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--------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
In the absence of valves, diaphragm pumps equipped with a moving diaphragm to generate the unsteady flow in the right 

direction are designed to deliver the maximum or the required volume flowrate while reducing/suppressing backflow. 

Operating and manufacturing uncertainties affect the performance of pumps, such asthe micropump this paper is dealing 

with, and should be taken into consideration during the designloop. This paper presents such a design-optimization by 

incorporating (a) the cut-cell method for the CFD analysis of the unsteady flow, (b) the non-intrusive polynomial chaos 

expansion method, supportedby aSmolyaksparse grid, to quantify uncertainties in the performance metrics, (c) a Pareto 

front seeking evolutionary algorithm with some add-ons to reduce the otherwise excessive CPU cost and (d) an intercalary 

gradient-based improvement of selected individuals, assisted by the continuous adjoint method to compute the gradient of 

the objective functions, running regularly within the evolutionary optimization. Overall, this paper extends a previous 

optimization of the same diaphragm micropump, that time in the absence of uncertainties. 

KEYWORDS: Diaphragm micropump, Cut-cell method, Uncertainty quantifications, Hybrid optimization, Evolutionary 
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I. INTRODUCTION 
Diaphragm pumps can efficiently andnoiselessly pump various types of fluids; they deliver a time-varying flowrate 

which can occasionally become more uniform byoperating more than one pumps in parallel,[1]. Depending on their size, 

important differences may exist. Large diaphragm pumps, often used for cleaning tanks or pumping sewage, are equipped 

with inlet/outlet valves to avoid backflow. Micropumps, mostly used as medical analysis devices andfor biochemical-

processing applications[2][13], rarely bring valves due to their reduced lifetime and the damage or, at least, the extra 

resistance to sensitive fluids [7].In the absence of valves, their main components are the inlet and outlet ducts (two diffusers 

in our case), a chamber and a periodically moving diaphragm determining their pumping capabilities. 

This paper focuses on the design of an optimal 3D valveless diaphragm micropump, in the presence of 

uncertainties associated with the motion of the diaphragm. The optimization is carried out using a parameterization scheme 

for the diaphragm motion,introducing eightdesign (also, uncertain) variables in total.For the analysis of the 3D viscous flow, 

an in-house CFD solver based on the cut-cell method [4],a variant of the general class of Immersed Boundary Methods 

(IBM), is used.The cut-cell method uses a Cartesian grid that remains stationary during the diaphragm motion, by covering 

and uncovering grid cells, beingautomatically refined close to the moving geometry and de-refined elsewhere.  

Two performance metrics related to the quality of the flow at the exit of the pump are introduced: the net flowrate 

andthe backflow, both measured at the exit of the second diffuser.Two objective functions are built by combining the first 

two statistical moments of these twometrics.With these two objectives, to be minimized/maximized, the Pareto front of non-

dominated solutions is computed using an Evolutionary Algorithm (EA).EAs can reach global optimal solutions but might 

need an excessive number of calls to the CFD tool. The cost can be reducedthrough the implementation of surrogate models 

or metamodels (Metamodel-Assisted EA or MAEA) and the Principal Component Analysis (PCA) of the population 

members.Metamodels replicate the objective functions computed by the CFD tool, at an almost negligible computational 

cost.The PCA transforms the design space into a new feature space, in which the evolution operators perform much better; 

thisalso assists metamodels to be trained with significant input variables only, as identified by the PCA. 

In this paper, the MAEA (being the background optimization tool) isselectively assisted by gradient-based 

(GB)improvements, giving rise to a hybrid algorithm, [5][10], in whichthe EAundertakes the exploration of the design space 

and the GB method the refinement of selected promising solutions.In this paper, the GB method is assisted by the continuous 

adjoint approach computing the requiredgradients at practically the cost of an extra CFD evaluation, independent of the 

number of design variables. 

Operating and manufacturing uncertainties affect the performance of the pump and must beaccounted for during 

the design-optimization.Alldesign variables are considered as uncertain (stochastic) variables.By computing mean valuesand 

standard deviations of the two performance metrics and forming their weighted sum, the two objective functions of the 

optimization under uncertainties arise.In this paper, the non-intrusive Polynomial Chaos Expansion (PCE) [3]is used to 

compute the required statistical moments.The Gauss integration rules determine a set of Gaussian nodes, corresponding to 

specific data-sets of the stochastic variables, and each node is an operation mode to be evaluated on the CFD solver. The 

overall number of Gaussian nodes and, thus, the computational costare reduced by using the Smolyak sparse grid theory[11].  

This paper extends the work presented in[4], in which the diaphragm motion of the same micropump is optimized 

for maximum net flowrate and minimum backflow without though taking operating or manufacturing uncertaintiesinto 

account. At the end of the work presented in [4], the uncertainty quantification (UQ) of just a few of the computed optimal 
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solutions was performed, showing that operating uncertainties strongly affect the performance of the micropump.With the 

previous message in mind, we take a step forward by including uncertainties within the optimization loop. 

. 

II. PARAMETERIZED PUMP AND PERFORMANCE METRICS 
 The diaphragm pump to be designed has a ∼ 9mm long shape with an overall volume, prior to deforming the 

diaphragm, equal to ∼ 40 mm3. This chamber brings two identical straight diffusers with a 0.20/0.03 ratio of the outlet and 

inlet cross-sections. The top face of the chamber (size Lx ×  Lz ; located at y = 0) is mostly covered by the moving 

diaphragm.This diaphragm covers only the b1Lx × b2Lz  central part of the rectangularface, withb1 and b2 being the first two 

design variables. The diaphragm undergoes a periodic motion with a constant period T = 0.02sec. There are six more design 

variables (b3 …  b8)parameterizingits motion. Assuming that, at each instant t ∈ [0, T], ymax ≥ 0 is the maximum immersion 

of the diaphragm, this is given by  

ymax = b3exp −b4  t −
T

2
 

2

  1 −  1 −
2t

T
   

 which involvesb3(directlyaffecting the maximum immersion) and b4 (controlling how steep this distribution is). 

Thelongitudinal location of the maximum immersion, at each instant (t), is given by x/Lx
m = t/T, where Lx

m = b1Lx . The 

longitudinal deformation y(x) of the diaphragm along the symmetry plane is given by polynomial expressions, involving two 

more design variables, namely b5 and b6.Finally, the last two design variables, b7 and b8, determine the span-wise 

immersion’spolynomial distribution y(z). The interested reader may find the detailed parameterization scheme in [9]and a 

sketch of an arbitrary diaphragm motion in Figure 1. 

The two performance metrics characterizing the operation of the diaphragm pump, namely the net volume flowrate (Q2) and 

the backflow (Q1) are defined by  

Qnet =
6 ∙ 1010

T
   V    t ⋅ n   dSdt 

SoutletT

(μl/min) 

 and  

Qbf =
6 ∙ 1010

T
  min⁡(0,  V    t ) ⋅ n   dSdt 

SoutletT

(μl/min) 

where V    t  is the velocity vector andn   the outward unit normal vector; quantities on the r.h.s. of the above formulas are in SI 

units. 

 

Figure 1 Perspective view of the valveless diaphragm micropump. Fluid flows from left-bottom to right-top. Diaphragm 

deformations at 30% (left), 50% (m) and 70% (right) of the period, respectively. 

 

III. FLOW EQUATIONS & THE CUT-CELL METHOD 
The Navier-Stokes equations, governing the 3D unsteady viscous flow of an incompressible fluid, read 

Γnm
−1 ∂Vm

∂τ
+
∂Un

∂t
+
∂fnk

inv

∂xk
−
∂fnk

vis

∂xk
 =  0 

Equation 1 

The above equation includes the (real) time (t) derivative of U   =  0 u1u2u3 
T  and the pseudo-time (τ) derivative 

of V   =  p u1u2u3 
T , where p is the pressure divided by the constant fluid's density and u1 , u2 , u3  are the Cartesian 

components of fluid's velocity. The preconditioning matrix Γ−1 depends on the constant artificial speed of sound β, [9]. f inv , 

f vis  are the inviscid and viscous fluxes, respectively. 

In the cut-cell method, grid generation starts from a single “large” cell covering the entire flow domain. This 

“large”cell is decomposed again and again, though successive subdivisions of each cell into eight sub-cells, and cells 

intersecting the flow domain boundaries are additionally refined; the termination criterion is the user-defined minimum 

allowed cell size. The use of an octree data structure makes this procedure quite fast, with low memory requirements. While 

computing the intersection of cells with the boundaries, cells or parts of them which do not belong to the fluid domain are 

neglected and the flow equations are solved within the remaining cells. Thougheach cell is restricted to have at most four 

neighboring cells per face, small cut-cells may be next to much bigger ones.This may introduceflow prediction errors and, to 

avoid them,adjacent small and bigger cells merge to form hyper cells. In specific, each small cell is paired/merged with the 

neighboring cell with volume higher than a user-defined threshold that shares the largest face with it. Should this criterion 

fail, the neighboring cell with the largest volume is chosen. The algorithm allows a hyper finite volume to be formed by 

more than one cells. 

The governing equations are discretized using second-order accuracy, according to the cell-centered finite-volume 

method, while taking thegeometrical conservation law into consideration. At each time-instant the grid is de-refined or 
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refined in areas far from and close to the moving diaphragm, respectively. As the diaphragm moves, cells change in shape or 

migrate from the fluid to the solid region and vice-versa. An upwind scheme is used for the convection terms. 
 

IV. UNCERTAINTY QUANTIFICATION 
 For the UQ of the micropump's performance in the presence of uncertainties, the two performance metrics are 

considered as stochastic functions (Q1 = Qbf & Q2 = Qnet ) in terms of the stochastic (herein, coinciding with the design) 

variables bk , by associating user-defined probability density functions (PDFs) with them. In this paper, all uncertain 

variables follownormal distributions. So, Hermite Polynomials Hej(b  ), with j defining the maximum degree of each of them, 

are used to express the stochastic function Qi  by the truncated term [3], 

Qi b   ≈ ai,jHej(b  )

q

j=1

 

where q is the user-defined chaos order andai,j  are the PCE coefficients.The first two statistical moments of Qi  (mean 

valuesμ Q i
and variancesσ Q i

2 ) are computed throughGalerkin projections as 

𝜇 𝑄𝑖  = 𝑎𝑖 ,0 ,   𝜎 𝑄𝑖
2 =  𝑎𝑖,𝑗

2

𝑞

𝑗=1

 

with 

𝑎𝑖 ,𝑗 =  𝑄𝑖 𝑏   
𝑆

𝐻𝑒𝑗  𝑏   𝑃𝐷𝐹 𝑏   𝑑𝑏  =   𝑟𝑚𝑄𝑖 𝑝 𝑚 

𝑀

𝑚=1

,     𝑗 = 0,1,… , 𝑞       

Equation 2 

 where S is the objective space and 𝑟𝑚  are known weights. The M Gaussian nodes𝑝 𝑚within the domain of 

integration and the𝑟𝑚values are determined by the Gauss quadrature integration rules, in this case with the use ofSmolyak 

sparse grid, for the reasons explained in thesectionVI. For each set of design vectors (candidate solution) and each objective, 

the first two statistical moments are computed at the cost of M calls to the CFD software. 

 The derivatives of the first two statistical momentsof Q1 and Q2w.r.t the design variables 𝑏  ( required for the GB 

improvement) are derived by differentiatingEquation 2w.r.t.𝑏𝑘  
𝛿𝑎𝑖 ,𝑗

𝛿𝑏𝑘
=  

𝛿𝑄𝑖
𝛿𝑏𝑘

 𝑏   𝐻𝑒𝑗  𝑏   𝑃𝐷𝐹 𝑏   𝑑𝑏  
𝑆

,   𝑖 = 1,2,    𝑗 = 0,1,… , 𝑞 

Equation 3 

where the derivatives 
𝛿𝑄𝑖

𝛿𝑏𝑘
 are computed by the continuous adjoint method. Then, the derivatives of the mean values and 

standard deviations are computedas 

𝛿𝜇 𝑄𝑖
𝛿𝑏𝑘

 =
𝛿𝑎𝑖 ,0
𝛿𝑏𝑘

,
𝛿𝜎 𝑄𝑖
𝛿𝑏𝑘

=
1

𝜎 𝑄𝑖
 𝑎𝑖 ,𝑗

𝛿𝑎𝑖
𝛿𝑏𝑘

𝑞

𝑗=1

 

The computation of
𝛿𝐹𝑖

𝛿𝑏𝑘
(𝐹𝑖 , 𝑖 = 1,2 are the two optimization objectives to be defined in the sectionVI) is then straightforward. 

 

V. THE HYBRID OPTIMIZATION METHOD 
 The optimization method involves gradient-free and gradient-based search.The background tool is a MAEA which 

computes the Pareto front of non-dominated solutionsby performing a small percentage of the calls to the (computationally 

expensive) CFD software required otherwise;this is achieved not only by implementing on-line trained metamodels but, also, 

through the PCA of the evolving populations,in each generation.Next to the MAEA, an adjoint-based (GB) improvement of 

some of the current non-dominated solutions is implemented. 
 

1. ThePCA-drivenMAEA 

The PCA-driven MAEA used in this paper is based on a (μ,λ) EA with real encoding; μ and λ stand for the parent 

and offspring population sizes. During the evolution, a database (DB) records all candidate solutions evaluated on the CFD 

software and there is also an elite set (with e members at most) of the best-so-far solutions. The use of on-line trained 

metamodels starts after a few (a user-defined small number) generations, during which a minimum number of evaluated 

individuals is stored into the DB. In all subsequent generations, the λ offspring are first evaluated on metamodels trained, on 

the fly, on a small number of neighboring individuals found in the DB. It is important to mention that a separate metamodel 

(Radial Basis Function, RBF, network) is trained for each and every individual; the reader should find more on this MAEA 

for many objective optimization problems in [6]. All offspring are thus pre-evaluated on personalized metamodels, i.e.λ 

different metamodels should be trained. Τhen, a few top of them are identified (according to the outcome ofthe approximate 

pre-evaluation) and re-evaluated on the CFD software. Even without the PCA-based add-on mentioned in the next 

paragraph, this MAEA reduces the number of calls to the CFD software by even an order of magnitude. 

To avoid the MAEA performance degradation in problems with many design variables, the PCA of the current 

offspring population controls the evolution operators and/or reduces the number of input units used to train the 

metamodelsError! Bookmark not defined.. Population members are first transformed to a new feature space with ordered 

variances, computed by the Kernel PCA, where evolution operators perform better. In the new space, higher mutation 

probabilities are assigned to directions with smaller variances. Also, for each offspring, once the training patterns for its 

“personalized” metamodel have been selected, these are transformed to the feature space (still based on the Kernel PCA) and 



Optimization under Uncertainties of a Valveless Diaphragm Pump using the Cut-Cell Method 

DOI:10.9790/1813-0808010714                                    www.theijes.com                                                   Page 10 

the metamodel inputs along the direction with the smaller variances are truncated, as less important. With less input units, 

the metamodels predict better at lower computational cost. 
 

2. Adjoint Equations and Gradient Computation 

 The gradient-based counterpart of the hybrid optimization method computes the gradient of the function F to be 

minimized (herein, F is the weighted sum of the objectives 𝐹1,𝐹2, as defined later on; the computation of weights is an 

important part of the hybrid search method that is carried out automatically, see subsection 3) and performs a descent step, 

indicatively expressed as𝑏𝑖
𝑛𝑒𝑤 = 𝑏𝑖

𝑜𝑙𝑑 − 𝜂
𝛿𝐹

𝛿𝑏𝑖

  𝑜𝑙𝑑 , where 𝜂 is a user-defined step. 

 The presentation of the mathematical development of the method that computes the gradient, in all detail, is 

beyond the scope of this paper; the interested reader should refer to [9]. In brief, the continuous adjoint method augments F 

by the time and space integrals of the governing (flow) equations, multiplied by the adjoint fields 𝛹𝑛 . The so-defined 

augmented F is written as, 

𝐹𝑎𝑢𝑔 = 𝐹 +   𝛹𝑛𝑅𝑛𝑑𝛺𝑑𝑡 

𝛺 𝑡 𝑇

 

Equation 4 

where 𝛺 𝑡  is the volume of the instantaneous fluid domain.𝐹𝑎𝑢𝑔  is equal to F, since the last term on the r.h.s.is zero. 

Equation 4 is differentiatedw.r.t.𝑏𝑖  and the adjoint variable fields are used to eliminate the variations in the flow variables 𝑉   
w.r.t. 𝑏𝑖 , the computation of which has a cost that scales with the number of design variables. This gives rise to unsteady 

adjoint PDEs, which (assuming F to be an integral over the boundaries of the domain; which in this case is our application) 

are 

𝑅𝑚
𝐴 = 𝛤𝑛𝑚

−1
𝜕𝛹𝑛
𝜕𝜏

−
𝜕𝛹 𝑚
𝜕𝑡

− 𝐴𝑛𝑚𝑘
𝜕𝛹𝑛
𝜕𝑥𝑘

−
𝜕𝑓𝑘𝑚

𝐴,𝑣𝑖𝑠

𝜕𝑥𝑘
= 0 

Vector𝛹     comprises the adjoint velocities only, i.e. 𝛹    =  0 𝛹2𝛹3𝛹4 
𝛵 ,𝐴𝑛𝑚𝑘 =

𝜕𝑓𝑛𝑘
𝑖𝑛𝑣

𝜕𝑉𝑚
is the Jacobian of theinviscid 

fluxes,𝑓𝑘
𝐴,𝑣𝑖𝑠 =  0 𝜏1𝑘

𝐴 𝜏2𝑘
𝐴 𝜏3𝑘

𝐴  
𝑇

 is the adjoint viscous flux and 𝜏𝑘𝑚
𝐴  = 𝜈(

𝜕𝛹𝑘+1

𝜕𝑥𝑚
 +

𝜕𝛹𝑚+1

𝜕𝑥𝑘
)are the adjoint viscous stresses.The 

presentation of the adjoint boundary conditions is omitted in the interest of space. Finally, the expression of the sensitivity 

derivatives of F is  

𝛿𝐹

𝛿𝑏𝑖
=    𝛹1𝑛𝑚 − 𝜏𝑘𝑚

𝐴 𝑛𝑘  
𝛿𝑢𝑚

𝐷

𝛿𝑏𝑖
−
𝜕𝑢𝑚
𝜕𝑥𝑙

𝛿𝑥𝑙
𝛿𝑏𝑖

  𝑑𝑆𝑑𝑡

𝑆𝐷𝑇

 

Equation 5 

 where 𝑆𝐷  is the diaphragm's surface. In Equation 5, the derivatives of the diaphragm velocity  
𝛿𝑢𝑚

𝐷

𝛿𝑏𝑖
 and position 

 
𝛿𝑥𝑙

𝛿𝑏𝑖
  are given by closed-form expressions, in terms of time, space and 𝑏  ,which results from the differentiation of the 

diaphragm motion. 

The two performance metrics used in this paper stand for the backflow at the pump's exit and the net volume of fluid 

pumped within a period T, respectively, as mentioned in section II. Since function “min” (contained in the definition of𝑄1) 

cannot be differentiated, asigmoid function  

𝒮 𝑄 =  1 −
1

1+ 𝑒𝑘2(𝑄−𝑄𝑐𝑟𝑖𝑡 )+ 𝑘1
is used instead, with the constants 𝑘1 = 𝑙𝑛  

1

1−𝑓2
− 1 ,   𝑘2 =

𝑙𝑛 
1

1−𝑓2
−1 −𝑘1

𝑄𝑖𝑛𝑡 −𝑄𝑐𝑟𝑖𝑡
and 𝑄 =

− 𝑢𝑘𝑛𝑘where𝑓1, 𝑓2 are two user-defined constants. 𝑄1 is thus transformed to a differential function and allows for the 

development of the continuous adjoint method.Regarding the optimization under uncertainties, derivatives 
𝛿𝑎𝑖 ,𝑗

𝛿𝑏𝑞
 are needed as 

it arises fromEquation 3, meaning that the adjoint equations must be solved for each Gaussian node and each objective. 𝑀 

CFD runs are required per individual evaluation plus2𝑀adjoint runs per GB improvement. 
 

3. The Hybrid Optimization Algorithm 

 The two-objective optimization aims at minimizing 𝐹1 = 𝜇𝑄𝑏𝑓 + 𝜎𝑄𝑏𝑓  while maximizing 𝐹2 = 𝜇𝑄𝑛𝑒𝑡 − 𝜎𝑄𝑛𝑒𝑡 , as 

computed using the non-intrusive PCE method, sectionIV. The PCA-driven MAEA of subsection1is the background search 

method which updates the front of non-dominated solutions. The implementation of the GB method starts by concatenating 

the two objectives in a single scalar function (𝐹 =  𝑤𝑖𝐹𝑖
2
𝑖=1 ; to be minimized), using weights that are automatically 

computed by the method. Then, the adjoint method computes the gradient of F w.r.t.𝑏𝑖 . This gradient is all we need to 

improve the selected individual by moving them in the steepest descent direction,with a user-defined step value η. The GB 

improvement could be applied to all non-dominated solutions in each generation, but the cost of computing gradients for all 

of them makes the method quite expensive. For this reason, GB improvements are applied to just a few automatically 

selected individuals in each generation. GB improvements startsimultaneously with the metamodels. They are applied to a 

few individuals (their number is user-defined) generated during the re-evaluation on the CFD model, belonging to the current 

front of non-dominated solutions. For them, a single descent direction, referred to as the Pareto Advancement Direction 

(PAD), is computed; the role of 𝑤𝑖 is to determine the PAD. Its role is to simultaneously improve all objective functions by 

creating a new individual dominating the processed one. In [5], a technique to “appropriately” compute the PAD has been 

proposed and briefly repeated below. 
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 The gradient of F is given by
𝛿𝐹

𝛿𝑏𝑗
 =   𝑖=1

2 𝑤𝑖
𝛿𝐹𝑖

𝛿𝑏𝑗
. As said before, the PAD depends on 𝑤𝑖  and the PCA technique 

that converts a data set (𝑫)of M observations 𝐹 ∈ 𝑅2, formed by the objective function values of the current front 

members,into a set of uncorrelated principal components.The PCA computes the covariance matrix P of D and, then, solves 

an eigenproblem to define the eigenvalues 𝜦 and eigenvectors 𝑼. Through the following equation 𝑐 = 𝑐  𝐹  = 𝑼 𝐹 − 𝜇  ,

𝑐 ∈ 𝑅2any objective vector 𝐹 is mapped onto the so-defined new feature space,where 𝜇  is the vector of mean values of the 

objective functions of 𝑫.Note that the elements of 𝑐  correspond to directions with variances in descending order.The selected 

population members are updated by moving them in the direction with the smallest variance,which is considered nearly 

"perpendicular" to the current front.To do so, the gradients 
𝛿𝐹

𝛿𝑏𝑗
are mapped onto the feature space, 

𝛿𝑐 

𝛿𝑏𝑗
= 𝑼

𝛿𝐹 

𝛿b j
 which results 

by differentiating the above equation and the last/second rowof the 
δc  

δb j
 matrix replaces 

δF

δb j
 in the steepest descent equation.  

 
Figure 2demonstrates the way the GB method updates, between three (arbitrarily selected)successive generations, the front 

of non-dominated solutions. During almost all generations, the GB method successfully updates at least one individual. 

 
Figure 2 PAD (blue and red arrows) upgrading the fronts of three consecutive generations. Only a part of the front is 

shown.Points connected by a straight line correspond to intercalary GB improvements. 

 

VI. OPTIMIZATION RESULTS 
The optimization under uncertainties performed starts from an existing (reference) micropump that delivers 

Qnet = 0.48 μl/min of fluid witha non-negligible backflow rate (Qbf = 0.06μl/min).Therefore, it was decided to run a two-

objective optimizationaiming at minimum F1 = μQ bf
+ σQ bf

(regardingQbf ) andmaximumF2 = μQ net
− σQ net

 (regarding 

Qnet ), as already explained above.All mean values, standard deviations and objective functions are measured in μl/min.The 

PCA-driven MAEA is setup with μ = 6, λ = 12 andmetamodels and the PCA technique are activated just after the first 

generation.The GB improvement updates only one individual per generation, by performing a single descent step;the 

required gradients are computed by the continuous adjoint method. 

For the optimization, lower and upper bounds for the eight design variables have been defined. Since all design 

variables are also considered as normally distributed uncertain variables, these bounds are practically associated with their 

mean values.Their standard deviationis set to reasonably small values for each design variable.Working with the non-

intrusive PCE, with 8 stochastic variables and chaos order equal to one, a great number of CFD-based evaluations (256, in 

such a case; to compute 9 expansion coefficients) per candidate solution is required. To avoid this high cost, a 

Smolyaksparse grid [11]is implemented;at the cost of17 evaluationson the cut-cell software, the same coefficients are 

approximated.Thus, each individual's evaluation costs 17 CFD runs and, if selected for GB refinement, another2 × 17adjoint 

runs are needed to compute the gradients. 
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Figure 3shows the computed front of non-dominated solutions achieved after the equivalent cost of1400 CFD runs. 

Moreover, the design variables for the two front edges along with the reference solution are presented in the parallel 

coordinates diagram shown in  

Figure 4. 

 

 
Figure 3 The computed Pareto front of non-dominated solutions. 

 

 
Figure 4 Parallel Coordinates of the two front edges (in red) and the reference solution (in black). 
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Figure 5 shows how the backflow and net volume flux evolves over time, within a period,for the two front edges and the 

reference solution. The blue hatched areas indicate the values each quantity can reach based on the standard deviation 

(μQ ± 3σQ). The solution corresponding to max. F2, has noticeable backflow, which makes the net volume flux to be 

negative for a great part of the period (a bit less than half of the period). However, the positive overweighs the negative part 

resulting in max. F2. This appears to be a quite unstable solution, as it is seriously affected by the uncertainties of the design 

variables.Regardingthemin. F1solution, with the selected resolution in time (20 steps within a period), the backflow becomes 

negative during a single step, in which case the instantaneous net volume flux remains positive. In contrast, the reference 

solution has much greater backflow compared even to the max. F2 solution. The net volume flux is positive during half of 

the period and negative during the rest of it,yielding a smaller Qnet  than the ever computed maximum. From this point of 

view, any of the Pareto solutions by far outperforms the reference pump. 

 

 
Figure 6 shows the flow field of the two front edges and the reference solutions. It can be seen that the reference solutions; 

the reference solution has instantaneously the highest backflow compared to the other solutions. 

 

 
Figure 5𝑸𝒏𝒆𝒕and 𝑄𝑏𝑓 times-series for the max. 𝐹2 (top), min. 𝐹1 (middle) and the reference (bottom) solutions taken from the 

Pareto front.Mean time-distributions are plotted with a black line and black filled points; the hatched area signifies the zone 

between  𝜇 − 3𝜎 and 𝜇 + 3𝜎. Note the different scaling in the vertical axis. 
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Figure 6 Instantaneous (at the same instant, the one in which the reference pump has the greatest backflow.) velocity 

magnitude fields for the max. F2, min. F1 andreferencediaphragm’smotions.Yaxisnotinscale. 

 

VII. CONCLUSIONS 
 Thepurpose of this paper was to (a) present a design-optimization workflow and (b) apply it for the redesign of a 

valveless diaphragm micropump for medical applications, by considering uncertainties associated with the design variables. 

In contrast to a previous work by the authors, on the same micropump, these operational of manufacturing uncertainties are 

used during the optimization by formulating and optimizing objective functions combining the mean values and standard 

deviations of the performance metrics. The background optimization tool is an EA, assisted by RBF networks trained on the 

fly, separately for each and every new candidate solution, and the processing of each population using PCA. This is 

hybridized with a gradient-based refinement of some of the current optimal solutions. To compute the gradient of the 

objective function(s), the continuous adjoint method was mathematically formulated, programmed and used. Regarding 

uncertainties, the non-intrusive variant of the PCE and a Smolyak sparse grid were used. Using the above s/w, the Pareto 

front of the optimal solutions was computed with the net flowrate and the backflow as quality metrics.  
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