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---------------------------------------------------------Abstract------------------------------------------------------ 
The analysis of line continuum by equilibrium approach to obtain exact results requires direct integration of the 

governing equations and satisfying the boundary conditions. This procedure is cumbersome and 4x4 stiffness 

matrix system with 4x1 load vector has been used as practical simplification for a long time. The problem with 

this system is that it is inefficient and does not give exact results, especially for classical studies that analyse 

only one element as a whole. This paper presents 5x5 stiffness matrix system as a new stiffness system to 

generate exact results. The stiffness matrix was developed using energy variational principle. The approach 

differs from the 4x4 stiffness matrix approach by considering a deformable node at the centre of the continuum 

which brings the number of deformable nodes to five. By carrying out direct integration of the governing 

differential equation of the line continuum, a five-term shape function was obtained. This was substituted into 

the strain energy equation and the resulting functional was minimized, resulting in a 5x5 stiffness matrix used 

herein. The five term shape function was also substituted into load-work equation and minimized to obtain load 

vector for uniformly distributed load on the continuum. Classical studies of beams of four different boundary 

conditions under uniformly distributed load and point load were performed using the new 5x5 stiffness matrix 

with 5x1 load vector for one element analysis. Numerical studies were also done for two elements. The process 

was repeated using the conventional 4x4 stiffness matrix and 4x1 load vector. It was found that unlike the 

conventional 4x4 stiffness system, the new 5x5 stiffness system is efficient for both classical and numerical 

analysis of beams as its results agree with exact results. It is therefore recommended that the new 5x5 stiffness 

system should be used for both classical and numerical analysis of line continuum. 
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I. INTRODUCTION 

Element stiffness method of analyzing beams and other flexural line continua has been greatly used 

since Clough published a paper titled “The finite element method in plane stress analysis” (Clough, 1960). 

Many scholars subsequently investigated and embraced discrete element analysis as a means of finding 

approximate solutions to problems that are cumbersome to solve by the Euler or equilibrium approach of direct 

integration of the governing differential equation and simultaneously satisfying the boundary conditions 

(Melosh, 1963; Long, 1978; 1992; Cook et al., 1989; Huebner et al., 1995; Bathe, 1996; Zienkiewicz and 

Taylor, 2000). 

For line continuum under flexural deformation – pure bending, buckling and vibration – the general 

 

  

  

  
 

The direct integration of these equations will result to exact general solution to the problems as the case may be. 

If the boundary conditions of a particular linear continuum are also satisfied in the general solution, then exact 

particular solution for the linear continuum will be obtained. Thus, obtaining exact particular solution for a 

linear continuum requires the direct integration of its governing differential equation and simultaneously  
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satisfying its boundary conditions. Earlier scholars were used to trigonometric series formulation or 

approximation of the solution (deflection function or shape function). It was difficult to satisfy the boundary 

conditions using trigonometric series, so the exact approach was abandoned and energy and numerical 

approaches evolved (Iyengar, 1988). One of the numerical methods is the element stiffness method, which has 

gained wide acceptance in structural engineering. This method is based on minimum energy variation or 

weighted residual variation. In either case, it uses assumed shape function. The assumed shape function is 

chosen such that the number of terms in it must coincide with the number of chosen deformable nodes in the 

continuum (Reddy, 2005; Long et al., 2009). This practice is quite arbitrary as there is no limit to the number of 

terms to be used in the line continuum. Every scholar is free to choose as many terms as it suits his fancied 

number of deformable nodes. The whole idea is to come up with better approximating shape function, less 

rigorous computation and better results. In line with this objective, many shape functions and systems of 

deformable nodes line continuum were evolved. The most widely used is the four deformable-nodal system with 

Taylor-McLaurin’s series shape function truncated at fourth term: . As 

illustrated in figure 1, the four deformable nodes are (i) Deflection at left end of the continuum, (ii) rotation at 

left end of the continuum, (iii) deflection at right end of the continuum, and (iv) rotation at right end of the  

 

continuum. This system gave the stiffness matrix 

equation as: 

 

    

 

Figure 1: Four-deformable nodal of 4x4 stiffness system 

This 4x4 matrix system has been widely accepted and used as the most suitable system for linear continuum 

analysis in spite of other advanced systems that have emerged, such as (i) four-degree of freedom quadratic 

spline beam element system and (ii) six-degree of freedom cubic spline beam element system (Long et al., 2009) 

as illustrated in figures 2 and 3. The acceptance of the 4x4 matrix system has to do with the ease at which the 

system is applied. A close look at the three systems described here (the 4x4 system and the two advanced 

systems) shows that only deformations at the ends of the linear continuum were considered. Notwithstanding 

these advances, it is still difficult to achieve good results for most linear continuum problems, especially in 

classical cases where many discrete elements are involved. It is this difficulty that drew the attention of this 

present paper.  
 

 

 

 

             Figure 2       Figure 3 

 

The governing differential equation for pure bending of line continuum is first integrated to obtain a general 

solution of the continuum that has specific number of terms. The general solution obtained is used in energy 

variational principle to get a new and more reliable 5x5 stiffness matrix for linear continuum. Results obtained 

from analysis of line continuum using the new 5x5 matrix and the conventional 4x4 matrix are compared with 

exact results. 

II. DIRECT INTEGRATION OF GOVERNING EQUATION 
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Integrating this equation four consecutive times with respect to x gave: 

 

 

Equation (2) can be written as: 

 

 

 

III. Energy Variational Principle 
From Naschie (1990), strain energy is given as:  

 

Work performed by load is the summation of all the works individually performed by each load on the 

continuum defined as the product of the individual load and the displacement it made during the course of 

bending of the line continuum. As example, work from uniformly distributed load, q on the continuum is: 

 

Work performed by n number of point loads, Pi at different positions on the continuum is: 

 

Work performed by n number of moment loads, Mi at different positions on the continuum is: 

 

Where W, Wi, and i are shape function (deflection equation), deflection value at position i, and rotation (slope) 

value at position i respectively. 

IV. New Flexural Stiffness Matrix For Line Continuum 
We propose a new stiffness matrix system for line continuum which is different from the three 

highlighted earlier. It is based on the general solution of equation (3) that has five terms. Thus, the new matrix 

system is compelled to provide five deformable nodes. Two deformable nodes (deflection and rotation) each at 

the ends of the continuum give a total of four nodes. One more node is required to complete the system. Here, 

the fifth node (deflection) is provided at the mid span of the continuum. The resultant deformable nodes and 

corresponding forces as illustrated in figure 4 are: 
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Substituting equation (3) into equation (4) and minimizing the resulting strain energy gives the new 5 x 5 

stiffness matrix of line continuum as: 

 

Similarly, substituting equation (3) into equation (5) and minimizing the resulting load work gives the 5 x 1 

fixed end load vector [FEA] as: 

 

V. Classical And Numerical Application 
The results of the classical and numerical analysis of beams of four different boundary conditions using 

the new 5x5 stiffness matrix and the conventional 4x4 stiffness matrix are presented on tables 1 and 2 for 

uniformly distributed loaded beam and beam under central point load respectively. It can be seen from table 1 

that although the conventional 4x4 system is efficient in numerical analysis (more than one element analysis – in 

the case herein, two elements) of the four types of beam under uniform load, it can scarcely analyze simply 

supported (P-R) beam, propped cantilever (C-R) beam, and cantilever (C-F) beam by classical (one element 

analysis or analytical) means. It can not be used for classical analysis of clamped (C-C) beam. On the other 

hand, the new 5x5 stiffness system is efficient for analysing the four types of beam under uniform load. It can be 

used either for classical analysis or numerical analysis as results from the system compare very well with exact 

results. Also, table 2 shows that for beam under central point load the conventional 4x4 stiffness system is 

efficient when used numerically but can only scarcely analyse cantilever beam classically. On the other hand, 

the new 5x5 stiffness system is efficient in both classical and numerical analysis of beams under central point 

load as it gives results that compare very well with the exact results.  
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VI. CONCLUSSIONS 
We conclude that the conventional 4x4 stiffness matrix system is suitable for numerical analysis of 

beams but unsuitable for classical analysis. On the other hand, the new 5x5 stiffness system is suitable for both 

numerical and classical analyses of beams.  

VII. Recommendations 
i. The new 5x5 stiffness matrix system should be used for classical analysis of beams since classical analysis 

is easier and less time consuming than  numerical analysis.  

ii. Future research should try 5x5 stiffness system for classical study of column (strut) stability. 

iii. Future research should consider 5x5 stiffness system for classical vibration analysis of beams. 

Table 1: displacements of beam under uniformly distributed load 
 

LOADED BEAM Dis-
place-

ment 

EXACT 
Result 

One Element analysis (Classical) 
Result 

Two Element analysis 
(Numerical) Result 

4X4 

STIFFNESS 

5X5 

STIFFNESS  

4X4 

STIFFNESS 

5X5 

STIFFNESS 

 YL  0 0   

YC   NA       

YR 0 0 0 0 0 

L           

C 0 NA NA 0 0 

R           

 YL 0 0 0 0 0 

YC   NA       

YR 0 0 0 0 0 

L 0 0 0 0 0 

C   NA NA     

R           

 YL 0 NA 0 0 0 

YC   NA       

YR 0 NA 0 0 0 

L 0 NA 0 0 0 

C 0 NA NA 0 0 

R 0 NA 0 0 0 

 YL 0 0 0 0 0 

YC   NA       

YR           

L 0 0 0 0 0 

C   NA NA     

R           

Legend:  

YL, YC and YR represent deflections at left end, centre and right end of the beam respectively. 

 L, C and R represent rotations at left end, centre and right end of the beam respectively.  

.  

NA mean not accessible from the system 

 

Table 2: displacements of beam under point load 

L 

L 

q 

L 

q 

L 

q 

Clamp – Roller beam 
C-R 

 

Pin – Roller beam 
P-R 

Clamp – Clamp beam 
C-C 

Clamp – free beam 
C-F 
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