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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

The univariate data of the Nigerian All-Share Index (NASI) obtained from the Nigerian Stock Market (NSM), 

covering the period of 18 years, was studied and analysed through time series. The NASI considered exhibited 

long-range dependence with The result of the analysis in a long-range dependence showed that the 

autocorrelation function (ACF), partial autocorrelation function (PACF) and their respective residuals agreed 

with their theoretical concepts. The multiplicative trend type (MULT) of the seasonal decomposition of NASI 

MULT is simple seasonal. The residual of ACF and PACF of NASI MULT for simple seasonal is shown with its 

model fit having zero predictors, zero outliers, mean zero and unit variance for 24 lags of NASI MULT. Further 

result of its trend showed model fit statistic with stationary R-squared value as 0.069, R-squared value as 0.938, 

with Ljung-Box for 18 years having 16 degrees of freedom, 0.832 significance level, various fit statistic 

with respective mean, minimum, maximum and percentile value ranging from 5 to 95 with no standard error. 

Hence, the result of the analysis in a long-range dependence phenomenon showed that the residual functions in 

financial data could be of help to further describe the nature of the trading activities of the financial market 

trends in a given economy.  

Index Terms: Autocorrelation Function, Nigerian All-Share Index, Partial Autocorrelation Function, Residual 

Function, Seasonal Multiplicative Trend. 
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I. INTRODUCTION 

This paper considered the residual functions as some of the essential dynamics of financial markets 

with respect to the behaviour of the autocorrelation function and partial autocorrelation function [2], [3]. The 

Nigerian Stock Exchange (NSE) maintains an All-Share Index formulated in January 3,1984 with all listings 

included in the Nigerian Stock Exchange All-share index while data on listed companies performances are 

published daily, weekly, monthly, quarterly and annually [26.] The theory of correlations and autocorrelations 

with some introductory concepts to Statistics were shown in the works by [30],[31]and [32], and [6]. Some time 

series models were considered by [29] and [28] as well as [4] who emphasised on the theoretical time series 

autocorrelated sampling properties. [8]extensively studied the variance of the regression residual method for 

estimating the Hurst coefficient of times series. [9J presented the approximate distribution of serial correlation 

coefficients while [12] and [13] respectively showed some tests of hypothesis in certain linear autoregressive 

model. Moreover, some approximate tests of correlation in time series could be found in [15] and [22]. [I] and 

[27] respectively worked on estimation and information in stationary time series. [25]emphasized on fractional 

Brownian motion and long-range dependence while [10J highlighted on certain theory and application of long-

range dependence. Expressions for covariances having a bilinear representation of time series with applications 

while assuming that the random variables are Gaussian with was given by [11]. [23]measured 

forecast performance of ARMA and ARFIMA models with application to US dollar and UK pound. In[17], [18] 

and [19], computer experiments with fractional noises were respectively presented in various parts while [20] 

discussed the robustness of rescaled range Statistical measurement. [7]presented a good work on time series 

analysis forecasting and control. Also, [21] gave an elaborate forecasting details with univariate Box-Jenkins 

Model. Ljung-Box test was recorded in [14]. [16]gave an insight into operational hydrology.  
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II. METHODOLOGY 

We consider three processes associated with ARIMA (p,d,q) models. These include:  

1 1t t tz c z a                                                                                                                  (2.1) 

1 1 2 2t t t tz c a a a                                                                                                     (2.2) 

1 1 1 1t t t tz c z a a     
                                                         

                                      (2.3)   
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(2.4) 

Equation (2.1) is called an AR(l) process because it contains only one AR term (including the constant term and 

the current random shock) where the maximum time lag on the AR terms is two. Equation (2.2) is called an 

MA(2) since it has only MA terms with a maximum time lag on the MA terms of two. Equation (2.3) is an 

example of a mixed process because it contains both AR and MA terms. It is an ARIMA(l,l) with AR(l) and 

MA(l). Equation (2.4) gives the constant term of an ARIMA process. If no AR terms are present, then . 

This is true for all MA processes.  

ARIMA processes are characterized by the values of in this manner:  

ARIMA(p,d,q), where  such that p is the AR order of the process, q is the MA order of the 

process and d is the number of times a realization must be differenced to achieve a stationary mean. The letter 

"I"in the acronym ARIMA refers to the integration step which corresponds to the number of times, d, the 

original series has been differenced. If a series has been differenced d times, it must subsequently be integrated 

d times to return to its original overall level [21:p.95].  

 

2.1 ARIMA Models in Back shift Notation  

ARIMA models are often written in back shift notation. The back shift operator, B, alters the time 

subscript on the variable by which it is multiplied, that is  

                                                                          (2.5) 

Also,  

                                                                                                                       (2.6) 

Multiplying tz by the differencing operator,  produces the
thd differences of  

2

1 2(1 ) (1 )d p

t p tB z B B B z       
                                                                              (2.7)

 

The procedure for non-seasonal processes in back shift form has six steps as seen in [19]. Using the six steps, a 

non-seasonal process in back shift notation has the general form          

    (2.8) 

where  is the general form of the AR operator of  order 

 is the general form of the MA operator of order  written    in 

deviations from its mean, , and is the random shock. Equation (2.8) can be written in compact notation by 

substituting the following symbols. Let  

                                                                (2.9) 

                                                                                 (2.10)  

                                                (2.11)  

Thus, a compact way of saying that the random variable evolves according to an ARIMA (p,d,q) process is  

              (2.12)  

It is more difficult to show that MA terms represent past  By demonstrating this for MA(1) rather than 

proving it for the general case, we will find out that the MA(1) process can be interpreted as an AR process of 

infinitely high order. MA(1) process in back shift form is:  

                                                               (2.13)  

                                     (2.14)  

For a geometric series with is the sum of a convergent infinite series, that is,  
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                                  (2.15)  

                                               (2.16) 

Equation (2.16) is an AR process of infinitely high order with the  coefficients given by  

1 1

2 2

3 3

 

 

 
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 

 



                                                                                                                                       (2.17) 

 

2.2  The Estimated ACF and PACF.  

The estimated ACF and the estimated PACF are very important tools at the identification stage of the 

UBJ method [7].  

 

2.2.1  Estimated ACF  

The idea in an autocorrelation analysis is to calculate a correlation coefficient for each set of ordered 

pairs ( , )t t kz z 
  . Since we need to find the correlation between sets of numbers that are part of the same series, 

the resulting statistic is called an autocorrelation coefficient.  

Let kr  be the estimated autocorrelation coefficient of observations separated by k time periods within a given 

series. The standard formula for calculating autocorrelation coefficients is:  
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(2.18) 

or more compactly as  
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                                                                                                                        (2.19) 

where tz  and t kz 
 have their usual meaning as shown.  

 

2.2.2 Estimated PACF  

An estimated PACF is broadly similar to an estimated ACF. An estimated PACF is also a graphical 

representation of the statistical relationship between sets of ordered pairs ( , )t t kz z 
  drawn from a single time 

series. The estimated PACF is used as a guide, together with the estimated ACF, in choosing one or more 

ARIMA models that might fit the available data.  

The estimated partial autocorrelation coefficient measuring this relationship between tz and t kz 
 is designated 

by ˆ
kk . (Recall that ˆ

kk is a statistic because it is calculated from sample information and provides an estimate of 

the true partial autocorrelation coefficient kk .) The steps to obtain ˆ
kk are as follows. Initially, we estimate the 

following regression  

1 11 1t t tz z U                                                                                                                               (2.20) 

for
11̂  where 11 is the true partial autocorrelation to be estimated by regression for , where is the 

error term representing all things affecting 1tz 
 that do not appear elsewhere in the regression equation. Using 

least squares regression computer program, we obtain 
11̂ for . To obtain,

22̂ we have to estimate the 

multiple regression:  

2 21 1 22 2t t t tz z z U                                                                                               (2.21) 
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where 22 is the true partial autocorrelation coefficient to be estimated for Therefore, 
22̂ estimates the 

relationship between tz and 1tz 
 with 1tz 

 accounted for. Next, we estimate the following regression  

3 31 2 32 1 33 3t t t t tz z z z U                                                                                    (2.22) 

to find 
33̂  where 

33̂  is the partial autocorrelation coefficient to be estimated for . Thus, 
33̂ estimates 

the relationship between tz and 3tz 
 with 1tz 

 and 2tz 
 accounted for. There is a slightly less accurate though 

computationally easier way to estimate the kk coefficients. It involves using the previously calculated 

autocorrelation coefficients, . If the data series is stationary, then the following set of recursive equations gives 

fairly good estimates of the partial autocorrelations. 
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where   

  

2.3   Long-Range Dependence  

Definition 2.1A stationary sequence  n n
X

  
exhibits long-range dependence if the autocovariance function      

    satisfy  

( )
lim 1
n

n

cn 





                                                                                                                   

(2.24a) 

for some constant c and (0,1)  . In this case, the dependence between  

and  decays slowly  and  

1

( )
n

n




 
                                                                                                                    

(2.24b) 

Hence, according to [4], we obtain immediately that the increments  

                                                                                                          (2.25)  

and 

                                                                                                  (2.26)  

of  have the long-range dependence property for the Hurst parameter,   since  

         (2.27) 

In particular,  
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(2.28a) 

Summarizing, we obtain:  
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There are alternative definitions of long-range dependence. We recall that a function L, is slowly varying at zero 

(respectively, at infinity) if it is bounded on a finite interval and if for all  0 
( )

1
( )

L ax
as n

L x
   

respectively. The spectral density of the autocovariance ( )k is given by  

  
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(2.29)  

Definition 2.2 For stationary sequences, , with finite variance, we say that  n n
X


exhibits long-

range dependence if one of the followings holds:  

For some constants (0,1),c and  
 

1lim ( ) / ( ) 1
n

k n

k cn L n
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                                                                           (2.30a) 

For some constant (0,1),c and    
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For some constant (0,1),c and    
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where  are slowly varying functions at infinity, while  is slowly varying at zero.  

Lemma 2.1.  For  of Hurst index , the three 

definitions of long-range dependence of Definition (2.2) are equivalent. They hold with the following choice of 

parameters and slowly varying functions [3]:  

                                   (2.31a) 

                                  (2.31b)  

                                 (2.31c) 

Proof. See [4], [23] and [8].  

Definition 2.3.    We say that an valued random process,  , is  

self-similar or satisfies the property of self-similarity if for every a >0 there  

exists b > 0 such that  

                                                                      (2.32) 

Hence the two process and have the same finite-dimensional distribution functions, 

 

            (2.33)  

Definition2.4If in Definition (2.3), then we say that is a self-similar process with Hurst 

index H or that it satisfies the property of (statistical) self-similarity with Hurst index H. The NASI considered 

exhibited long-range dependence with [2]. 

 

III. ANALYSIS ON NASI DATA 

The seasonal decomposition on NASI data to observe some trends is presented in this section. We find 

two trends in the computer simulation of the seasonal decomposition of NASI namely:- the multiplicative type 

with MULT as trend name and NASI MULT as serial name; and the additive type with ADDT as trend name 

and NASI ADDT as serial name. The choice of NASI MULT was due to the fact that it had a higher average 

periodicity percentage growth rate than that of NASI ADDT. See [2], [3] for more explanation on Additive 

Trend: NASI ADDT.  



3.1  Multiplicative Trend: NASI MULT  

The seasonal multiplicative trend type, MULT, with serial name, NASI MULT, has length of seasonal 

period 4. In computing the method of moving averages, the observations span is equal to the periodicity and all 

points are weighted equally. Applying the model specifications from MULT, the seasonal factors (%) for four 
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periods are: Period 1, 99.2%; period 2,100.5%; period 3,100.6% and period 4,99.7%. 

 

3.2  NASI MULT of ARIMA(1,1,1)  

The time series modeler trend type of NASI MULT analysed was ARIMA (1,1,1) with the model 

statistic summary chart given in Table 3 while Table 7 showed the Portmanteau test (Ljung-Box Q(18)) for 18 

years (Jan.1990 - Dec.2007).  

According to Ljung and Box(1978), the Ljung-Box Test for lack of fit is a diagnostic tool used to test the lack of 

fit of a time series model. The test is applied to the residuals of a time series after fitting an ARIMA(p,q) model 

or ARIMA(p,d,q) to the data. The test examines auto correlations of the residuals. If the auto correlations are 

very small, we conclude that the model does not exhibit significant lack of fit. The Ljung-Box test is 

implemented using a residual time series, see Ljung-Box test website for more details.  

In general, the Ljung-Box test is defined as:  

The model does not exhibit lack of fit.  

The model exhibits lack of fit.  

Test Statistic: Given a time series Y of length n, the test statistic is defined as:  
2

1

ˆ
( 2)

m
k

k

r
Q n n

n k

 


  

where  is the estimated autocorrelation of the series at lag k, and m is the number of lags being tested.  

For significance level 0, and the critical region, the Ljung-Box test rejects the null hypothesis (indicating that the 

model has significant lack of fit) if  which gives the chi-square distribution table value with h 

degrees of freedom and significance level .  

Because the test is applied to residuals, the degrees of freedom must account for the estimated model parameters 

so that  where p and q indicate the number of parameters from the ARIMA (p,d,q) model 

fit to the data.  

 

IV. RESULTS 

Figure 1 is the empirical plot of the NASI MULT showing number (amount in millions) versus date 

(year).  The plot of the residual of ACF and PACF for the multiplicative trend of NASI MULT is shown in 

Figure 2 while Figure 3 showed its corresponding case  for simple seasonal with 24 lags. Figures 2 and 3 

appeared to be similar yet not exactly the same.  Each of the residual ACF and PACF had mean zero and unit 

variance for 24 lags of NASI MULT.  Also, Figure 4 showed a typical case for the residual ACF and PACF 

plots for ARIMA(0,1,0).  The trend type of NASI MULT is simple seasonal.  Tables 1 and 2 respectively 

showed ACF  and PACF of NASI MULT while Table 3 showed the model statistic for ARIMA(1,1,1) of NASI 

MULT.   Considering the trend summary of model fit statistic for simple seasonal of NASI MULT, the 

descriptive chat is shown in Table 4 with zero predictors and outliers. The model fit statistic had stationary R-

squared value as 0.069, and R-squared value as 0.938, while Ljung-Box Q(18) statistics, degree of freedom and 

significance level are 10.620, 16 and 0.832 respectively. The NASI MULT model fit statistic summary chat of 

ARIMA (0,1,0) of Table 5 showed various fit statistic with respective mean, minimum, maximum, with no 

standard error.  In Table 6, each fit statistic showed a constant value for the respective percentile range from 5 to 

95 for the model fit statistic for ARIMA (0,1,0) of NASI MULT. The model fit statistic and Ljung-Box (18) for 

ARIMA (0,1,0) of NASI MULT in Table 7,  showed the Ljung-Box Q(18) estimated statistics, degree of 

freedom and significance level as 15.728, 18 and 0.612 respectively. The model fit statistic has R-squared value 

as 0.944 and zero values for both predictors and outliers.   

 

V. CONCLUSION 

The residual ACF and PACF for autoregressive fractional integrated moving average (ARFIMA) 

models may give rise to persistent and anti-persistent behaviour in financial markets similar to fractional noise. 

This is possible if the time series is broken up into blocks of size m so that the partial sum are regressed on an 

arbitrary line within each block. The residual of this regression produces an equation. Then for each block the 

sample variance of the residual is computed where the average of this sample variance over all the blocks 

becomes proportional to m
2H

. The value of the Hurst parameter, H, obtained in a long-range dependence where 

H >0.5 could be useful in characterising the fractional noise process. Figure 4 is an example of an ARFIMA 

(0,1,0) (or ARIMA (0,1,0)) process, confirming the idea of the fBm of [17],[18],[19] and [20]. Since the more 

general ARFIMA (p,d,q) process may include short memory autoregressive (AR) or moving average (MA) 

processes over a long memory process, it has potential in describing markets. Hence, the result of the analysis in 
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a long-range dependence phenomenon showed that finding the residual functions in financial data could help in 

further understanding of the financial market trends in a given economy.  

 

Table 1: The Autocorrelations of the NASI MULT 

Lag  Autocorrelation  Standard Errora 
Box-Ljung Statistic  

Value  df Sigb.  

1 

2  

.879 

.764  

.115 

.115  

57.981 

102.374  

1 

2  

.000 

.000  

3  .659  .114  135.952  3  .000  
4  .628  .113  166.843  4  .000  

5  .569  .112  192.547  5  .000  
6  .521  .111  214.455  6  .000  

7  .495  .110  234.511  7  .000  

8  .467  .110  252.643  8  .000  
9  .435  .109  268.682  9  .000  

10  .414  .108  283.383  10  .000  

11  .393  .107  296.863  11  .000  
12  .373  .106  309.194  12  .000  

13  .341  .105  319.697  13  .000  

14  .297  .104  327.773  14  .000  

15  .230  .103  332.720  15  .000  

16  .175  .103  335.627  16  .000  

a. The underlying process assumed is independence (white noise); 

b. Based on the asymptotic Chi-square approximation. 

 

Table 2: PACF of NASI MULT 

          
Figure1: NASI MULT showing number (amount) versus Date year) 

 

             

 

 

Table 3: The Model Statistic for ARIMA(1,1,1) of NASI MULT 

 

 

 

 

 

 

 

Table 4: The Model Fit Statistic for Simple Seasonal of NASI MULT 

  Model Fit Statistic  Ljung-Box Q(18)  Number  

Model  Number of  Stationary      of  

 Predictors  R-squared  R-squared  Statistics  DF  Sig.  Outliers  

NASI MULT  0  
. 

069  
.938  10.620  16  .832  0  

              

                        

Lag  
Partial  

Autocorrelation  

Standard  

Error  

 1  .879  .118  

2  -.039  .118  
3  -.016  .118  

4  .259  .118  

5  -.142  .118  
6  .041  .118  

7  .157  .118  

8  -.104  .118  
9  .030  .118  

10  .101  .118  

11  -.080  .118  

12  .035  .118  

13  -.006  .118  

14  -.138  .118  
15  -.097  .118  

16  .012  .118  

  Model Fit Statistic  Ljung-Box Q(18)  Number  

Model  Number of  Stationary      of  

 Predictors  R-squared  R-squared  Statistics  DF  Sig.  Outliers  

NASI MULT  0  .006 .942  10.266  16  .852  0  
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Table 5: The Model Fit Statistic for ARIMA(0,1,0) of NASI 

                           MULT  showing mean, SE, minimum and maximum 
Fit Statistic  Mean  SE  Minimum  Maximum  

Stationary R-squared  -2.0DE-015  -  -2.0DE-015  -2.0DE-015  
R-squared  .944  - .944  .944  

RMSE  8601.294  - 8601.294  8601.294  

MAPE  8.140  -  8.140  8.140  
MaxAPE 40.017  -  40.017  40.017  

MAE  3539.471  -  3539.471  3539.471  

MaxAE 58005.435  -  58005.435  58005.435  
Normalized  BIC  18.179  -  18.179  18.179  

 

Table 6: The Model Fit Statistic for ARIMA(0,1,0) of NASI MULTshowing  percentile range from 5 to 95 

Fit Statistic  
Percentile  

5  10  25  50  75  90  95  

Stationary        

R_squared -2.0DE-015 -2.0DE-015 -2.0DE-015 -2.0DE-015 -2.0DE-015 -2.0DE-015 
-2.0DE-

015 

R_squared .944 .944 .944 .944 .944 .944 .944 

RMSE 8601.294 8601.294 8601.294 8601.294 8601.294 8601.294 8601.294 

MAPE 8.140 8.140 8.140 8.140 8.140 8.140 8.140 

MaxAPE 40.017 40.017 40.017 40.017 40.017 40.017 40.017 

MAE 3539.471 3539.471 3539.471 3539.471 3539.471 3539.471 3539.471 

MaxAE 58005.435 58005.435 58005.435 58005.435 58005.435 58005.435 58005.435 

Normalized        

BlC 18.179 18.179 18.179 18.179 18.179 18.179 18.179 

 

 

Table 7: The Model Fit Statistic and Ljung-Box(18) for ARIMA (0,1,0) of NASI MULT 

Model  
Number of  

Predictors  

Model Fit Statistics  Ljung-Box Q(18) Number  
of  

Outliers  
R-squared  Statistics  DF  Sig.  

NASI MULT  0  .944  15.728  18  .612  0  
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Figure 2: The plot of the residual of ACF and PACF of NASI MULT 

         

 

Figure 3: Residual ACF and PACF plots for simple seasonal of NASI MULT 

 
Figure 4: Residual ACF and PACF plots for ARIMA (0,1,0) 
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