word wt do {sti is the ith sense of the target word wt} 

8:      scorei = 0 

9:     for j = t-cl to t+cr do 

10:    if j = t then 

11:    next j 

12:    end if 

13:    for all sjk of wj do{sjk is the kth sense of word wj} 

14:   tempScore = relatedness(sti, sjk) 

15:   end for 

16:   bestScore = max tempscore 

17:   if bestScore > threshold then 

18:  Scorei = scorei + bestScore 

19:  end if 

20: end for 

21: end for 

22: return sensei scorei > scorej for all j, where j not equal i 

23: end function 

 

 The function disambiguateAllWords takes in the words to be disambiguated and return their right 

senses. At the loop (2:) the algorithm iterates over all the words and pass each to the function 

disambiguateSingleWord. The function disambiguateSingleWord disambiguates the sense of a word. At the 

loop (7:) , it iterates over all the senses of the word, at the loop (9:), it takes a window of the target word‟s 

neighbours whose glosses will be used to disambiguate the sense of the target word. In this implementation of 

the algorithm, all the query terms were considered to be neighbours of one another, this is because user queries 

are generally short. At the loop (13:)  the algorithm iterates over senses of a neighbour word (wj) and calculate 

the relatedness of each of its glosses with the glosses of the target word (the word to be disambiguated). 

After disambiguating senses of query terms, we can now get the synonyms (synsets) of each term. User queries 

are then expanded with the synsets. 

For example, the questions 

A “I was unable to attend exam due to illness – what should I do?” and 

B  “I missed examination because of sickness - any help?”  

The two questions are supposed to have exactly the same meaning, but matching the two questions as they are 

now will give zero-similarity for they do not have any common keyword. 

Keywords of A = [was, unable, attend, exam, due, illness, what, should] 

Keywords of B = [missed, examination, because, sickness, any, help] 

In this research, WordNet was used to get the appropriate synset for query terms in order to expand the query, 

in the above example, if A is the stored FAQ and B is the new problem, by adding synonyms to B some 

similarity will arise between the two questions. This can be shown as follows: 

Keywords of A = [was, unable, attend, exam, due, illness, what, should] 

Keywords of B = [missed, examination (exam), because, sickness (illness) any, help] 

The bracketed terms are synonyms of their preceding terms extracted from WordNet. This will lead to FAQ A 

being retrieved as a relevant case to the problem case B.  
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IV. EVALUATION 
 According to Bruninghaus and Ashley [10], there are three major issues to be considered when 

evaluating a TCBR system, these are: What performance measure should be chosen? What should the 

performance be compared to? and What to focus the evaluation on?. Considering this, we chose Normalised 

Precision [14] as performance measure. This compares the precision performance of systems between worst 

case and best case; it ranges between 1 and 0. Worst case (0) is when the system did not retrieve the targeted 

answer, best case (1) is when the answer is retrieved and ranked top and anything between 0 and 1 is when the 

answer is retrieved but not ranked the top. This performance measure has been chosen because there is only 

one FAQ (if it exists) in the case base which is expected to answer user question/query, thus, the it measures 

how well the system retrieved and ranked this answer between the system in comparison. 

 

4.1 Dataset Characteristics 

The Dataset consists of 22 FAQs from a university domain. The FAQs were obtained from staff 

members who attend to students‟ complaints and questions. A total number of 143 different terms were used in 

forming the test FAQs out of which 127 were found in WordNet, among those found in WordNet, 114 have the 

sense to be disambiguated and 13 do not have. 

 

4.2 Experimental Design 

A total of 22 FAQs of the stored FAQs were rephrased by 3 users, the users were drawn from the 

university, 1 staff member, 1 research student and a Masters student. Some of the rephrased FAQs contain 

combination of terms in their original FAQs and other different words while others were formed with 

completely different words from their original FAQs. Example: 

Original FAQ “I was unable to attend exam due to illness – what should I do?” 

Rephrased FAQ “I missed examination because of sickness - any help?”  

Performances of two systems were measured, the description of the two systems are as follows: 
 

System A: this is version of FAQCase, the developed application that transforms user query following word 

sense disambiguation of the query terms (FAQCase with Word Sense Disambiguation and query 

transformation). 

 

System B: this has everything like System A except it does not perform word sense disambiguation and query 

transformation (FAQCase without Word Sense Disambiguation and query transformation).  

The 3 rephrased versions of the case-base FAQs formed the test  FAQs (Test FAQs_1, Test FAQs_2 and Test 

FAQs_3) for the experiment. The ability of the two systems to recover from the paraphrasing of the FAQs was 

measured using Normalised Precision. 

 

4.3 Results and Discussion 

 Table 1 shows performance of the two systems on the rephrased FAQs, reported as average normalised 

precision across the test FAQs.  

 
   System 

 

Dataset 

System A System B 

Test FAQs_1 0.97 0.77 

Test FAQs_2 0.83 0.74 

Test FAQs_3 0.94 0.60 

 

Table 1: Experimental results reported as average normalized precision 

 

 The result shows the proposed system (System A) to outperform a competing approach of using 

standard IR techniques with no query expansion. The proposed system is better on all the 3 test FAQs. The 

difference is statistically significant (at 95% confidence level) on test FAQs_1 and test FAQs_3. This can be 

attributed to the fact that most FAQs from the two datasets were formed with completely different words with 

their equivalents in the case-base. The result has, therefore, shown that, when user questions are likely to be 

completely of different words from a FAQ questions likely to answer them then word sense disambiguation and 

query transformation as proposed in this work are desirable. 
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V. CONCLUSION AND FUTURE WORK 
 In this research, FAQCase, a TCBR System has been presented, which uses WordNet lexical 

database to transform user queries/questions. The query transformation was achieved by using WordNet‟s 

glosses and Lesk Algorithm to disambiguate query terms after which, appropriate synonyms of query terms are 

added to queries. The results show significant retrieval improvement the system (FAQCase) over the one 

without query transformation.  WordNet is a general English database, as such it lacks some domain specific 

terms. In the problem domain of this work, there are some terms that cannot be found in WordNet such as the 

term resit. Also some terms could be found in WordNet but there usage in a particular could not be in 

WordNet  for instance the term account could be found in WordNet, but, account in the sense of email account 

could not be found in WordNet. Therefore future work related to this research is on building a domain specific 

thesaurus for the School of Computing. 
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