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-----------------------------------------------------------ABSTRACT-------------------------------------------------------- 
Analytical investigation for the limiting value of Nusselt number, including the effect of viscous dissipation on 

heat transfer for a laminar plane Couette flow between two infinite parallel plates, where the bottom plate is 

fixed and the top plate is moving in an axial direction at a constant speed. The study concentrates on hydro-

dynamically fully developed flow of a Newtonian fluid of constant properties without considering the axial 

conduction in the fluid. To investigate the effect of viscous dissipation on heat transfer by defining the limiting 

Nusselt number, plates are kept at constant unequal temperatures. Close form expressions for the limiting 

Nusselt numbers as a function of the Brinkman number and asymmetry parameter are evaluated. Focus is given 

to the viscous dissipative effect due to the shear produced by the movable top plate over and above the viscous 

dissipation due to internal fluid friction. The interactive effects of the Brinkman number and the degree of 

asymmetry on the limiting Nusselt number are investigated analytically. Specific to the cases considered for this 

study, the appearance of point of singularities due to the variation of Nusselt number with the Brinkman number 

is observed, and discussion has been made considering the energy balance, and second law analysis of 

thermodynamics. 

Key words:  Limiting Nusselt number, heat transfer, Plane Couette flow, viscous dissipation, Brinkman number, 

Newtonian fluid. 
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NOMENCLATURE 

Br  Brinkman number 

pc Specific heat at constant pressure (J/g K) 

1 2c c Constants 

D  Parameter to characterize    1 / 1    

1ch  Limiting heat transfer coefficient at lower plate (W/m
2
-K) 

2ch  Limiting heat transfer coefficient at upper plate (W/m
2
-K) 

H  Half-channel height (m) 

k  Thermal conductivity (W/mK) 

Nu  Nusselt number 

1cNu  Nusselt number in the conduction limit at the lower plate 

2cNu  Nusselt number in the conduction limit at the upper plate 

t  Time (s) 

p x   Pressure gradient in the x direction (N/m
3
) 

p y   Pressure gradient in the y direction (N/m
3
) 

1cq  Lower plate heat flux in the conduction limit(W/m
2
) 

2cq  Upper plate heat flux in the conduction limit (W/m
2
) 

genS  Volumetric rate of entropy generation (W/m
3
K) 

T  Temperature (K) 

T  Average temperature (K) 

http://www.theijes.com/


Effects Of Asymmetric Boundary Conditions On Plane Couette Flow With Limiting Nusselt … 

DOI:10.9790/1813-0810014857                                    www.theijes.com                                                    Page 49 

1T  Upper plate temperature (K) 

2T  Lower plate temperature (K) 

cT  Temperature in the conduction limit (K) 

u  Velocity (m/s) 

 U Dimensionless velocity (m/s) 

pU  Velocity of the moving plate (m/s) 

x  Axial coordinate direction (m) 

y  Vertical coordinate direction (m) 

Y  Dimensionless vertical coordinate 

Greek symbols 

  Degree of asymmetry 

  Dimensionless temperature 

m  Dimensionless bulk mean temperature 

mc  Dimensionless mean temperature in the conduction limit 

  Dynamic viscosity (kg/m-s) 

  Density (kg/m
3
) 

Subscripts 

c  Conduction limit 

f  Initial fluid 

m  Mean 

mc  Mean in the conduction limit 

 

I. INTRODUCTION 
Heat transfer in a plane Couette flow plays a major role in processes such as extrusion, metal forming, 

glass fibre drawing, and continuous casting, where the moving surface continuously exchanges heat with the 

surrounding fluid [1]. Although the thermal behaviour of the fluid is important and can affect the quality of the 

materials processed, viscous dissipation, which is due to work done by viscous forces acting on a fluid, can also 

bear great significance to processes, where large velocity gradients lead to temperature increases.  

The effects of viscous dissipation on forced convective heat transfer have been widely reported in  the 

literature [1-7]. Aydin and Avci [1] investigated the effects of viscous dissipation on fully developed convection 

heat transfer in pipes subjected to constant heat flux and constant wall temperature, respectively. Temperature 

profiles, and Nusselt numbers Nu  are affected markedly when the Brinkman number Br  is large. Exact 

solutions were obtained for a Graetz problem in studies by Ou and Cheng [2, 3] at the thermal entrance region 

concerning viscous dissipation effects on forced convection. Aydin [4] solved the same problem but adopted a 

different solution methodology, an axial conduction was assumed negligible. Aydin and Avci [6] studied heat 

convection in a Poiseuille flow of a Newtonian fluid and obtained exact solutions. In a study to investigate the 

effects of moving boundaries, Aydin and Avci [1] solved the temperature profiles analytically in a Couette-

Poiseuille flow and showed that the effect of viscous dissipation is significant. Sheela-Francisca and Tso [7] 

furthered the study by considering asymmetric thermal boundary conditions and produced temperature solutions 

and Nusselt number expressions, but the results are limited to Newtonian flows with either a fixed or a moving 

boundary. 

There are related studies with emphasis on non-Newtonian flow. Payvar [8] investigated the effects of 

viscous dissipation on power-law fluid, Bingham plastic fluids, and Ellis fluid for a thermally fully developed 

forced convection with constant wall heat flux. Davaa et al. [9,10] studied power-law and non-Newtonian fluids 

in Couette-Poiseuille flow between parallel plates. In [9], exact solutions for the velocity and temperature 

obtained for flow subjected to constant heat flux applied at the stationary and moving boundaries, respectively. 

In another study [10], the modified power-law model defined by Irvine and Karni [11] in the governing 

momentum and energy equations was  used to improve the accuracy of the velocity field in the region of lower 

shear rates. The governing equations were solved numerically for fully developed flows subjected to constant 

heat flux. Hashemabadi et al. [12] included viscous  dissipation effects in a Couette-Poiseuille flow between 

parallel plates for visco-elastic flow by adopting the simplified Phan-Thien-Tanner model. Tso et al. [13] 

extended the work in [7] by considering the behaviour of power-law fluids in the analysis of forced convective 

heat transfer between fixed parallel plates,  subjected to asymmetric heating at the top and bottom plate. Sheela-

http://www.theijes.com/


Effects Of Asymmetric Boundary Conditions On Plane Couette Flow With Limiting Nusselt … 

DOI:10.9790/1813-0810014857                                    www.theijes.com                                                    Page 50 

Francisca et al. [14] derived a semi-analytical solution for the temperature distribution of Couette-Poiseuille 

flow for pseudo plastic fluids. The temperature distribution and Nusselt number obtained for asymmetric heat 

flux boundary conditions are greatly affected by heat flux ratio applied to the boundaries together with the 

velocity of the moving plate, power-law index, modified Brinkman number, an a dimensionless parameter that 

is the constant of integration. In solving the momentum equation. Chan, Y.H et al. [15] improved the solution 

method in [14] and provide an analytical solution for heat transfer of a Couette-Poiseuille flow subjected to the 

asymmetric heat flux boundary condition.  

All the researches mentioned above have dealt with the effect viscous dissipation on convective heat 

transfer in a Poiseuille flow and combined Couette-Poiseuille flow for a hydrodynamically fully developed flow 

between two parallel plates, considering the thermally fully developed case. 

To the best knowledge of the author, Laminar forced convection in the limiting condition, giving the 

quantitative relation between the different performance index parameters of heat transfer including the viscous 

dissipation effect for a plane Couette flow between two parallel plates kept at constant unequal temperatures has 

not been presented in the literature.  

The objective of the paper is to analytically investigate the combined effects of the Brinkman number 

and the degree of asymmetry on the temperature profile.  

To this end, detailed analytical study is carried out to investigate the effect of viscous dissipation on the 

heat transfer for a plane Couette flow for varying degree of asymmetry in the wall heating. Finally, the 

expressions of the limiting Nusselt numbers are determined from the temperature distribution from the above 

mentioned condition. 

 

II. GOVERNING EQUATIONS AND ANALYSIS OF THE PROBLEM 
 The fluid is flowing in the x -direction between two parallel plates where the upper plate is moving 

with a constant velocity pU   whereas the lower plate is fixed. The plates are 2H  apart, and the coordinate 

system is attached with the center line as shown in Fig. 1. 

 
Fig. 1 Schematic Diagram 

 

Following assumptions are made for the analysis: 

i) Newtonian fluid; 

ii) Incompressible fluid flow; 

iii) There is no heat source and thermo-physical properties are constant; 

iv) Hydro-dynamically fully developed flow; 

v) Axial conduction is neglected in the fluid and through the wall; 

vi) Plates are infinitely long in x and z directions. 

The governing equations are continuity, momentum and energy equations. To get the velocity and temperature 

distributions between two plates, the governing equations, namely continuity, momentum and energy equations 

have been derived based on the above-mentioned assumptions. 

Continuity Equation 

0
u v

x y

 
 

 
           (1) 

From the assumptions, there is no velocity in the y -direction, 

i.e., 0v   , which gives 

0
u

x





          (2) 

Eq. (2) implies that the velocity in the x -direction is a function of y  only. 

X-momentum Equation: 
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2 2

2 2

u u u p u u
u v

x y t x x y
 

       
       

        
     (3) 

where p is the pressure. Using continuity equation and assumption (iv), one can write the x-momentum equation 

as follows: 

2

2

d u p u

dy x t
 
   

  
  

         (4) 

Now, from y -momentum equation using the above assumptions, it can be shown that 

  0
p

y





           (5) 

Energy Equation 

  

2 2

2 2p

T T T T T
C u v k

x y t x y
 

      
      

       
     (6) 

Where   is the viscous dissipation term that contains only  
2

u y  . Based on the above assumptions, the 

energy equation reduces to 
22

2p

T T T u
C u k

x t y y
 

     
     

      
       (7) 

 

2.1 Steady Analysis For The Movable Upper Plate With A Uniform Velocity 

The fluid flow is assumed to be due to dragging of the upper plate only. Therefore, Eq. (4) reduces to 

2

2

d u
C

dy

 

 
 

          (8) 

where, C is a constant and this is equal to zero for shear driven flow. No slip condition is assumed at the plates, 

and thus the boundary conditions are as follows: 

at , 0y H u            (9) 

and, 

at ,y H u U            (10) 

Solving Eq. (8) with above boundary conditions, the velocity profile is obtained as: 

1
2

pU y
u

H

 
  

 
         (11) 

However, defining the non-dimensional quantities 

p

u
U

U
  and 

y
Y

H
 , the above velocity profile reduces 

to, 

   
1

1
2

u Y            (12) 

The energy Eq. (6) is written under steady condition as follows: 
22

2p

T T u
C u k

x y y
 

   
   

   
         (13) 

Now to analyze the energy equation in the conduction limit, the following case of unequal constant wall 

temperatures is considered while neglecting the convection term. 
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2.1.1 Constant Wall Temperature 

 For unequal constant wall temperatures, the non-dimensional quantities used as 
y

Y
H

  , 

p

u
U

U
  

and defining the dimensionless temperature 
 
 f

T T

T T






, where fT  is the initial uniform fluid temperature, 

the average temperature 
 1 2

2

T T
T


 , and the asymmetry of wall surface temperature 

 
 

2

1

f

f

T T

T T






. 

Again the term  
2

u y   is equal  
2

pU H . Thus the governing equation for constant wall temperatures 

reduces to, 

 

22

2

1
0

4

p

f

Ud

dY T T k


 


        (14) 

Defining the Brinkman number, 

 

2

p

f

U
Br

T T





, Eq. (14) can be further expressed as 

2

2
0

4

d Br

dY


            (15) 

Eq. (15) is subjected to the following boundary conditions: 

   2, fy H T T T T    i.e. at 1,Y D        (16a) 

and, 

     1, fy H T T T T     i.e. at  1,Y D        (16b) 

Where 
 

 

1

1
D









          (17) 

 The dimensionless temperature profile is obtained by solving Eq. (15) with the above boundary 

conditions [Eqs. (16a,b].Therefore, Solving Eq. (15) with the above set of boundary conditions of unequal 

temperatures, the dimensionless temperature profile in the conduction limit is obtained as: 
2

1 2
8

c

Y
Br C Y C             (18) 

The constants 1C  and 2C  of Eq. (18), obtained on applying the boundary conditions given in Eq. (16a,b) are as 

follows: 

1

2 8

C D

C Br

 


 
          (19) 

However, to obtain the expression of Nusselt Number, it is usual to define the mean temperature, mT , rather 

than the centerline temperature in a case of fully developed flow. The mean temperature is given by 
H

p c

y H

m H

p

y H

C uT wdy

T

C uwdy















         (20) 

where „ w  ‟ is the width of the channel. 

The non-dimensional mean temperature is given by 

 
  12 3

mc

m

f

T T Br D

T T


  
   

  
        (21) 
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The local heat transfer coefficient in the conduction limit at the lower plate can be evaluated using the equation 

 1 1 1c c mc

y H

T
q k h T T

y



   


       (22) 

Establishing the non-dimensional quantity, Nusselt number in the conduction limit is 1 

  
1

1
c

c

h H
Nu

k
           (23) 

However, using Eqs.(19), (22) and (23), the expression for Nusselt number at the lower plate in the conduction 

limit is given by, 

 1 1

1

1 c
c mc

Y

Nu
Y


 



 
       

       (24) 

Similar to Eqs.(22) to (24), the Nusselt number at the upper plate in the conduction limit can be found to be 

 2 2

1

1 c
c mc

Y

Nu
Y


 



 
      

       (25) 

Where 1  , 2  used in Eqs. (24) and (25) are the dimensionless temperatures at the lower plate and the upper 

plate, respectively. Finally, using Eq. (21) for m  and Eq. (18) for the derivative of c , the expression of 

Nusselt numbers on both the plates in the conduction limit are obtained as. 

 

 

    

    
1

3 4 1 13 4

16 16 1 1
c

BrBr D
Nu

D Br Br

 

 

      
     

     (26) 

 

 

    

    
2

3 4 1 13 4

8 8 1 1
c

BrD Br
Nu

D Br Br

 

 

      
     

     (27) 

 

III. RESULTS AND DISCUSSION 
 The Brinkman number is an important parameter governing the heat transfer and fluid flow in a 

channel between two parallel plates. The effects of viscous dissipation in a fluid flow and heat transfer is 

manifested by the representation of Brinkman number. Actually, it is a non-dimensional way of representing the 

effect of viscous dissipation. In this paper, the effect of Brinkman number for a hydro-dynamically fully 

developed flow has been analyzed. Figures (2) and (3) depict the variation of the dimensionless temperature 

profile for different Brinkman numbers for two different cases of asymmetric wall heating. 

 
Fig. 2 Dimensionless temperature profile for 0.5  , for different values of Br  

 It is observed from Fig. (2) that specific to the case of 0.5   , the dimensionless temperature c  

strongly depends on the Brinkman number, Br  . Viscous dissipation acts as a source of energy in the flow, and 

this severely influences the temperature distribution in the flow field as seen from Figs. (2) and (3). In the 

thermal entrance region, a linear trend of developing dimensionless temperature c q is observed for both the case 
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of wall heating for 0Br  , which is a pure conduction profile. Therefore, in the absence of viscous 

dissipation, c  varies with the specified values of wall surface temperature imposed on the plates. However, 

viscous dissipation always generates a distribution of heat source stimulating the internal energy in the fluid, and 

hence the temperature profile gets distorted as it is clear from the Figs. (2) and (3). A close look on the above 

figures also reveals that the cases with 0Br  , the profile of the dimensionless temperature gets altered in 

comparison to that in the case of 0Br  , though the imposed boundary condition on the plates remain 

invariant. The reason behind such a behavior of the dimensionless temperature profile obtained at different 

Brinkman numbers Br , is attributable to the effect of viscous dissipation coming into play due to the shear 

stress within the fluid layer induced by the movement of the upper plate. Positive values of Br  are compatible 

with the wall heating case, which resembles the situation of heat transfer to the fluid across the wall. Therefore, 

for the cases with positive values of Br , the fluid temperature increases in comparison to the cases where Br is 

neglected as evident from Figs. (2) and (3). The reverse holds true for the negative values of Br . Equation (19) 

predicts the dimensionless temperature distribution in the conduction limit for different values of Br , which is 

shown in Figs. (2) and (3). The corresponding Nusselt numbers at both the plates are defined using Eqs. (24) 

and (25). 

 
Fig. 3 Dimensionless temperature profile for 0.5  , for different values of Br  

 

 Figures (4) and (5) are the graphical representation of Nusselt number in the conduction limit on the 

bottom plate versus Brinkman number Br , specific to the case of asymmetry in the wall heating for 0.5   

and 0.0  , respectively. Equations (26) and (27) represent the expression of Nusselt number in the 

conduction limit on the lower plate and upper plate, respectively. It is observed from Equations. (26) and (27) 

that both the limiting Nusselt numbers are functions of two independent variables, e.g. the degree of asymmetry 

in wall heating,   and Br . However, both the Nusselt numbers will have parametric variation with Br  for 

1   and with   for 0Br  . As shown, the variation of Nusselt number with Br  is not continuous for the 

case of 0.5  ; rather a singularity is observed at 5.33Br   , which is very clear and expected from Eq. 

(26). At this point, the heat supplied by the wall balances the internal heat generation due to viscous dissipation. 

However, from this point of singularity with the increasing value of Br  in the positive direction ( 0Br  ), the 

Nusselt number decreases because of the decrease in the driving potential of the heat transfer, and finally 

reaches at 1 3cNu   asymptotically (when Br  ). As explained the negative value of Br  represents the 

wall cooling problem and with the increasing value of Br  in the negative direction, Nusselt number decreases 

and an asymptote appears at 1 3cNu   (when Br  ). The result shows that the Nusselt number 

maintains a constant value as Br  goes to infinity. The expression of Nusselt number in the conduction limit as 

derived in the study is given in Eq. (26). However, increasing Br  will increase the temperature of the flow 

field, which, in turn, increases the driving temperature difference of the heat transfer, and hence the Nusselt 

number might alter. These changes may get reflected on the variation of Nusselt number if the convection term 

is included in energy equation to obtain the closed-form expression for the same. In the limiting condition the 
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effect of increasing Br  is not reflected on the variation of Nusselt number 1cNu  for a particular degree of 

asymmetry. This, however, can also be argued mathematically, from Eq. (26). 

 Equations (26) and (27) also yield that for any given value of b , Nusselt number depends on Br  and 

the limiting values of Nusselt number are not equal (both in magnitude and sign) for given  . The reason 

behind such inequality is attributable to the movement of the top plate. The movement of the top plate induces 

additional shear stress, which enhances viscous heating produced by the internal friction between different fluid 

layers. However, it is very interesting to notice that when Br  goes to infinity in either direction (i.e. the cold 

wall and hot wall case), the Nusselt number attains the same asymptotic 

value, 1 3cNu  . 

  Figure (5) also depicts the Nusselt number variation for 0.0  . The trend observed here can be 

explained in the similar fashion as in the case with 0.5  . The only difference noticed for this case is the 

onset of the point of singularity at 16Br   , which can be attributed the effect of the degree in asymmetry in 

the wall heating. At the point of singularity, the limiting values of Nusselt number approaches a large value for 

both the cases of asymmetry in wall heating at and, respectively. This is because of the equality in the bulk 

mean 

 

Fig. 4 The influence of Br , on the 1cNu  for 0.5   

 

Fig. 5 The influence of Br , on the 1cNu  for 0.0   
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Fig. 6 The influence of Br , on the 1cNu  for 0.5   

 

 Temperature of the fluid with the average wall surface temperature in the limiting condition. Figure (6) 

illustrates the effect of Br  on the Nusselt number at the asymmetry in wall heating for 0.5  . In contrast to 

the Figs. (4) and (5), a continuous variation of Nusselt number with Br  is noticed in Fig. (6). This is due to the 

degree of asymmetry considered in this case. However, the point of singularity is observed to appear at 

48Br   , which is an expected result, obtained from Eq. (26) on closely looking into it. 

In the present work, heat transfer characteristics in the limiting condition in a viscous dissipative environment 

are studied thoroughly. The volumetric rate of entropy generation can be expressed as: 

 
2

2gen

k T
S

T T





            (28) 

 The first term on the right side of the above equation is attributable the irreversibility due to heat 

transfer and the second term is the entropy generation due to viscous dissipation. Irreversible energy conversion 

from frictional heating of viscous dissipation into the fluid has an important bearing on the temperature field of 

the fluid. In the second law analysis, fluid friction irreversibility arises as a result of viscous heating is of 

essential importance. 

 Heat transfer dominates for 0 1   and fluid friction dominates when 1  . The contributions of 

both heat transfer and fluid friction to entropy generation are equal when 1  . 

In the present analysis, three different degrees of asymmetry parameters of wall heating have been considered in 

investigating the variation of 1cNu  as evident from Figs. 4-6. The irreversibility associated with the heat 

transfer for three different values of asymmetry parameter,  , however, is related to the irreversibility due to 

viscous dissipation, and hence different points of onset of singularities are observed for different   . 

 

IV. CONCLUSIONS 
 In the present study, the heat transfer problem for the laminar Couette flow between two plane parallel 

plates has been studied. The analysis has been done in the conduction limit, when the plates are kept at unequal 

constant temperatures. The expression for the Nusselt numbers at both the plates in the conduction limit has 

been obtained for a hydro-dynamically fully developed flow. After finding the velocity distribution in the flow 

on solving the momentum equation, it is substituted into the energy equation to obtain the expression of Nusselt 

numbers. In addition to the effect of viscous dissipation due to the internal fluid friction, an emphasis on viscous 

dissipation is given to include the effect of shear stress induced by the movement of the top plate. A strong 

influence of viscous dissipation is observed that is quite significant for analysis of heat transfer in the 

conduction limit. The interactive effects of the Brinkman number and the degree of asymmetry in the wall 

heating on the limiting values of Nusselt numbers have been investigated in the study. The points of 

singularities in the variation of Nusselt number versus Brinkman number are also observed. The onset of the 

points of singularities is seen to be affected by the degree of asymmetry in wall heating, and their sources of 

appearance have been explained in view of the energy balance, and second law of thermodynamics in the study. 
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