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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

For the calculation of bending plates on elastic foundation we use the Generalized Equations of the Finite 

Difference Method. The algorithm allows taking into consideration the finite discontinuities of the desired 

function, its first derivative and the right part of the differential equation without introduction of fictitious points 

or a particular tightening of the mesh. The examples presented here show the accuracy of the results and the 

simplicity of the algorithm. 
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I. INTRODUCTION 

The plates on elastic foundation have found wide use in the fields of civil engineering (rafts) and are 

very effective as a construction element. The calculation of such elements is complicated because it leads to the 

resolution of partial differential equations with possible variable coefficients. This kind of problem is solved 

either by analytical methods or by numerical methods. Analytical methods yield accurate results, but are 

sometimes very complex and difficult to implement [1], [2], [3], [4], [5]. Numerical methods are more efficient, 

but are approximate [6]. Among the numerical methods, the finite element method is the most widely used [6], 

[7], [8], [9], [10], [11]. Nevertheless, in this article, we will use the generalized equations of the finite difference 

method, considering their precision and simplicity. The ultimate goal is to develop an algorithm for calculating 

plates on an elastic foundation. 

 

II. METHODOLOGY 

The steps of the adopted methodology are as follows 

 Transformation of the fourth-order partial differential equation of the deflection of a plate on an elastic 

foundation into a system of two differential equations of second order with partial derivatives 

 Introduction of the new dimensionless parameters in the system of equations thus obtained and in the 

equations describing the boundary conditions; 

 Substitution of the new differential equations by the generalized equations of the finite difference method, 

which makes it possible to obtain a system of algebraic equations; 

 Elaboration of a calculation algorithm;  

 Solving the system of algebraic equations to get the bending momentum and deflection coefficients. 

 

II.1 Differential equation of the deflection of a plate on an elastic foundation 

The differential equation of a thin plate, isotropic in flexion resting on elastic foundation [12], [13] can be 

reduced to a system of two partial differential equations of second order: 

 

𝜕2𝑀

𝜕𝑋2
+
𝜕2𝑀

𝜕𝑌2
= −𝑅;                                                                                                                                    1  
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𝜕2𝑊

𝜕𝑋2
+
𝜕2𝑊

𝜕𝑌2
= −

𝑀

𝐷
,                                                                                                                               (2) 

                                   

Where 

 

𝑅 = 𝑃 𝑋,𝑌 − 𝑞 𝑋,𝑌 ;                                                                                                                          (3) 

 

W - the deflection (unknown function); P - load given on the plate; q - reaction due to the pressure of the elastic 

foundation; 𝐷 =
𝐸ℎ3

12 1−𝜇2 
 – cylindrical (flexional) rigidity of the plate of constant thickness.  

 

𝑀 =
𝑀𝑋+𝑀𝑌

1 + 𝜇
;   𝑀𝑋 = −𝐷  

𝜕2𝑊

𝜕𝑋2
+ 𝜇

𝜕2𝑊

𝜕𝑌2
 ;   𝑀𝑌 = −𝐷  

𝜕2𝑊

𝜕𝑌2
+ 𝜇

𝜕2𝑊

𝜕𝑋2
 ,                          (4) 

    

Where :  μ- Poisson's ratio; 𝐸 − Young’s modulus; ℎ − thickness of the plate. Equations (1) and (2) are solved 

by taking into consideration the limit conditions. 

 

II.2 Limit conditions 

II.2.1 Articulated supports 

If the given side is parallel to the X axis, then 

  

𝑀𝑌 = −𝐷  
𝜕2𝑊

𝜕𝑌2 + 𝜇
𝜕2𝑊

𝜕𝑋 2  = 0;   𝑊 = 0                                                                          (4a) 

If the given side is parallel to the Y axis, then 

 

𝑀𝑋 = −𝐷  
𝜕2𝑊

𝜕𝑋 2 + 𝜇
𝜕2𝑊

𝜕𝑌2  = 0 ;  𝑊 = 0 ;                                                   (4b) 

II.2.2 Recessed supports 

If the given side is parallel to the X axis, then 

 
𝜕𝑊

𝜕𝑌
= 0,      𝑊 = 0                                           (5a) 

     

If the given side is parallel to the Y axis, then 

 
𝜕𝑊

𝜕𝑋
= 0,       𝑊 = 0                                         (5b) 

II.2.3 Free sides 

If the given side is parallel to the X axis, then 

 
𝜕𝑀

𝜕𝑌
= 0,   𝑉𝑌 = 0                                           (6a) 

      

If the given side is parallel to the Y axis, then  

 
𝜕𝑀

𝜕𝑋
= 0,    𝑉𝑋 = 0                           (6b) 

   

III. INTRODUCTION OF DIMENSIONLESS PARAMETERS 

III-1 Differential equation of the deformed plate shape 

Let us Introduce the following parameters [13], [14] : 

 

ξ =  
X

𝑎
;  η =  

Y

𝑎
; 𝑟 =

𝑅

𝑃0
;  𝑚 =

𝑀

𝑃0𝑎
2   ;  𝜔 =

𝑊𝐷

𝑃0𝑎
4 ;  𝑚(𝜉) =  

MX

𝑃0𝑎
2 ;   𝑚(𝜂) =  

My

𝑃0𝑎
2           (7) 

                              

Where   𝜉, 𝜂 – Cartesian dimensionless coordinates ; 𝑎– the length of the smaller side of the rectangular plate 

𝑃0−  a fixed value of the charge P.  

Let us write equations (1) and (2) with the new dimensionless parameters (7): 

 

𝜕2𝑚

𝜕𝜉2
+
𝜕2𝑚

𝜕𝜂2
= −𝑟;                                                                                                                      8  
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𝜕2𝜔

𝜕𝜉 2 +
𝜕2𝜔

𝜕𝜂 2 = −𝑚,                                                                                                         (9) 

 

𝑚 𝜉 = − 𝜔𝜉𝜉 + 𝜇𝜔𝜂𝜂  ;   𝑚 𝜂 = − 𝜔𝜂𝜂 + 𝜇𝜔𝜉𝜉                                                     (10) 

 

𝑚(𝜉𝜂 ) = −𝑚(𝜂𝜉 ) =  1 − 𝜇                                                                                           (11) 

 

Where : 

 

𝜔𝜉𝜉 =
𝜕2𝜔

𝜕𝜉2
;  𝜔𝜂𝜂 =

𝜕2𝜔

𝜕𝜂2
;   𝜔𝜂𝜉 =

𝜕2𝜔

𝜕𝜉𝜕𝜂
;   𝑚(𝜉𝜂 ) =  

𝑀𝑋𝑌

𝑃0𝑎
2

.                                             (12) 

 

Considering the formulas (7) and (9), we can obtain the expression of the dimensionless shear from the 

corresponding formulas  2  : 
 

𝑇𝑋
𝑃0𝑎

=
𝜕𝑚

𝜕𝜉
= 𝑚𝜉 ;   

𝑇𝑌
𝑃0𝑎

=
𝜕𝑚

𝜕𝜂
= 𝑚𝜂 .                                                                                   (13) 

 

III-2 Limit conditions 

Let us consider the boundary conditions on the side of the plate corresponding to η = 0 (side parallel to X). 

 

III.2.1 Articulated supports 

Equations (4a) taking into consideration (7) and (10) will be written as follows : 

𝜔 = 0;    𝑚(𝜂) = 0. From the first condition, it results  𝜔𝜉𝜉 = 0;  therefore from formulas (10)  and (9) we 

obtain 𝑚 = 0, when we take into consideration the second limit condition.  

 

III.2.2 Embedded supports 

Let us write equations (5a) taking into consideration (7) and (10) :  𝜔 = 0,    𝜔𝜂 = 0;  with  𝜔𝜂 =
𝜕𝜔

𝜕𝜂
 . 

III.2.3 Free edges 

Let us write equations (6a) according to the dimensionless parameters:   𝑚(𝜂) = 0,   𝑣(𝜂) = 0 ;  

With :   𝑣(𝜂) =
𝑉𝑌

𝑃0𝑎
 − generalized dimensionless cutting force 

 

IV. SUBSTITUTION OF DIFFERENTIAL EQUATIONS BY THE GENERALIZED EQUATIONS OF 

THE FINITE DIFFERENCE METHOD 

 

IV.1 Equation of the bending plate 

The numerical resolution of the problem will be carried out on regular mesh, so the pitch is h in the 

direction of the coordinate axes of 𝜉 𝑒𝑡 𝜂. Part of this mesh is shown in Figure 1, where Roman numerals 

indicate the numbers of elements that have a common point 𝑖, 𝑗 .  When m is continuous and ℎ = 𝜏  the 

approximation of equation (8) is obtained from the equation (2.2.6) [14] replacing ω, p respectively by  𝑚, 𝑟. 
                                                                                  h               h 

                                                                               i-1,j                                  η     

                                                     h               I            III                                  

                                                               ij-1           i,j             ij+1                          

        

                                                     h              II           IV                                           

                                                                               i+1,j                                     

 

                                                                     

                                                               𝜉                                                               

                                                                     Figure 1: Regular mesh 

 

 

𝑚𝑖−1𝑗 + 𝑚𝑖𝑗 −1 − 4𝑚𝑖𝑗 + 𝑚𝑖𝑗+1 + 𝑚𝑖+1𝑗 +
ℎ

2
 Δ𝐼−𝐼𝐼𝑚𝑖𝑗

𝜉
+ Δ𝐼𝐼𝐼−𝐼𝑉𝑚𝑖𝑗

𝜉
+ Δ𝐼−𝐼𝐼𝐼𝑚𝑖𝑗

𝜂
+ Δ𝐼𝐼−𝐼𝑉𝑚𝑖𝑗

𝜂
  

 

= −
ℎ2

4
 𝑟𝑖𝑗 + 𝑟𝑖𝑗

𝐼𝐼𝐼 + 𝑟𝑖𝑗 + 𝑟𝑖𝑗
𝐼𝑉𝐼𝐼𝐼                                                                                 (14) 
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Where :   

  

Δ𝐼−𝐼𝐼𝑚𝑖𝑗
𝜉

= 𝑚𝑖𝑗
𝜉𝐼 − 𝑚𝑖𝑗

𝜉𝐼𝐼 .                                                                                       (15) 

 

Other expressions of the same kind are obtained by analogy. Equation (14) is called the generalized equation of 

the finite difference method, given that if  𝑚𝜉 , 𝑚𝜂   𝑎𝑛𝑑  𝑟 are continuous, then we obtain as a particular case 

the equation of the finite difference method which substitutes equation (8) 

 Since equations (8), (9) differ only in their parameters, then the substitution of equation (9) when 

𝑚, 𝜔, 𝜔𝜉 , 𝜔𝜂  are continuous, is obtained by writing equation (14) where m, r are replaced by ω, m 

respectively.  

 

𝜔𝑖−1𝑗 + 𝜔𝑖𝑗 −1 − 4𝜔𝑖𝑗 + 𝜔𝑖𝑗+1 + 𝜔𝑖+1𝑗 = −ℎ2𝑚𝑖𝑗 .                                                  (16) 

 

Note that the partial derivatives of 𝜔 ∶   𝜔𝜉 =
𝜕𝜔

𝜕𝜉
  𝑒𝑡  𝜔𝜂 =

𝜕𝜔

𝜕𝜂
  may be discontinuous when the plate has ball 

joints, while m will be discontinuous if external point bending moments are applied in one of the directions of 

the coordinate axes. These cases are rare in practice and will not be examined here.  

 

IV.2 Limit conditions 

When all the sides of the plate are articulated and the relation between q and W is given, in particular 

when q = 0 the problem boils down to solving the system of equations (14), (16). These equations will be 

written for each point inside the integration domain. If the bearing conditions differ from the joints, then the 

corresponding limit conditions must be substituted. 

Suppose the left side of the plate (η = 0) is fixed. To calculate  𝜔𝑖𝑗
𝜂

,  let us write the corresponding equation [12] 

for a square mesh when 𝑚, 𝜔, 𝜔𝜉 , 𝜔𝜂  are continuous: 

 

𝜔𝑖−1𝑗 − 2ℎ𝜔𝑖𝑗
𝜂
− 4𝜔𝑖𝑗 + 2𝜔𝑖𝑗+1 + 𝜔𝑖+1𝑗 = −ℎ2𝑚𝑖𝑗                                                   (17) 

 

According to the limit conditions of the embedded sides:  𝜔𝑖𝑗
𝜂

= 𝜔𝑖−1𝑗 = 𝜔𝑖𝑗 =  𝜔𝑖+1𝑗 = 0  and  from (17) 

follows:  

 

𝜔𝑖𝑗+1 = −
ℎ2

2
𝑚𝑖𝑗                                                                                                                       (18) 

 

For the upper side of the plate (ξ = 0) equation (17) is written by replacing η, i; j respectively by ξ, j, i. For the 

right (η = 1) and lower (ξ = 1) sides these equations are written by reflection, but  𝜔𝑖𝑗
𝜉

, 𝜔𝑖𝑗
 𝜂

  change sign.  

Let's examine the case of the free side (η = 0). To determine ω and m at the point ij on the free side of the plate, 

we use the equations, obtained by substituting the conditions (6a). For that, it is enough to write the equations 

(10), (15), obtained in [14], [15] when  𝑔 = 1, 𝑔𝜂 = 𝑔𝜉 = 0 :  

 

𝜔𝑖−1𝑗 − 2𝜔𝑖𝑗 + 𝜔𝑖+1𝑗 = −
ℎ2

1−𝜇
𝑚𝑖𝑗  ;                          (19) 

 
𝜇

2
𝑚𝑖−1𝑗 +

1 − 𝜇

ℎ2
 𝜔𝑖−1𝑗 − 𝜔𝑖−1𝑗+1 −  

3

2
+ 𝜇 𝑚𝑖𝑗 + 2𝑚𝑖𝑗+1 −

1

2
𝑚𝑖𝑗+2 − 

 

−
2 1−𝜇 

ℎ2  𝜔𝑖𝑗 − 𝜔𝑖𝑗+1 +
𝜇

2
𝑚𝑖+1𝑗 +

1−𝜇

ℎ2  𝜔𝑖+1𝑗 − 𝜔𝑖+1𝑗+1 = 0.                    (20) 

 

The equation for the point ij of the free upper side of the plate is obtained from equation (20) by 

replacing i, j respectively by j, i. For the right side and the bottom side these equations are written by reflection. 

Equation (19) is written by analogy for the different sides. 

We notice that the equations (17), (19), (20) describe all the limit conditions according to the unknowns m and 

ω. 

If the plate is not in contact with the ground, then in (14) r will be replaced by 𝑃 =
𝑃

𝑃0
 . 
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If the plate is in contact with the ground, then  𝑟 = 𝑃 + 𝑞 , the reaction coefficient of the soil is determined 

according to the elastic modulus of the soil by the formula 𝑞 = 𝑘𝜔, where ω is determined by (7), 𝑘 =
𝐶𝑎4

𝐷
 ,  

𝐶 − the stiffness of the soil in N/m
3
.   In that case : 

         

 

𝑟 = 𝑃 − 𝑘𝜔.                                                                                      (21) 

 

Putting (21) in (14) when ω is continuous and k = const, we get the equation that allows to calculate the plate on 

elastic foundation according to the Winkler model [3], [4], [16].  

 

I. Calculation Algorithm 

The algorithm for calculating on a square mesh is as follows. For all the points of the mesh located inside the 

domain of integration one writes the equations (16) and (14) taking into account of (21). For a plate whose all 

sides are articulated, these equations are solved simultaneously by considering m = ω = 0 on the edges. In the 

other cases of the limit conditions one associates with equations (16), (14) either equation (17) or equations (19), 

(20). The resolution of the equations thus obtained makes it possible to determine m and ω.  The values of 

𝜔𝜉𝜉 ,  𝜔𝜂𝜂  are calculated by the known formulas of the finite difference method. The values 𝑚(𝜉) , 𝑚(𝜂)  are 

obtained by formulas (10). To determine 𝑚(𝜉𝜂 )  by the formula (11), we must compute 𝜔𝜉𝜂  by the formula 

obtained by parabolic approximation of the function ω : 

 

𝜔𝑖𝑗
𝜉𝜂

=
1

4ℎ2  𝜔𝑖−1𝑗−1 − 𝜔𝑖−1𝑗+1 + 𝜔𝑖+1𝑗+1                        (22) 

 

From the formula (17) one can draw the expression of  𝜔𝜂 . By analogy we can determine the expression of 𝜔𝜉 . 

To determine  𝑚𝑖𝑗
𝜂

, just write (17) by replacing ω, m respectively by m, r.  

Thus digital resolution gives complete results. All parameters of the stress state of the plate are determined.  

 

II. Applications 

To illustrate the algorithm's performance let's start by examining the flexion of a plate without an elastic 

foundation. 

 

                                                                1 

                                                               00               01           02              𝜂 

                                                                    I              III            ½  

                                                            10            11        12  

                         

                                                              II              IV         ½  

                                                              20              21           22 

                                                             ½              ½  

                                                    𝜉  

  

 

 

Figure 2 : rectangular plate of constant thickness, with articulated edges 

 

 

A rectangular plate of constant thickness, all edges of which are articulated, is linearly loaded on line 01-11 as 

illustrated in figure 2. The intensity of the load is equal to 1. The pitch of the mesh is  h = 1/2. 

For point 11  let us write equation (14) taking into consideration the limit conditions, when: 

  𝑟 = Δ𝐼−𝐼𝐼𝑚11
𝜉

= Δ𝐼𝐼𝐼−𝐼𝑉𝑚11
𝜉

= Δ𝐼𝐼−𝐼𝑉𝑚11
𝜂

= 0;  Δ𝐼−𝐼𝐼𝐼𝑚11
𝜂

= 1;    ℎ = 1/2 :  

−4𝑚11 +
1

2
.

1

2
. 1;   𝑚 =

1

16
.  When the plate is loaded all the way 01-11-21 (figure 2), then  𝑚11 =

1

16
. 2 =

1

8
.  To 

determine  𝜔11  write equation (16) taking into consideration the limit conditions and the value of 𝑚11 :   
 

−4𝜔11 = −
1

22
.
1

8
;   𝜔11 = 0.00781 

 

  We must say that the complexity of loading and rarity of the grid have led to a poor result. When we 

compare the result of 𝜔11  with that obtained in [12] using Fourier’s double series, the difference is 16%.  If we 



Calculation Of Plates On Elastic Foundation By The Generalized Equations Of Finite Difference  

DOI:10.9790/1813-0708013238                                        www.theijes.com                                              Page 37 

reduce the mesh size h = 1/4, this difference decreases and becomes equal to 8.6%. Thus by decreasing the pitch 

of the mesh we can substantially improve the result (Table 1) shows that when h = 1/32 the difference is of the 

order of 0.15%. 

It should be noted that the algorithm was developed for the purpose of digitizing the computation by the 

generalized equations of the finite difference method. The examples discussed here simply illustrate the 

effectiveness of the algorithm and show that with a fairly large mesh size the generalized equations of the finite 

difference method give satisfactory results. 

 

 

Tableau 1 : Values of the coefficients of momentum and the arrow in the center of the plate 

the mesh step size h  
Bending momentum in the center 
of the plate 

deflection in the center of the 
plate 

m    

h =1/4 
0.125 0.00781 

h =1/8 
0.166 0.00692 

h =1/16 
0.168 0.00679 

h =1/32 
0.168 0.00675 

[10] - 0.00674 

 

Now let's look at a rectangular plate on an elastic foundation. The plate is articulated on the upper and lower 

sides, while the right and left sides are free. The plate is in contact with the ground k = 200; μ = 0.3 and is 

subjected to a load uniformly distributed over its entire surface 𝑃 = 1 . Under the symmetry property, we will 

work on a part of the plate figure 3. 

   

For points 11, 12 write equations (14), (15) taking into consideration (21), limit conditions and symmetry, when 

h = 1/2.  For point 10, write equations (19), (20). From the resolution of the system of equations thus obtained 

we determine the parameters: 𝑚10 = 0.01944;  𝑚11 = 0.02546;   𝑚12 = 0.03052;  𝜔10 = 0.003472;  𝜔11 =
0.003352;  𝜔12 = 0.003583. 
 

 

                          00           01            02                               ½          𝜂 

                          10           11            12 

                          20           21            22                              ½  

                    𝜉         ½            ½             ½            ½  

 

 

 

 

Figure 3: rectangular plate (b = 2a) with two parallel articulated edges and two parallel free edges 

 

Since solutions for this problem do not exist anywhere, we checked the error of the results obtained by using the 

principle of static equilibrium of the plate. In this view we have determined the sum of the projections of all the 

reactions on the axis perpendicular to the average plane of the plate. Under the symmetry property, we can 

consider half of the plate. The resultant of external loads applied to this portion is equal to 1. The reaction at 

point ij of the articulated side can be determined by the formula that follows from (19) if we write it in 

agreement with (8) by replacing ω, m, η, i, j respectively by m, r, ξ, j i.  When we consider that  𝑟𝑖𝑗 = 𝑃𝑖𝑗   − 𝑘𝜔𝑖𝑗   

and that on the sides  𝜔 = 𝑚 = 0 we obtain: 

 

𝑚𝑖𝑗
𝜉

=
1

2
.
1

2
+ 2𝑚𝑖𝑗 .                                                                                                          (23) 

 

Using the formula (23) determine the reactions on the sides of the plate taking into consideration the values of m 

calculated above : 𝑚00
𝜉

= 0.2889;  𝑚01
𝜉

= 0.3009;   𝑚02
𝜉

= 0.3110.  Due to symmetry 𝑚20
𝜉

= 𝑚00
𝜉

;    𝑚21
𝜉

=

𝑚01
𝜉

;    𝑚22
𝜉

= 𝑚02
𝜉

. The sum of the projections of these reactions on the axis perpendicular to the average plane 

of the plate is equal to :  𝑚𝜉 = 0.6012. Then, using Simpson's formula we determined the reactions at the 

points of contact with the ground, whose sum of projections on the axis perpendicular to the mean plane of the 

plate is equal to :  𝑞 = 0.4547. So we get the resulting reaction  𝑅0 =  𝑚𝜉 +  𝑞 = 1.056. From the results 

obtained, it results that the error is 4.9%.  
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V. CONCLUSION 

In conclusion we can say that the algorithm developed here solves the problems of calculating isotropic thin 

plates of constant thickness resting on an elastic foundation.  
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