

# An overview of the early development of the first genetically engineered crop- derived foods

## Nicolau B da Cunha<sup>1</sup>, Michel L Leite<sup>1</sup>, Lorena S L Costa<sup>1</sup>, Victor A Cunha<sup>1</sup>, Simoni C Dias<sup>1</sup>, Giovanni R. Vianna<sup>2</sup>, Elíbio L. Rech<sup>2</sup>

<sup>1</sup>Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Programa de Pós-Graduação Stricto Sensu em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916, Av. W5, Brasília, DF, Brazil.

<sup>1</sup>Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Programa de Pós-Graduação Stricto Sensu em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916, Av. W5, Brasília, DF, Brazil.

<sup>1</sup>Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Programa de Pós-Graduação Stricto Sensu em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916, Av. W5, Brasília, DF, Brazil.

<sup>1</sup>Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Programa de Pós-Graduação Stricto Sensu em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916, Av. W5, Brasília, DF, Brazil.

<sup>1</sup>Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Programa de Pós-Graduação Stricto Sensu em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916, Av. W5, Brasília, DF, Brazil.

<sup>2</sup>Laboratório de Agricultura Tropical, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Brasília, DF, CEP 70770-900, Brazil.

<sup>2</sup>Laboratório de Biologia Sintética, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Brasília, DF, CEP 70770-900, Brazil.

CorrespondingAuthor: Nicolau B Da Cunha

KEYWORDS; Genetically engineered foods, human nutrition, nutrient increased crops

Date of Submission: 25-12-2019 Date of Acceptance: 03-01-2020

### I. INTRODUCTION

Transgenic plants required by the food industry or the increase in the nutritional quality of the human diet are part of the so-called second generation of transgenic organisms and constitute one of the most important niches of transgenic products related to agriculture.

Most vegetables consumed by the population are deficient in certain essential amino acids that cannot be synthesized by the human body. Cereals such as rice (O. sativa) and wheat (T. aestivum) are low in lysine and threonine, while vegetables such as peas (P. sativum) and beans (P. vulgaris) are deficient in methionine and cysteine.

The fatty acid content of oilseeds consumed or used in food preparation is also low in oils used as important nutrients, related to various metabolic functions, cardiovascular health, blood pressure regulation and inflammatory response.

The development of more nutritious genetically modified foods advocates the production of transgenic plants containing increased levels of biomolecules used as nutrients or functional metabolic effectors in the

human organism, such as amino acids, proteins, fatty acids, carbohydrates and vitamins, or only that have increased their levels. natural bioavailability and decrease of nutrient chelators and allergenic compounds.

The first example of genetically altered food obtained in the laboratory to reach the consumer effectively was tomato (L. esculentum) FlavrSavr®, developed in 1994 by Californian biotechnology company Calgene. A year later the product was released for regular marketing by the USDA.

Tomato plants, as well as other fruiting plant species, contain in their genome a gene encoding the enzyme Polygalacturonase (PG), responsible for catalyzing the digestion reaction of a structural carbohydrate present in the cell wall of fruits, called pectin. The progressive conversion of pectin to simpler carbohydrates leads to the natural ripening of the fruit followed by its decay, able to facilitate the release of seeds for plant propagation.

TomatoesFlavrSavr® contained copies of the PG gene in complementary orientation to conventional sequences, leading to the obtaining of complementary copies of mRNA complementary to each other after the gene transcription process.

Duplex mRNA molecules are naturally inactivated by endogenous molecular mechanisms triggered by the plant's own metabolism, resulting in a marked decline in PG biosynthesis.

Thus, tomatoes FlavrSavr® presented only basal or insignificant PG enzyme levels, sufficient to guarantee an altered phenotype of long-term maintenance of the concentration of pectin molecules in the fruit cell cell wall, responsible for considerably delaying the ripening process.

FlavrSavr® fruits took about twice as long to rot as conventional tomatoes, could be stored for more than three weeks at room temperature and did not need to be harvested green and rigid nor transported at low temperatures to maintain their quality and flavor conservation (hence your name).

Despite the undeniable scientific and commercial advancement in FlavrSavr® technology, problems with adapting harvesting machinery, the low number of transgenic cultivars adapted to different producing regions and, mainly, public skepticism about paying higher prices for the product, led to technology abandonment in 1996, followed by the purchase of Calgene by biotech giant Monsanto.

In 1995, Calgene launched a transgenic variety of canola (B. napus) containing a gene from the Umbellulariacalifornica plant (Hook. &Arn.) Nutt. (belonging to the laurel family), encoding a thioesterase that catalyzes the biosynthesis of lauric acid, a 12-carbon, fully saturated, acyl-greasy tail fatty acid normally found in low concentrations in canola seed oil is considered healthier and with better cooking properties than conventional oils mainly derived from soybean (G. max) and sunflower seeds.

Transgenic canola has 40% of its oil composition due to the accumulation of lauric acid and is still one of the best examples of good acceptance by the public, especially in the United States.

The most representative biotechnological example involving the nutritional enrichment of a food by genetic engineering was the development of transgenic rice (O. sativa) plants by the group of Germans Ingo Potrykus and Peter Breyer, respectively from the Institute of Plant SciencesSwiss Federal Institute of Technology (ETH), Zurich (Switzerland) and the University of Freiburg (Germany) in late 1990s, containing the genes encoding the enzymes phytoene synthase and phytoene desaturase (originating from the plant Narcissus pseudonarcissus L.) and the gene lycopene op-cyclase of the bacterium Erwinia uredovora, responsible for the reconstitution of the provitamin A anabolic pathway, called  $\beta$ -carotene, a precursor to retinol (vitamin A itself).

The accumulation of this yellowish pigment in high concentrations in the grain endosperm of the most promising transgenic lines was more than  $1.5\mu g$  of the molecule per gram of dry grain, enough to give the yellowish hue to the inflorescences of the transgenic plants, called "Golden Rice". or Golden Rice.

Pediatric vitamin A deficiency is the most important but preventable cause of childhood blindness - a disease that strikes about 500,000 children a year in 26 countries and, at acute levels, contributes to the deaths of 2 million children in underdeveloped nations. annually.

As  $\beta$ -carotene is an indispensable precursor for the biosynthesis of vitamin A by the human organism, rice forms the staple diet of populated Asian, American and African countries and there is no identified rice germplasm able to synthesize the nutrient for use in conventional breeding programs, transgenic plants such as Golden Rice are the only options to fill these biotechnological gaps.

The Golden Rice project was funded primarily by the American Rockefeller Foundation and has philanthropic purposes, which involves the abolition of technological royalties for farmers and logistical and product distribution facilities.

After Potrykus's retirement, Breyer was able to obtain new, more efficient transgenic strains by replacing the narcissus phytoene synthase gene (N. pseudonarcissus) with his maize analog (Z. mays), which enabled 23-fold higher accumulation of  $\beta$ - carotene in the beans, resulting in the Golden Rice II variety.

By assessing the levels of  $\beta$ -carotene accumulation achieved in Golden Rice II grains, it was estimated that the daily intake of 72 grams of polished grains of this transgenic variety is enough to provide 50% of the recommended nutritional intake of vitamin A.

Despite the social character, biotechnological ingenuity and experimental elegance of the project, wellorganized opposition by non-governmental entities and bureaucratic and regulatory difficulties prevented the arrival of the product to farmers and, a decade after its development, Golden Rice It is still a biotech promise to come true no earlier than 2011 according to the most optimistic forecasts.

Several other examples of genetically modified plants present in food and useful for the food industry as well as for academic purposes were obtained from the 1990s (Table 1).

| Table 1: Examples of GM plants with potential use in the food industry |                                                                         |                                                                               |                                                                                              |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Transgenic plant                                                       | Origin of the gene                                                      | Recombinantproteinexpressed(E),overexpressed(SE)                              | Phenotype change                                                                             |  |
|                                                                        |                                                                         | suppressed (S)                                                                |                                                                                              |  |
| Melon                                                                  | Melon                                                                   | aminocyclopropane<br>carboxylate oxidase (S)                                  | Decreased ethylene<br>production. Increased shelf<br>time                                    |  |
| Broccoli                                                               | Broccoli                                                                | aminocyclopropane<br>carboxylate oxidase (S)                                  | Decreased ethylene<br>production. Increased shelf<br>time                                    |  |
| Tomato, lettuce, potatoes and watermelon                               | Plants<br>Dioscoreophyllumcumrnin<br>sii and<br>Thaumatococcusdaniellii | Monelin (E)<br>thaumatin (E)                                                  | Increased sweetish flavor                                                                    |  |
| Maize                                                                  | Plant<br>Pentadiplandrabrazzeana                                        | Brazeine (E)                                                                  | Increased sweetish flavor                                                                    |  |
| Apple and potato                                                       | Apple and potato                                                        | Polyphenol oxidase (S)                                                        | Reduction of oxidation after cutting (brown spots)                                           |  |
| Wheat                                                                  | Wheat                                                                   | High molecular weight glutenins (SE)                                          | Increased elasticity and strength for baking                                                 |  |
| Potato                                                                 | Potato                                                                  | Starch synthase (S)                                                           | Absence of amylosis,<br>facilitated preparation in<br>microwave                              |  |
| Potato                                                                 | Klebsiella pneumoniae<br>(Bacteria)                                     | Cyclodextrin<br>glycosyltransferase (E)                                       | Increased production of cyclodextrins, enhancing odor and flavor                             |  |
| Potato                                                                 | E. coli(Bacteria)                                                       | ADP-glucose<br>pyrophosphorylase (E)                                          | Increase by 60% in the concentration of starch                                               |  |
| Potato                                                                 | Potato                                                                  | AGPase (S)                                                                    | Abolition of starch<br>production, 30% increase<br>of sucrose accumulation<br>and 8% glucose |  |
| Potato and Tobacco                                                     | Bacillus subtilis(Bacteria)                                             | Frutosyltransferase (E)                                                       | Accumulation of fruit sugar<br>(8% in tobacco leaves and<br>7% in potato tubers)             |  |
| Beet                                                                   | Sunflower potato, onion                                                 | sucrose fructosyltransferase<br>and fruthane 6G<br>fructosyltransferase (E)   | Obtaining fruitans in tubers<br>above 110µmol/g in<br>tuercules1                             |  |
| Wheat                                                                  | Wheat                                                                   | starch branching enzyme                                                       | More than 70% increase in<br>the content of amylose in<br>grain                              |  |
| Tobacco                                                                | E. coli(Bacteria)                                                       | trealose-6-phosphate<br>synthase and trealose-6-<br>phosphate phosphatase (E) | Production of food<br>stabilisertrehalose                                                    |  |
| Rice and wheat                                                         | Pea                                                                     | Legumin (E)                                                                   | Increased lysine                                                                             |  |
| Lippin                                                                 | Sunflower                                                               | Albumin (E)                                                                   | Increased methionine                                                                         |  |
| Potato                                                                 | Amaranthus<br>hypochondriacus (Plant)                                   | Albumin (E)                                                                   | 100% increase in protein<br>content and essential amino<br>acids                             |  |
| Arabidopsis                                                            | E. coli(Bacteria)                                                       | dihydrodipicolinate synthase<br>and aspartate kinase (E)                      | Increased lysine content by 80 times in seeds                                                |  |
| Corn, canola and soy                                                   | E. coli(Bacteria)                                                       | dihydrodipicolinate synthase<br>(E)                                           | Increased lysine content to 30% of total seed amino acids                                    |  |
| Rice                                                                   | Rice                                                                    | anthranilate synthase (E)                                                     | 100% increase in<br>tryptophan content in<br>grains                                          |  |
| Maize                                                                  | Maize                                                                   | Zein (SE)                                                                     | Increased methionine                                                                         |  |
| Arabidopsis                                                            | E. coli(Bacteria)                                                       | $\Delta$ 9-elongase,<br>$\Delta$ 8-deaturase, and<br>$\Delta$ 5-deaturase (E) | Increase in eicosapentenoic<br>(3% total) and arachidonic<br>(6.6% total) fatty acids        |  |

Table 1: Examples of GM plants with potential use in the food industry

| Tobacco and flax                                          | Mortierellaalpina(Fungus),<br>Phaeodactylumtricornutum<br>(Algae);<br>Physcomitrellapatens(Bryo<br>phyte),Boragoofficinalise(P<br>lant),C. elegans(Nematoid) | deaturases $\Delta 5$ and $\Delta 6$ and $\Delta 6$ -elongase (E)                                    | Increase of long chain<br>polyunsaturated fatty acids<br>(25% total seeds)  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Arabidopsis                                               | Zebrafish and Pavlova<br>saline(Seaweed)                                                                                                                     | $\Delta 5$ and $\Delta 6$ deaturases (E)                                                             | Accumulation of<br>docosaexaenoic acid (0.5%<br>total)                      |
| Soy                                                       | Mortierellaalpina and<br>Saprolegniadiclina (Fungi)                                                                                                          | $\Delta 6$ -elongase and<br>$\omega 3$ microsomaldesaturase<br>(E)                                   | Accumulation of<br>docosaexaenoic acid (3%<br>total)                        |
| Mustard                                                   | Phytophtorainfestans and<br>Thraustochytrium<br>aureum(Fungi)and<br>Calendula officinalis(Plant)                                                             | ω3 desaturaseand<br>Δ12-deaturase<br>acyltransferase (E)                                             | Long-chain<br>polyunsaturated fatty acids                                   |
| Potatoes, cauliflower,<br>carrots, canola and<br>tomatoes | Erwinia herbicola(Bacteria)                                                                                                                                  | phytoene synthase<br>phytoene desaturase<br>lycopene β-cyclase (E)                                   | Increase in β-carotene<br>("Yellow potato" and<br>"orange cauliflower")     |
| Arabidopsis                                               | Arabidopsis                                                                                                                                                  | γ-tocopherol<br>methyltransferase (SE)                                                               | Accumulation of $\alpha$ and $\beta$ -tocopherols (components of vitamin E) |
| Soy                                                       | Arabidopsis                                                                                                                                                  | 2-Methyl-6-<br>phytylbenzoquinol<br>methylltransferase<br>and γ-tocopherol<br>methylltransferase (E) | 8-fold increase in the accumulation of $\alpha$ tocopherol                  |
| Tomato, rice and<br>Arabidopsis                           | E. coli bacteria                                                                                                                                             | GTP cyclohydrolase I (E)                                                                             | folate                                                                      |
| Tobacco                                                   | Mouse<br>Wheat                                                                                                                                               | L-gulonolactone oxidase and<br>dehydroascorbate reductase<br>(E)                                     | Ascorbate (vitamin C)                                                       |
| Tomato                                                    | Tomato                                                                                                                                                       | malate dehydrogenase (E)                                                                             | Increase Ascorbate build-<br>up by 6 times                                  |
| Rice                                                      | Barley                                                                                                                                                       | nicothianamine<br>aminotransferases (E)                                                              | Increased use of iron.                                                      |
| Rice                                                      | Soy                                                                                                                                                          | ferritin (E)                                                                                         | Grains with 4 times more bioavailable iron                                  |
| Rice, peanuts and potatoes                                | Rice, peanuts and potatoes                                                                                                                                   | Modification of epitopes of allergenic proteins                                                      | Increased food tolerance                                                    |
| Turnip                                                    | Turnip                                                                                                                                                       | UDP-GLC:synapate<br>glycosyltransferase (S)                                                          | 76% reduction in levels of toxic synapate esters in seeds                   |
| Cassava                                                   | Cassava                                                                                                                                                      | Enzyme cytochrome P450<br>(S)                                                                        | 92% reduction in<br>cyanogenic glycosides<br>levels                         |
| Potato                                                    | Leaven                                                                                                                                                       | Invertase (E)                                                                                        | Reduction of toxic glycoalkaloids                                           |
| Coffee                                                    | Coffee                                                                                                                                                       | Caffeine synthase (S)                                                                                | Decreased caffeine levels                                                   |

Adaptedby Zhu et al., 2007.

### **II. CONCLUSION**

The development of the first genetically engineered functional foods was important to show to public opinion the potential of transgenic organisms not only for the agricultural sector but also for human health and nutrition. The first most nutritious transgenic plants with the least antinutritional and allergenic factors showed different degrees of commercial success and public acceptance. This was due to a number of factors such as poor marketing, difficulties in disseminating science to the general public, anti-GMO campaigns and the novelty factor for the public, which is naturally more refractory to technological innovations involving aspects of human nutrition. Despite some drawbacks, early genetically engineered foods have opened the market for new versions

of fruits, seeds and leaves that carry bioactive molecules with great potential for the nutritional enhancement of the human diet. These new foods should gain more shelf space in supermarkets and become popular in the long run.

#### REFERENCE

- Aragão, F.J.L., Barros, L.M.G., Sousa, M.V.d., Grossi de Sá, M.F., Almeida, E.R.P., Gander, E.S., andRech, E.L. (1999). Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletiaexcelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Geneticsand Molecular Biology 22, 445-449.
- [2]. Brasileiro, A.C.M. (1998). Introdução à Transformação Genética de Plantas. In Manual de Transformação Genética de Plantas, E. Cenargen, ed (Brasilia: Embrapa Cenargen), pp. 13-16.
- [3]. Capell, T., and Christou, P. (2004). Progress in plant metabolic engineering. Current Opinion in Biotechnology 15, 148-154.
- [4]. Chong, D.K.X., and Langridge, W.H.R. (2000). Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Research 9, 71-78.
- [5]. Chong, D.K.X., Roberts, W., Arakawa, T., Illes, K., Bagi, G., Slattery, C.W., and Langridge, W.H.R. (1997). Expression of the human milk protein β-casein in transgenic potato plants. Transgenic Research 6, 289-296.
- [6]. Daniell, H. (1999). GM crops: public perception and scientific solutions. Trends in Plant Science 4, 467-469.
- [7]. Daniell, H. (2002). Molecular strategies for gene containment in transgenic crops. Nat Biotech 20, 581-586.
- [8]. Daniell, H., Lee, S.B., Panchal, T., and Wiebe, P.O. (2001). Expression of the Native Cholera Toxin B Subunit Gene and Assembly as Functional Oligomers in Transgenic Tobacco Chloroplasts. Journal of Molecular Biology 311, 1001-1009.
- [9]. Doran, P.M. (2000). Foreign protein production in plant tissue cultures. Current Opinion in Biotechnology 11, 199-204.
- [10]. Fischer, R., Stoger, E., Schillberg, S., Christou, P., and Twyman, R.M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology 7, 152-158.
- [11]. Schillberg, S., Emans, N., and Fischer, R. (2002). Antibody molecular farming in plants and plant cells. Phytochemistry Reviews 1, 45-54.
- [12]. Stoger, E., Ma, J.K.C., Fischer, R., and Christou, P. (2005). Sowing the seeds of success: pharmaceutical proteins from plants. Current Opinion in Biotechnology 16, 167-173.
- [13]. Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P. (2007). Transgenic strategies for the nutritional enhancement of plants. Trends in Plant Science 12, 548-55.

Nicolau B Da Cunha, An overview of the early development of the first genetically engineered crop- derived foods."*The International Journal of Engineering and Science (IJES)*, 8.12 (2019): 46-50.