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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

A passive grid is used in a water tank to produce homogeneous turbulence and decaying grid generated 

turbulence is studied. An acoustic doppler velocimeter has been used to measure three instantaneous velocity 

components. The variation of turbulent kinetic energy and Reynolds stress are studied at different locations 

downstream of the grid. Special attention has been focused on presenting the evolution of Reynolds stress, 

dissipation and length scale anisotropy tensors at two different grid Reynolds numbers. It is shown that the rate 

of return to isotropy is different for the three principal directions. The experimental results are used for the 

assessment of two pressure strain correlations in the studies of the "return to isotropy" of decaying grid 

generated turbulence.  
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I. INTRODUCTION 

Turbulence can be generated by using passive or active devices. Passive devices include screens, 

barriers, grids and spires at the beginning of the water tank / wind tunnel test section (MacPhail [1]). Active 

device (Poorte and Biesheuvel [2]) include array of air jets combined with barriers and roughness elements. 

Matika et al. [3] proposed an active device with servo motors rotating its grid rods attached with vens. Larssen 

and Devenport[4] used such active grids for production of large scale homogeneous turbulence. 

Passive devices such as grids mainly consist of bars or rods and can be used for producing turbulence in 

wind tunnels/ water tanks if the Reynolds number based on the wire diameter is high. Various authors have 

explored grid turbulence (Uberoi [5], Warhaft [6], Le Penven [7], Comte- Bellot and Corrsin [8], Choi [9]), 

which has primarily been used as benchmarks for comparing their theoretical predictions with by various 

turbulence modelers. More recently Hearst and Lavoie [10], Valente and Vassilicos[11], Gomez-Fernandes et 

al.[12], Hearst and Lavoie [13] and Gomez-Fernandes et al.[14] have studied grid generated turbulence. Zhou et 

al. [15] have studied the temporal evolution of turbulence generated by regular and multi-fractal grids 

numerically. Krogstad and Davidson [16] used multi-fractal grids and compared their results with the results of 

conventionally used grids. In a water tank Murzyn and Belorgey [17] investigated the grid generated turbulence 

experimentally. Evolution of turbulent Reynolds stresses and integral turbulent length and time scales were 

studied by Leng and Chanson [18] for free surface flow. Conventionally, grid is located at the entrance of the 

test section of the wind tunnel/ water tank. Behind the grid, high level of fluctuations is generated due to 

complicated flow structure resulting from vortices generated at the grid (Ertunc et al. [19]). Finally, the vortices 

degenerate into turbulent wakes downstream of the grid and their interaction results in turbulence intensification. 

It is generally assumed that the turbulence so produced is statistically homogeneous 40 to 50 mesh sizes 

downstream of the grid. After the flow goes along a few mesh sizes, turbulence begins to decay because of the 

viscous interaction of the energy containing eddies among themselves and with the wall provided there is no 

other source of turbulence. Near the grid the eddies are large and the eddy size will be reduced to Taylor 

microscale in the intermediate region and finally to kolmogorov (dissipation) scale and the energy associated 

with the smallest eddies dissipate as heat. The decay rate is approximately equals to the viscous dissipation rate 

(Comte- Bellot and Corrsin [8]). 

The study of decaying homogenous turbulence has been experimentally observed by many researchers. 

(Chasnov [20], Choi [9], Nagata et al. [21], Hearst and Lavoie [22], Tucker [23]). Choi and Lumley [24]  has 

studied wind-tunnel turbulence experimentally and explored plane distortion, axisymmetric expansion and 
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axisymmetric contraction to introduce anisotropies in grid turbulence. They have plotted and evaluated the 

evolution of Reynolds stress anisotropy in the wind tunnel. Gence and Mathieu [25], Lumley and Newmann [26] 

have studied the return to isotropy of homogeneous turbulence having been submitted to two successive plane 

strains. However it is seen that grid-turbulence is generally anisotropic (Grant and Nisbet[27]). Djenidi and 

Tardu [28] had studied the grid generated homogenous turbulence using direct numerical simulations. 

Anisotropy of the dissipation tensor in a turbulent boundary layer was studied by Antonia [29] through direct 

numerical simulations, Torrano et al. [30] evaluated the accuracy of eddy viscosity models in the numerical 

analysis of decaying grid generated turbulence in open wind tunnel. Very few researchers had worked on the 

evolution of anisotropies near the grid and the corresponding return to isotropy at various grid Reynolds 

numbers, also there is a need to assess the performance of pressure strain correlations in computational fluid 

dynamics simulations for decay of grid generated turbulence. 

This paper reports an experimental investigation of grid turbulence with the view to investigate 

exclusively the degree of the anisotropy of the time averaged turbulent field at different grid Reynolds numbers. 

The results are analyzed with the aim of quantifying the levels of anisotropy and the approach toward isotropy as 

the turbulence decays along the flow direction. The focus is on the anisotropies of the Reynolds-stress, 

dissipation and length scale anisotropy tensors. Numerical simulations were also carried out in a computational 

fluid dynamics code to study the return to isotropy of turbulence using Sarkar and Speziale (Speziale et al. [32], 

Sarkar and Speziale [33]) and Gibson and Launder [33] pressure strain correlations. The variation of turbulence 

intensity, turbulent kinetic energy and Reynolds stresses are also studied downstream of the grid. 

 

II. EXPERIMENTAL SET-UP AND DETAILED PROCEDURE 

The experiments were conducted in the recirculating water tank at the department of Ocean Engineering 

and Naval Architecture, IIT Kharagpur. The schematic diagram of the water tank is shown in figure 1a. Side 

walls of the water tank are made up of glass. The water is recirculated by a pump, its rpm is controlled by an 

electrical control unit. Without a grid a mean flow velocity of 1 m/s is achievable for a water depth of 0.8 meter. 

The water tank has width 2 meter and depth 1.5 meter. The grids were placed immediately preceding the test 

section through a grid holder. The depth of water was 0.8 meter for all the cases of the experiments. 

Turbulence was generated by using grids of 2 different mesh sizes. We name the grids as sq20, sq10. 

The grids are made up of 2.5 cm diameter cylindrical PVC pipes. The mesh length of the grids (M) were taken as 

20cm and 10cm respectively. The rigidity of the 2 grids were calculated as 0.23 and 0.43 by using equation (1) 

as described in Comte-Bellot and Corrsin [8].  

                                                      (2 )b bd d

M M
                                                                        (1) 

Reynolds number based on the grid mesh size (Nagata et al. [21]) is calculated as 

ReM

UM


                                                                        (2)  

 
Figure 1: Schematic of the recirculating water tank at the department of Ocean Engineering and Naval 

Architecture, IIT Kharagpur 
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Where M is the mesh size, U  is the inflow velocity and   is the kinematic viscosity of water. Reynolds 

numbers corresponding to two different mesh sizes (20 cm, 10 cm) were calculated as ReM  of 80000 and 

40000 respectively. 

x is the main flow direction (at the grid position, x=0), y is the transverse direction and z is the vertical direction. 

U, V and W are the horizontal, transverse and vertical velocity components. 

An Acoustic doppler velocimeter is used in our experiment to measure instantaneous velocity components at 

different downstream locations of the grid. Figure 1b represents the adv fitted near the grid in the water tank. An 

ADV measures three- dimensional flow velocities using doppler shift principle. Main components of the 

instrument are a sound emitter, three sound receivers and a signal conditioning electronic module. Detailed 

working principle of operation of the ADV can be found in Gracia et al. [35].  

 

II.1. Data Analysis:  

The data collected from the ADV were decomposed into Mean and fluctuating velocities as 

                                                                      
'U U u                                                                             (3) 

U  and 
'u  can be calculated from the following formula 

                                                                     

1

1 n

i

i

U U
N 

                                                                          (4) 

 
' 21

( ( )
N

i

i

u U U
N

                                                                  (5) 

Since turbulence is considered as eddying motion of fluid, secondary stresses appear in the fluid and those 

stresses are known as Reynolds stresses, which is a second order tensor having nine components, out of which 

six are independent. Diagonal components are called as normal stresses and the off diagonal components are 

called as shear stresses. The turbulent kinetic energy can be defined as  

                                                              
2 2 20.5( ' ' ' )k u v w                                                                (6) 

where  
2'u ,

2'v and 
2'w are the three normal Reynolds stresses. 

 

  

Figure 2: Mesh sensitivity analysis, Re 40000M   

Flow with a mean velocity gradient is said to be anisotropic. In isotropic turbulence velocity 

fluctuations are independent of the direction of reference, perfect isotropy condition can be written as 

2 2 2' ' 'u v w                                                                   (7)     

Anisotropies can exist in Reynolds stress, dissipation and length scale. Various researchers have 

defined these anisotropies and also have derived relationships among them. Kassinos et al [36] have defined 

various single point structure tensors which are useful descriptor of turbulence structure. Several one-point 

statistical measures of the energy-containing turbulence structures were introduced in his seminal work, those are 

circulicity, inhomogeneity, dimensionality anisotropy tensors. 

In this paper main interest will be focused on the downstream evolution of Reynolds stress, dissipation and 

length scale anisotropy tensors. 



Experimental Investigation Of Turbulence Anisotropy In Free Shear Flows 

DOI:10.9790/1813-0704016171                        www.theijes.com                                                               Page 64 

II.2. Anisotropy tensors: 

Reynolds stress anisotropy: 

Reynolds stress anisotropy tensor is defined as (Wilcox [37]) 

               

2

3

2

i j ij

ij

u u k

b
k



                                                                  (8)    

a ij jiII b b                                                                       (9) 

a ik kj jiIII b b b                                                                  (10)             

where 
aII  and 

aIII are the second and third invariants of the Reynolds stress anisotropy respectively. 

Dissipation anisotropy: 

Hallback[38] defined the dissipation anisotropy as 

1 2( 1/ 3 )ij ij ik kj b ije k b k b b II                                                   (11) 

where 
* * *

1 1 2 3 2( , ,Re , , , )b bk k II III S S   and 
* * *

2 2 2 3 2( , ,Re , , , )b bk k II III S S   

By imposing the zero trace condition 0iie   ,symmetry conditions 
ij jie e , a general series expansion can be 

constructed as 

  

  

Figure 3:  Decay of turbulent kinetic energy a. Re 40000M  , b. Re 80000M  and a*-b* corresponds 

to the relative errors. 
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where IV  and V  are the higher order invariants of Reynolds stress anisotropy. By imposing Cayley- Haminton 

theorem (Hallback [38]) derived the expression for dissipation anisotropy as 

                                                          
[1 0.75(0.5 2 / 3)] 0.75( 1/ 3 )ij b ij ik kj b ije II b b b II     

                                      

(13) 
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However, Panda et al [31] defined the dissipation anisotropy as 

2ij s ije k b                                                                                                     (14)
                        

 

where, 1sk A 
 
(Fu et al. [39]) 

and ks is a blending or co-ordinating function. 

1 9 / 8( )b bA II III  
                                                     (15)

 

Using Taylor series, the blending function sk can be expanded (Warrior et al.[40]) to get 

                                                                

9
( 2 )

4
s b bk II III 

                                                         

(16) 

Where A is the Lumley's Flatness Parameter (Lumley et al. [41]). 

Length scale anisotropy: 

  

  

Figure 4: Evolution of Reynolds stresses Re 40000M   

Basara et al. [42] defined length scale anisotropy in terms Reynolds stress anisotropy and dissipation anisotropy. 

He defined the Reynolds stress tensor and kinetic energy respectively as 

' '

0
lim ( , )i j ij
r

u u R r t


                                                          (17) 

' '0.5 m mk u u                                                                   (18) 

The dissipation tensor was also derived as 
2
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
 
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Finally, the integral length scale tensor was defined as  

2
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( ) ( )

8 ( )
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v

R r t
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k t r
                                           (20) 

Cayley-Hamilton theorem was employed to model a relationship between integral length scale tensor, dissipation 

tensor and Reynolds stress tensor, gives 
3/2 2
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3
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Assuming a linear relationship between length scale, dissipation and Reynolds stress tensor Panda et al. [31] 

adopted a relation between these single point anisotropy tensors 

1 2

3
( )

4
ij ij ijl C b C e                                                           (22) 

 

  

Figure 5: Evolution of Reynolds stresses Re 80000M   

 

III. NUMERICAL MODELING AND SIMULATIONS 

The mass and momentum conservation equation can be written as 

0i

i

v

x





                                                                  (23) 
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v v P
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t x x
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    
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                                                  (24) 

where iu  is the velocity vector, p  is the kinematic pressure,  is the kinematic viscosity of the fluid. The 

pressure and velocity can be decomposed into ensemble mean and fluctuating velocities, respectively as: 

       i i iv v u   and P P p  . 
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Figure 6: Downstream evolution of Reynolds stress anisotropy at two different grid Reynolds numbers 

a:40000, b:80000 

 

The Reynolds averaged Navier Stokes equation, which is the evolution equation of the fluctuating velocity, can 

be derived from equation 23 and 24 as: 
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Figure 7: Downstream evolution of dissipation anisotropy 
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where ij i jR u u  is the Reynolds stress tensor. 

From above equations, the Reynolds stress transport equation can be derived: 

P [ ]
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    ijk i j k i jk j ikC u u u pu pu                                                     (30) 

where, Pij
is denotes the production of turbulence, 

,ijk kT is the diffusive transport, 
ij is the dissipation rate 

tensor and 
ij is the pressure strain correlation. 

III.1. Analysis of the pressure strain correlations: 

 

The pressure strain correlation of turbulence [43-55] can be separated into two parts 

ij ij

s r

ij                                                                     (31) 

the slow term 
ij

s represents turbulence- turbulence interactions and the rapid term 
ij

r represents the 

interaction of turbulence with mean flow gradient i.e. the interaction of eddies with a region of flow with  
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Figure 8: Downstream evolution of length scale anisotropy 

different mean velocity. The Poisson equation for fluctuating pressure should be solved for the determination of 

pressure fluctuations (Mishra and Girimaji [43]), for the modeling of the pressure strain correlation. 
2

21
2 ( )
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j i i j
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x x x x

 
    

   
                                         (32)  

Equation 32 can be solved through the decomposition of the fluctuating pressure as (Mishra and Girimaji [43]) 

slow rapidp p p                                                                (33)  

Slow and rapid pressure fluctuations satisfy the following equations; 

                                     

2
21
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(34)   
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 (35) 

Mean strain rate has direct effect on rapid pressure fluctuations, since mean velocity gradient appears in equation 

(35). 

 

III.2. The Pressure Strain Correlations selected to compare the experimental results: 

Gibson and Launder (GL) Model: 

1 2

2 2
( / )( ) ( )

3 3
ij i j ij ij ijC k u u k C P k       

                                   (36) 

where 1 1.8c  and 2 0.6c  , P is the production of turbulence energy due to the action of mean shear Gibson 

and Launder [34] . 

where i
i k

k

u
P u u

x


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
. 

Speziale, Sarkar and Gatski (SSG) Model: 
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                 (37) 

The model constants are (Speziale et al. [33]) 
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Figure 9: Trajectories of the return to isotropy of decaying homogeneous turbulence in the    
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III.3. Numerical Method: 

In order to study the decaying grid generated turbulence in the water tank, we perform numerical 

simulations of the physical problem under consideration. The computational domain consists of a virtual three 

dimensional water tank with grids fixed at a distance of 0.25 meter from the inlet. Complete set of governing 

equations with different slow pressure strain models are solved by employing a control volume based finite 

difference method (Patankar [56]). On the water tank inlet and outlet suitable boundary conditions for velocity 

and pressure were taken. No slip boundary condition is applied at the wall. We employed the line-by-line 

tridiagonal matrix algorithm to solve the discretized system of linear algebraic equations numerically. Semi- 

Implict Method for Pressure Linked Equations technique was used to achieve pressure-velocity coupling.  

Variable sized grid spacing was used, close to the tank walls more densely spaced grids were considered. Within 

each time step the solution has been iterated to convergence. A strict convergence criterion was taken for the 

maximum relative errors in all the discretized equations. For our analysis standard thermos-physical properties 

of water were considered.  

 

IV. RESULTS AND DISCUSSIONS 

For mesh sensitivity analysis, two meshes are used in our simulations, Mesh 1m  and 2m  has 1.5 

Million and 0.75 Million cells respectively. It is observed from figure 2 that mesh 1 predicts better results for the 

decay of turbulence kinetic energy, in comparison to mesh 2, so for all the later cases of simulations with our 

limited computational facility, mesh 1 is used. Figure 3a and 3b represent the decay of turbulent kinetic energy 

(here after TKE).  The TKE decay at Re 40000M   is compared to Re 80000M  , as a function of distance 

from the grid. The experimental results are compared with model predictions of Sarkar and speziale[25] 

(hereafter SS) and Gibson- Launder[26] (hereafter GL) slow pressure strain correlations. At both the grid 

Reynolds numbers the TKE prediction of GL model is better than SS model. The pressure-strain correlation is an 

indication of the relative distribution of TKE between different components of Reynolds stresses. So it can be 

said categorically that the redistribution of TKE among different direction components during return to isotropy 

is better simulated by the GL model for such grid generated turbulence. It is well established that the slow-

pressure strain tends to isotropize the fluctuating velocity field and is fairly independent of the mean velocity 

gradient. Figure 3a* and 3b* represent the relative error associated the model predictions of turbulence kinetic 

energy. It is calculated by using following formula: /Sim Exp ExpK K K    . From the relative error analysis 

it is observed that %age error is more for lower grid Reynolds Number and it is noticed that for 

Re 40000M  , error is maximum near the grid. This could be because the magnitude of TKE is more at the 

grid for both Reynolds numbers.  
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In Figure 4,5 Reynolds stresses are plotted against non-dimensional downstream distance. The return to 

isotropy behavior among the components of the Reynolds stresses is not same. GL model prediction of 
11R  and 

22R  is better than SS model. It may be noted that the SS model has some problems, especially in the near-wall 

region. This is mainly due to the insufficiency of the parameterization of pressure-strain correlation due to wall 

effects. Thus, it is important that we get the relation between the pressure-strain correlation and the anisotropy 

tensor correctly as has been attempted in Warrior et.al [40]. 

The development of principal values of Reynolds stress anisotropy tensor is given in figure 6. These 

graphs represent the degree of anisotropy in each principal direction. At two different grid Reynolds numbers it 

was observed that the rate of return to isotropy is not same and also energy transfer pattern among the 

components of Reynolds stress anisotropy is different. Because of wall and free surface effects (here after fse) 

the return to isotropy behavior for different grid Reynolds number is different along the three principal 

directions. This proves that return to isotropy is highly nonlinear process. Figures 7 and 8 shows the evolution of 

dissipation and length scale anisotropy at different Reynolds numbers respectively.  

Trajectories of return to isotropy in   and   phase space are plotted in figure 9 at grid Reynolds 

number 40000.  Here, Figure 9 is a phase space portrait (η−ξ) graph, where 
1/2

bII   and 
1/3

bIII  . Rotta 

assumed a straight line in phase space. SSG assumes a curved quadratic model. It is evident from Figure 9 that 

the present experiment has generated results that are consistent with these two schemes. There seems to be some 

curvature due to non-linearity, but it is quite small. 

 

V. CONCLUSION 

In this paper, an acoustic doppler velocimeter was used to measure velocity fields, the evolution of 

anisotropic tensors, kinetic energy and Reynolds stresses downstream of two grids sq10 and sq20 were studied in 

the flow field. We found that with increase in grid Reynolds number turbulence kinetic energy level decreases 

past the grid, i.e. smaller is the grid size, TKE of the flow is more past the grid. Decay of the turbulence kinetic 

energy is mainly concentrated closed the grid (x/M<15) and in sq10 we observed faster decay of turbulence 

kinetic energy. It was also found that the rate of return to isotropy is different for the three principal directions 

for different grid Reynolds numbers. We observed that the GL model predictions of Reynolds stress distributions 

are better in comparison to the SS model. Experimental data presented in this paper can be used for development 

and calibration of turbulence models for highly anisotropic free shear flows. 
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