
The International Journal of Engineering and Science (IJES) 

|| Volume || 7 || Issue || 8 Ver. II|| Pages || PP 28-42 || 2018 || 

ISSN (e): 2319 – 1813 ISSN (p): 23-19 – 1805 

 

DOI:10.9790/1813-0708022842                                        www.theijes.com                                               Page 28 

Transient Stability Analysis of Power Station  (A Case Study of 

Nigeria Power Station) 
 

V. C. Ogboh, K. C. Obute,  A. E. Anyalebechi 
Department of Electrical Engineering, Nnamdi Azikiwe University, Awka, Nigeria 

Department of Electrical Engineering, Nnamdi Azikiwe University, Awka, Nigeria 

Corresponding Author: V. C. Ogboh 

 

--------------------------------------------------------ABSTRACT--------------------------------------------------------------- 

Transient stability, the stability of a power system subjected to a large, sudden and severe disturbance such as 

the occurrence of fault, sudden outage of a line or sudden application or removal of loads to maintain steady 

flow. Techniques are available to obtain an approximate solutions of such kinds of faults that could occur on 

the power system. In this work, simulation of faulted power station was performed, numerical computation 

techniques was applied, critical clearing angle and time was obtained for the Jebba power station / Jebba – 

Oshogbo – Ikeja West test transmission line connected to an infinite bus. The result show different graphs 

generated per simulated fault type and swing curve for sustained and cleared fault.   
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I. INTRODUCTION 

Power stations or power generating stations is an industrial facility built for electric power generation. 

Power system comprises of these major components namely; the generation, transmission and 

distribution components. Each of the components experiences a transient (sudden disturbance) of different kind. 

These disturbances cause severe damage to the system equipment and therefore needs to be protected against any 

of the disturbances.  

In this work, we are concern with the power generating station transient stability in Nigeria. The 

generating stations are hydro, gas and steam power generating stations.  

A typical power generating station comprises of the following units depending on the type of 

generation; turbine, generator, transformer and the bus-bar through which the power is transmitted to the 

consumers via the transmission line. 

The turbine and generator are responsible for production of power which when transmitted through the 

transmission line reaches the consumers [J. B. Gupter, 2008 ]. 

. 

II. TRANSIENT STABILITY OF THE POWER STATION 

Transient stability refers to the stability of a power system subject to a large, sudden and severe 

disturbance such as the occurrence of fault, sudden outage of a line or sudden application or removal of 

loads. 

Transient stability analysis is needed in the power stations and system at large to ensure that the system 

can withstand the transient conditions following a major disturbance. 

It is also important to perform this analysis when new power plants and transmitting stations are 

planned. In the analysis, such conditions as the nature of the relaying system needed, critical clearing time of 

circuit breakers, voltage level of the systems and transfer capability between the systems.[H. Saadat, 2006] 

However, the practical approach to the transient stability problems is to list all important severe 

disturbances along with their possible locations to which the system is likely to be subjected according to the 

experience and judgment of the power system analyst. Then the numerical solution of the swing equation in the 

presence of all these disturbances is then computed giving the results as the plots of the δ (power or torque 

angle) verses t (time) which is called the swing curve.[Nagrath and Kothari, 2004]. 

 

2.1   SWING EQUATION 

Under normal operating conditions, the relative position of the rotor axis and the resultant magnetic 

field axis is fixed. The angle between the rotor and the resultant magnetic field is called the power angle 

or torque angle δ. During any disturbance, the rotor speed will decrease or accelerate with respect to the 
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synchronous rotating air gap mmf, and results to a relative motion of the rotor. The equation describing this 

relative motion is called the swing equation. Figure 1, illustrates the power angle of a two pole cylindrical rotor 

generator. 

Here, the power angle δ is the angle between the rotor mmf Fr, and the resultant air gap mmf Fsr. Both 

of them are rotating with synchronous speed. It is also the angle between the no load generated emf E and the 

resultant stator voltage Esr. If the generator armature resistance and leakage flux are neglected, the angle between 

E and the terminal voltage V, which is δ, is considered to be the power angle. 

Since we are considering the synchronous operation of the turbine (prime mover) and the generator, 

therefore, if the Tm is the driving mechanical torque of the turbine shaft to generator rotor, Te is the 

electromagnetic torque of the synchronous generator running at the same speed wsm with the turbine shaft. Then, 

under steady state operation with the losses neglected, we have that; 

 

Tm = Te                                        (1) 

But if a disturbance is introduced causing the system to lose it synchronism and no more under steady state but 

on transient condition. This causes the system acceleration (Tm > Te) or decelerate (Tm < Te). Thus, 

acceleration Torque Ta becomes; 

 

Ta = Tm – Te                                       (2) 

Taking J to be the combine moment of inertia of the turbine-shaft (prime mover) and the generator, neglecting 

frictional and damping torques, the Ta becomes; 

 

Ta = Tm – Te =                                    (3) 

 = wsmt + δm                                      (4) 

 

Where  is the angular displacement of the rotor with respect to the stationary reference axis on the stator. wsm 

is constant angular velocity of the rotor. δm is the rotor position before the disturbance  at t = 0; 

 

wsm =                                 (5) 

 

Rotor acceleration becomes; 

 

 =                                       (6) 

 

Therefore, putting equation 7 into 4, we have; 

 

Tm – Te =                                     (7) 

 

Multiplying by ; 

 

We have 

 

Tm – Te =                                (8) 

 

Since the product of angular velocity and torque gives the power, therefore; 

 

 = Pm - Pe                                   (9) 

 

However,  is called the inertia constant and is denoted by M. 

Thus, the swing equation in terms of the inertia constant becomes; 

 

M  = Pm - Pe                                     (10) 
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The swing equation in terms of the electrical power can be written as; 

 

 = Pm - Pe                                     (11) 

 

 is in electrical radians; 

 

 = Pm - Pe                                    (12) 

 

 is in electrical degrees; 

 

 is the fundamental frequency of the system output. [H. Saadat, 2006] 

 

2.2    NUMERICAL SOLUTION OF SWING EQUATION 

The transient stability analysis requires the solution of a system of coupled non-linear differential 

equations. In general, no analytical solution of these equations exists. However, techniques are available to 

obtain an approximate solution of such differential equations by numerical methods and one must therefore 

resort to numerical computation techniques commonly known as digital simulation. Some of the commonly used 

numerical techniques for the solution of the swing equation are: 

 

Euler modified method 

Forth-Order Runga – Kutta method 

Point by point method 

 

The swing equation can be transformed into state variable form. And the two first order differential equations to 

be solved to obtain solution for the swing equation are: [C. S. Sharma, 2014 and T. Z. Mon, Y. A.Oo] 

 

    Δ𝜔                                      (13) 

 

                           (14) 

 

Where; 

M  =                                       (15) 

 

2.21   APPLYING MODIFIED EULER’S METHOD 

we have; 

 

Δ𝜔P
i + 1  | Δ𝜔

P
i + 1                                   (16) 

 

Where Δ𝜔P
i + 1 = Δ𝜔I +  |δi Δt                              (17) 

 

|δ
P

i+1 = [ | δ
P

i+1                                   (18) 

 

For δ
P

i+1 = δi + |Δ𝜔i Δt                                  (19) 

 

δ
c
i+1 = δi + [ |Δ𝜔i + |Δ𝜔

P
i]Δt                                (20) 

 

Δ𝜔
c
i+1 = Δ𝜔i + [ |δi + |δ

P
i]Δt                              (21) 
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2.22 APPLYING RUNGE – KUTTA’S FOURTH ORDER METHOD TO THE EQUATIONS 

We have, starting from initial value δ0, 𝜔0, t0 and step size of Δt, the formula becomes; 

 

K1 = 𝜔0Δt                                       (22) 

 

I1 = [  Δt                                  (24) 

 

K2 = [𝜔0 + Δt                                     (23) 

 

I2 = ]Δt                               (24) 

 

K3 = [𝜔0 + Δt                                     (25) 

 

I3 = ]Δt                               (26) 

 

K4 = (𝜔0 +I3)Δt                                     (27) 

 

I4 = ]Δt                               (28) 

 

δ1 = δ0 + [K1 + 2K2 + 2K3 + K4]                              (29) 

 

𝜔1 = 𝜔0 + [I1 + 2I2 + 2I3 + I4]                               (30) 

 

δ1 and 𝜔1 are used as initial values for the successive time step. 

 

 

2.23   APPLYING POINT BY POINT METHOD 

The following 

 

Pa(n-1) = Ps – Pe(n-1)                                    (31) 

 

⍺(n-1) =                                      (32) 

 

Δ𝜔n -  = 𝜔n – an - 1Δt                                  (33) 

 

𝜔n -  = 𝜔n -  + an - 1Δt                                  (34) 

 

Δδn = 𝜔n -  = 𝜔n -  + an-1 Δt                              (35) 

 

= Δδn-1 +an-1 Δt2                                  (36) 

 

= Δδn-1 +                                 (37) 

 

δn  = δn-1 + Δδn                                     (38) 

 

3.  EQUAL AREA CRITERION 
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In a system where one machine is swinging with respect to an infinite bus, it is possible to analyze 

transient stability of the power station using equal area criterion without going through the numerical solution of 

swing equation. Considering the swing equations below; 

 

                              (39) 

 

Where Pa is the accelerating power; 

 

M =                                          (40) 

 

 
Figure 1: Plot of against t for stable and unstable systems. 

 

If the system is unstable,  will continue to increase indefinitely with time and the system loses 

synchronism. 

However, if the system is stable, (t) will perform nonsinusoidal oscillations whose amplitude decreases in real 

practice due to damping. These two conditions are shown in the above figure x.  

 

 = 0  System is table                                   (41) 

 

  System unstable                                 (42) 

 

The stability criterion for power systems can be applied to a single machine infinite bus system as shown below; 

 

(
2 
=                                    (43) 

 

((
2 
= )

0.5                                 (
44) 

 

( )
0.5

                                     (45) 

 

Thus, the system is stable, if the area under Pa verses δ curve reduces to zero at certain value of δ. 

However, it means that, the positive (acceleration) area under the Pa verses δ curve must be equal the negative 

(deceleration) area, thus the name equal area criterion. 

Considering various disturbance conditions of faults in a single machine infinite bus bar, we can illustrate the 

stability the system using equal area criterion. 

 

3.1 SUDDEN CHANGE IN MECHANICAL INPUT 

The electrical power transmitted is given by; 

 

Pe = ]Sinδ = PmaxSinδ                                (46) 
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Under steady operating condition 

 

Pm0 = Pe0 = PmaxSinδ                                    (47) 

 

 

 
 

Figure 2. Single machine tied to infinite bus bar 

 

When mechanical input to the rotor is suddenly increased to Pm1 (i.e. opening the steam valve). The acceleration 

power Pa = Pm1 – Pe cause the rotor speed to increase (𝜔 > 𝜔s) and so does the rotor angle. Also at the angle δ1,  

Pa = Pm1 – Pe (= Pmax Sinδ1) = 0, but the rotor angle continues to increase as  

𝜔 > 𝜔s.  

 

 
Figure 3. Sudden increase in mechanical input to the generator 

 

As the rotor speed and angle is increasing, 𝜔 > 𝜔s. But, when they are decreasing, 𝜔 < 𝜔s. The Pa becomes 

negative (decelerating) and the rotor speed begins to reduce while the angle δ2, 𝜔 = 𝜔s. at this point, the 

decelerating area A2 is equal to the acceleration area A1. 

Thus,  

 

 = 0                                     (48) 

 

The deceleration of the rotor causes the rotor speed to reduce below 𝜔s making the rotor angle to start to reduce. 

According the above diagrams, one can easily see that the system oscillates about the new steady state point 

where  = δ1. These oscillations are similar to the simple harmonic motion of an inertia spring system. 

The system settles for a new steady state when the oscillation decays out due to unavoidable system damping. 

Here,  

 

Pm1 = Pe = PmaxSinδ1                                     (49) 

 

As area A1 and A2 are given by  

 

A1 =                                  (50) 

 

A2 =                                 (51) 

 

The figure 3 is for a limiting case of transient stability with mechanical input suddenly increased. Here,  
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δ2 = δmax = π - δ1 = π – sin
-1 

                              (52) 

For stability purpose, the rotor speed of both the turbine and generator should be running in 

synchronism (at the same speed), but when the rotor speed of the turbine rtrpm or 𝜔t is not in synchronism with 

that of the synchronous generator rGrpm  or 𝜔s , there will be fluctuation in output power supply of the generator. 

Thus, the turbine rotor angle is not equal to the generator rotor angle. This condition will result to instability in 

power supply of the generator. The effect can easily be seen as the variation in rotor angle of the turbine and 

generator.  

 

3.2 EFFECT OF CLEARING TIME ON STABILITY OF POWER SYSTEM 

Considering that the figure 3 is operating with mechanical input Pm at a steady angle of δ0 (Pm = Pe) 

as shown by the point a on figure 4. If a 3-phase fault be allowed to occur at the point P, the electrical output of 

the generator will instantly be reduced to zero (Pe = 0) and the state point drops to b. The acceleration area A1 

will begin to increase and so does the rotor angle while the state point moves along bc. At time tc corresponding 

to angle δc the faulted line is cleared by the opening of the line circuit breaker.  

However, tc and δc are known as clearing time and clearing angle. Thus, the system becomes stable and transmits  

 

Pe = Pmaxsinδ.    

 

                                   (53) 

 
Figure 4 critical clearing angles. 

 

δC is the critical clearing angle. 

At this point, A2 =A1, system is said to stable, and finally settles down to the steady operating point a in an 

oscillatory manner due to damping influence. 

 

3.3 SIMULATION OF THE MODELED POWER STATION 

A typical steam power plant can be modeled using Matlab 2013 to represent a Nigerian power 

station. Figure 5 below is the model of Nigerian steam power plant modeled using a typical Nigeria steam power 

plant data obtained from Osogbo Power Station, Osun State Nigeria. 

The Nigerian national grid system can also be used. The simulation can be done concentrating on the fourteen 

(14) generation systems. Therefore, the result obtained will be for these generating stations. 

A typical generating station is shown below on figure 5 and figure 6 illustrates the Nigerian national grid 

network. 
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Figure 5: Modeled Nigerian Power Station 

 

 
Figure 6: Nigerian national grid network 

 

The transmission line of Jebba - Oshogbo – Ikeja West is used as test line to compute the Critical Clearing time, 

tC and angle, δ which can be obtained using the following equations: 

 

Angular momentum,                                (54) 

Rotor angle at time  

 

δn = δn-1 + ∆δn                                      (55) 

 

Change in rotor angle  

 

∆δn = + ∆δn-1 + 4.464PA.                                   (56) 

 

Where PA is the accelerating power and 150MVA, 140MW supply, frequency of 50Hz, line reactance, XL of 

0.4pu, transient reactance 0.2pu. 
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Table1. Step by step solution of swing curve for sustained fault. 

 
 

Table 2. Swing Curve computation for Fault cleared in 0.10 seconds. 

 
 

 
Figure 7 Internal model of the steam turbine 
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Figure 8 Four mass shaft of the turbine. 

 

A three phase fault was allowed or tested on the above modeled powper station.  

The following graphs where obtained after simulating the simpowersystem matlab 2013 modeled steam power 

station. 

 

 
Figure 9: Three phase wave form of the turbine and generator speed in pu before fault. 

 

 
Figure10: Per unit three phase voltage, current (A) and fault current (A) verses time graph under normal 

or steady state on the power station. 

 

One can see from figure11 above that, at steady state condition, the amplitudes of the wave form are 

constantly uniform. It means there is no instability or transient in the system, rather, the system is stable. This 

stability corresponds with the graph of stable condition using equal area criterion shown on figure 10. 

Also, the wave form of fault current under no fault condition shows that there is no fault in the system. 

The wave form shows a straight line running from zero to infinity. 
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Figure13a: Per unit three phase generator speed deviation dw and turbine torque constant T time graph 

during faulty or transient condition on the power station. 

 

 
Figure 13b: Per unit three phase generator speed deviation dw and turbine torque constant T time graph 

during faulty or transient condition on the power station. 

 

 
Figure14: Per unit three phase voltage, current (A) and fault current (A) verses time graph under faulty 

or transient condition on the power station. 
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Figure 15: Per unit three phase generator speed deviation dw and turbine torque constant T time graph 

during faulty or transient Line to ground fault condition on the power station. 

 

 
Figure 16: Per unit three phase voltage, current (A) and fault current (A) verses time graph under faulty 

or transient Single Line to ground fault condition on the power station. 

 

 
Figure 17: Per unit three phase generator speed deviation dw and turbine torque constant T time graph 

during faulty or transient Double line to ground fault condition on the power station. 

 



Transient Stability Analysis Of Power Station  (A Case Study Of Nigeria 

DOI:10.9790/1813-0708022842                                        www.theijes.com                                               Page 40 

 
Figure 18: Per unit three phase voltage, current (A) and fault current (A) verses time graph under faulty 

or transient double line to ground fault condition on the power station. 

 

 
Figure 19: Per unit three phase generator speed deviation dw and turbine torque constant T time graph 

during faulty or transient Line to line fault condition on the power station. 

 

 
Figure 20: Per unit three phase voltage, current (A) and fault current (A) verses time graph under faulty 

or transient Line to line fault condition on the power station. 

 

Table 1 above show the step by step solution of the swing curve for sustained fault. While Table 2 show the 

computation the swing curve for the fault cleared 0.10 seconds. More so, figure 10 is the swing curve which the 

instability of the system and that the cause of the instability (fault) is cleared in 0.10seconds after the occurrence 

of the fault. 
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Figure 21. Swing Curve for Sustained Fault. 

 

 
Figure 22. Swing Curve for Fault cleared in 0.10 seconds 

 

 
Figure 23. Swing Curve of Sustained and Cleared Fault 
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III. RESULT ANALYSIS 

Different faults were simulated, tested and allowed to occur in the system. The figures 9 – 10 and 

13-20 illustrates the steady state and faulty conditions of the system respectively. The compensator was use to 

restore the system operation after the occurrence of fault. Also the figures 21 and 22 illustrates the characteristic 

behavior of the power system generator during faulty conditions. While figure 23 shows that the maximum swing 

occurred at 68
 
(electrical degree), finally starts decreasing and the system became stable again.  

However, from the figure 23, the critical clearing angle δC of 119
o
 corresponds to the critical clearing time tC of 

0.475seconds. 

 

IV. CONCLUSION 

The advantages of this paper is that, it brings to researchers the knowledge of transients in the power 

plants. Various methods and their applications to the stability of the power plant against transients. This paper 

also exposed various graphs illustrating waveform or nature of the power plant signals when the plant is under 

transients. Some limitations are that, we were not able to include the software aspect of the numerical application 

due to large data space needed.  
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