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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

This paper addresses the home energy management issue. Energy consumption in buildings is one of the more 

challenging problems in the current energy context. Energy savings are possible by improving energy 

efficiency of devices and adapting end-users' demands. However, for given end-user requirements with given 

appliances, the schedule of the activities greatly impacts management of energy production means. In this 

paper the addressed home energy management issue consists in matching, as accurately as possible, the end-

user demand with power grid capacity. A mixed integer linear programming formulation of the home energy 

scheduling problem is described after a complexity analysis of the optimization problem. Finally, some results 

point out the solving performances of the proposed formulation. 

Keywords: Dwelling; Home Energy Management System; Optimization; Scheduling; Mixed Integer Linear 

Programming.  
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I. INTRODUCTION 
The energy issue is one of the major challenges of the 21st century. According to a median prediction 

(IEA2007), the increasing world population together with the economic growth of the emerging countries is 

likely to induce an increase in energy consumption of around 1.5 in 2030 compared to its current level. This 

demand is clearly incompatible with our present way of life with regard both to the limited worldwide fossil 

energy reserves and the environmental footprint. Consequently, development of alternative energy sources, 

increase in process efficiency and better management of energy systems through intensive use of new available 

technologies (networks, sensors and information systems) are the pillars for migration of energy systems to more 

sustainable systems. This paper proposes a contribution to the third pillar based on the spread of smart energy 

tools used in smart grids and smart homes. 

Building related energy consumption accounts for a large part of the total energy bill. The percentage of 

residential electricity used by appliances and electronics in U.S. homes attains 31%. About 50% of load in 

houses is dedicated to refrigerators, freezers, heaters, washing machines and dryers [1]. Moreover, buildings are 

increasingly becoming very active nodes in the energy system due to the spread of local renewable energy 

production means such as solar systems and heat pumps. Buildings thus represent a major potential for 

optimizing energy use provided all the new degrees of freedom can be properly managed. Cooperation between 

technologies and infrastructure (smart homes and smart grid) may lead to additional benefits [2]. 

A smart grid can be defined as a power grid with communication means between devices, users and providers in 

order to provide services. One of the main attributes of a smart grid defined in [3] is optimal use of bulk power 

generation combined with distributed resources and controllable/dispatch-able loads to assure lowest cost. 

Intelligent energy meters are one of the first tools available to exchange information between energy providers 

(or service providers known as aggregators) and customers, and are the first step towards developing an energy 

management system. They provide signals designed to exchange information between providers and customers. 

Stop information is proposed in a direct control approach. The customer may refuse to stop an appliance, 

probably with some penalties. In the control by cost approach, electricity rates vary according to the time of the 

day. The customer decides whether or not he will modify his behavior taking energy prices into account. 
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However it is no means easy to decide on the best time to stop an appliance. Optimization systems need either to 

control appliances according to the customers’ preferences or to provide a decision support system. 

The work presented in this paper conducted in a cost context based on information exchanged between smart 

grid and smart home. In this paper the addressed Home Energy Scheduling Problem (HESP) aims at adjusting 

power consumption both according to user requests and to energy cost. Energy costs may consist of both the 

price of the consumed energy and its CO2 equivalent ejection. During peak consumption periods, power plants 

emitting high quantities of CO2 are used to satisfy consumption needs. In such periods, energy is very expensive. 

Let us now discuss the energy system described in this paper and the related available results for optimal control. 

A building energy management system consists of two aspects: load management and local energy production 

management. [4,5,6,7] propose optimal control strategies for HVAC (home ventilation and air conditioning) 

systems, taking into account the natural thermal storage capacity of buildings. HVAC consumption has shifted 

from peak-period to off-peak period (slack period). [7] shows that this control strategy can save up to 10% in the 

building electricity bill. The combined cooling, heating, and power (CCHP) system is studied to optimize energy 

consumption in [8,9]. However, these approaches do not take into account energy resource constraints, which 

generally depend on the autonomy needs of off-grid systems [10] or on the power subscription of grid connected 

systems. In this case, power subscription defines the energy cost as well as the penalties should maximum power 

as defined in the contract be exceeded. 

Generally speaking, studies in the literature focus on a particular aspect of the home energy management 

problem: the displays design, load control or local energy production. The joint load and production 

management problem is usually addressed in the literature using a global load curve to be supplied. This 

problem is denoted by demand side management (DSM). Few works address the issue of communication 

between homes and grid [2] or the derived management of activities inside the house from an energy point of 

view. 

The goal of the study addressed in this paper is to set up a general mathematical formulation making it possible 

to design optimized building electrical energy management systems able to determine the best possible energy 

assignment plan according to given criteria. This paper focuses on the planning layer of the home energy 

management system. In practice this anticipative layer provides set points for a reactive layer that adjusts set 

points to actual productions and consumptions. The home energy management problem depicted in this paper is 

one of the layers of a global control architecture defined in [11]. 

The HESP is an application field of the generic Energy Scheduling Problem (EnSP) defined in [12]. The 

available electrical power at each time is the resource shared by the appliances. The tasks are the activities 

requested by the user, and consume the supplied power in given time windows. The HESP is demonstrated as a 

NP-Hard problem. A mixed integer linear program is proposed and compared with the RCPSP and the 

cumulative scheduling problem. The solving properties of the MILP formulation are discussed. 

The basic HESP is defined in section 2 and the HESP intractability is shown. Its mathematical formulation as an 

MILP is depicted in section 3. An extension of the basic problem concerning the compromise between energy 

cost and the user’s comfort is introduced in section 4 and an aggregation approach to the multi-criteria problem 

is given. Section 5 is devoted to experimental results.. 

 

II. THE HOME ENERGY SCHEDULING PROBLEM (HESP) 
The HESP takes as its input a set of activities known as services. A distinction can be made between the power 

supply service providing the energy and the end-user services to be processed without interruption using the 

energy. The end-user services directly satisfy a request made by the users by consuming energy. Power supply 

services can derive power by means of various primary energies such as fuel cells based generators, photovoltaic 

power suppliers and grid power suppliers. End-user services include such well-known services as clothes 

washing, water heating, room heating, cooking and lighting. Storage of electrical power is not addressed in this 

paper. Energy is a resource whose availability and price are not constant. The optimization problem aims at 

scheduling activities by minimizing the cost of energy consumption over a given planning horizon. The 

availability of the resource, i.e. the available power, is used in the optimization problem to smooth the proposed 

planning. This limited total amount of power can correspond to the power subscription, in which case the 

associated constraint will not present many restrictions in the optimization problem. Otherwise it can correspond 

to a virtual value. Activities that can be predicted or required by users are the only one that can provide an 

anticipative plan. In the basic statement of the problem, energy cost is the only assumed optimization criteria. In 

section 3 users’ satisfactions is addressed in a multi-criteria version of the basic problem. A service is identified 

by its index i. 
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2.1 Characterization of the power supply service 

Two parameters characterize a power supply service i, they are input data of the optimization problem: 

 P(i,t) available power at time t 

 C(i,t) price of the electrical resource at time t 

A power supply service i stands for the available power over the planning horizon and the associated cost at each 

time for a given production means. Several production means can be involved at home. Allocation of available 

energy to end-user services is the only problem addressed. Management of the total amount of energy is not 

addressed. 

 

2.2 Characterization of end-user services 

Three types of end-user services can be identified: shift-able services, modulable services and unsupervised 

services. Another segmentation is proposed in [13] based on the level of automation and the number of start-ups 

in the appliances. Appliances with a low automation level correspond to an aggregated unsupervised service, 

while appliances with a high automation level continuously providing services correspond to modulable services. 

Appliances with high automation level with discrete start-ups correspond to shift-able services. 

 

2.2.1 Shift-able services 

A shift-able service depicts an activity that is required at some time and execution of which has a given duration 

that is assumed to be shorter than the planning horizon. Typically, the act of washing dishes is a shift-able 

service. A shift-able service i is characterized by the following input data: 

 P(i), required power in execution [W] 

 ef(i), lf(i), the earliest and latest requested end times respectively [s] 

 d(i), the execution time [s] 

The end time f(i) is the decision variable associated with the shift-able service. Preemption is not available. 

The earliest and latest requested end times are given by the user or predicted from the user’s behavior. Such 

prediction could be provided by a statistical tool from measurements [14]. Shift-able services are associated with 

appliances that could be automated and without a large number of start-ups, typically a few times a day. 

 

2.2.2 Modulable services 

Modulable services depict services that are potentially continuously delivered throughout the planning horizon. 

Typically, room heating and refrigerating services are modulable services. Let us assume a modulable service i. 

It is characterized by: 

 P(i), required power in execution [W] 

 Tmin(i,t), Tmax(i,t) the minimum and maximum satisfactory controlled parameters, respectively, at time t [°C] 

The set point Tin(i,t) is the decision variable associated with the modulable service i. This modulable set point 

corresponds to a variable amount of energy allocated to the modulable service as depicted in section 3. For 

example the user requests a temperature in his room within the satisfactory interval [18,20]°C. The optimization 

problem aims at setting the best temperature each time to minimize energy cost complying with the variable 

values defined by intervals. The thermal storage ability of the building is then used to attain this optimum value. 

In this paper only one type of modulable service is addressed. This type is defined by a dynamic thermal model 

depicted in section 3.3. 

 

2.2.3 Unsupervised service 

From a practical point of view, not all activities in housing and the derived energy consumption can be 

considered as services to be scheduled. Lighting is one of the best examples of unsupervised service, as 

switching on a light is an act that is totally dependent on the inhabitant’s presence in a room, a parameter that is 

neither controllable nor predictable. In this case, there is no point in precisely scheduling activities that cannot be 

controlled and/or predicted. These activities are merged into one unsupervised service as otherwise we would 

have a large number of shift-able services considerably increasing the optimization problem without any benefit 

to the computed schedule. The unsupervised service is defined by the power Pu(t) consumed at each time t given 

as data for the optimization problem. Section 3.4 will show that the unsupervised service is a given consumption 

that reduces the power available for the modulable services and the shift-able services. Thanks to the global 

control architecture (anticipative + reactive) in which the optimization process takes place, there is no need for 

very accurate forecasting of Pu(t). 
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2.3  HESP complexity 

In this section the HESP restricted to the shift-able services will be demonstrated to be NP-Complete due to the 

time windows in which the tasks have to be executed. Let us use a reduction of HESP for the partition problem. 

The partition problem defined as follows is known as NP-complete [15]: 

Instance: n integer number a1, a2,…,an and 

1
2

n
i

i

a
B



   

Question QP: does a set A such that i

i A

a B



  exist? 

Let us consider the following instance of HESP: 

Instance: one power supply service with a constant available power P, n shift-able services i∈{1,...,n} such that 

P(i,t) = P (so HESP becomes a set of tasks to be successively scheduled on one resource), ai the processing time 

of i, [0,2B+1] its required time window (it is easy to compute 0=ef(i)−d(i) and 2B+1=lf(i)) and one shift-able 

service n+1 such that P(n+1,t)=P, processing time equals 1 and the required time window is [B,B+1]. 

Question QHESP: does a schedule of the tasks with total duration (2B+1) exist? 

Proposal: Questions QP and QHESP have the same answer. 

Proof: 

 If the instance of partition is a yes-instance, then schedule the tasks of set A first in any order, then schedule 

task n+1 followed by the remaining tasks achieving a feasible schedule of length 2B+1. 

If the scheduling problem is feasible, then task n+1 is scheduled at time [B,B+1] and uses the entire resource. 

Therefore it partitions the set of tasks in 2 subsets. The tasks before time B, whose total processing times amount 

to B, define the set A of partition problem. 

 

III. HESP MODEL 
The first paragraph under each heading or subheading should be flush left, and subsequent paragraphs should 

have a five-space indentation. A colon is inserted before an equation is presented, but there is no punctuation 

following the equation. All equations are numbered and referred to in the text solely by a number enclosed in a 

round bracket (i.e., (3) reads as "equation 3"). Ensure that any miscellaneous numbering system you use in your 

paper cannot be confused with a reference [4] or an equation (3) designation. 

Let H = {1,2,…,T} be the planning horizon consisting of T time periods with a length ∆. At every planning 

period k, the amount of energy allocated to every service has to be decided. For shift-able services this decision 

is a scheduling decision. When the end time of the service is decided, then the associated consumed energy can 

be computed at each planning period. For modulable services the amount of allocated energy at each period is 

the decision variable. Energy costs and resource availability are assumed to be constant over a length ∆ of a 

planning period. In this case, in the approach developed in this paper ∆ is a data item given by the variation of 

the resource. Duration of the shift-able services and length ∆ are independent. In the formulation of the energy 

management problem proposed in [12,16], execution of the services are synchronized with the planning period. 

In this paper we propose an MILP formulation of the optimization problem. 

 

3.1. Power supply service model 

Based on the problem description of a power supply service i the following constraint can be written: 

( , ) ( , ) {1,..., }E i k P i k k T                                     (1) 

where 

 P(i,k) stands for the maximum available power [W] 

 E(i,k) the energy supplied during the time window [k∆,(k+1)∆] [Wh] 

This constraint aims at converting available power into a maximum amount of energy per planning period. 

 

3.2.  Shift-able services model 

Let us recall that d(i) and P(i) denote, respectively, the duration and the power consumption related to i the shift-

able service, and f(i) the end time to be scheduled with respect to the user’s request given by the time window 

[ef(i),lf(i)]. Firstly, the scheduled end time f(i) is constrained in a time window: 

 

( ) ( ) ( )ef i f i lf i                                         (2) 

 

According to [17] and energy reasoning, the consumption duration d(i,k) of a service i during a planning period k 

is given by (see figure 1): 
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    , max 0,min , 1 ,( ) ( ) ( ) ( ) ( )d i k f i k max f i d i k                          (3) 

 

Therefore, the consumption energy E(i,k) of service i during a planning period k is given by: 

 

( ) (, , ) ( )E i k d i k P i                                       (4) 

 

 
Figure 1.  Scheduling of shift-able services 

 

However, the model contains nonlinear min and max functions in the expression of d(i,k). Let us now introduce 

the binary variables δ1(i,k) and δ2(i,k) defined by: 

 

1

2

( ) ( ( ) )

(

, 1 if and only if 0

, 1 if and only ) i ( ) )f ( ) ( 0

i k f i k

i k f i d i k





   

    
                           (5) 

 

The following linear constraints can be written to assign the binary variables: 
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                           (6) 

 

where   is a given small number. Therefore, min and max functions in the definition of d(i,k) become: 

 

   

    
1 1

2 2

min , 1 1 , 1 1 , 1

m

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )ax ,  1 , , .

f i k i k k i k f i

f i d i k i k f i d i i k k

 

 

       

      
 

 

Two variables z1(i,k) and z2(i,k) have to be introduced to obtain the linear formulation of the min and max 

functions. The following set of constraints is used to define these variables: 
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                                 (7) 

 

The duration d(i,k) can be evaluated by  , max 0,( ( ),)d i k d i k  

where 

 

 1 2 1 2, , 1 , 1 . ,( ) ( ) ( ) ( ) ( ) ( ) (1 , ) ( ) ( ) ( )1d i k z i k z i k f i k i k i k d i k k d i                        (8) 

 

A linear formulation of the remaining maximum function in d(i,k) is necessary. Let us introduce the binary 

variable δ0(i,k)=1 if and only if d’(i,k)>0, assigned by the following constraints: 

 

 
0

0

, . ,

,

( ) ( )

( ) ,) ( ( )1

d i k i k

d i k T i k



 

  

     
                                 (9) 

 

Then the following set of constraints must be added to assign d(i,k): 

 

 

0

0

, ,

, 0

, , 1 ,

( ) ( )

( )

( ) ( ) ( )

( ) (, , )

d i k i k

d i k

d i k d i k T i k
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                               (10) 

 

Equations (2) to (10) model the time shifting of a shift-able service in which d(i,k), d’(i,k), δ0(i,k), δ1(i,k), δ2(i,k), 

z1(i,k), z2(i,k) are intermediate variables used to compute the physical decision variables f(i) and E(i,k). The 

number of decision variables can be reduced by setting E(i,k) to 0 outside the requested time window as follows: 

 

( ) ( )
, 0, 0,  

)
( 1,

(
)

ef i d i lf i
E i k k T

   
           

                         (11) 

 

3.3. Modulable services model 

This paper addresses the modulable services that can be modeled by a first-order dynamic. This typically 

concerns heating services. Such services include room heating and refrigeration. Every modulable service that 

can be depicted through the following dynamic equations can be taken into account. In order to highlight the 

models, without loss of generality, the room heating service will be used as a reference. In buildings, thermal 

phenomena are continuous phenomena. A number of models are available for the thermal behavior of a HVAC 

system. A first-order state space thermal model relevant for control purposes is proposed in [18]. It is ideally 

adapted to local control. The second-order model based on an electrical analogy proposed in [19] may be 

preferred for planning layers as it is more adapted to the dynamics of indoor temperature. However, model 

parameters depend on the characteristics of the building such as the thermal capacities of the indoor environment 

and the housing envelope, the thermal resistances, the equivalent surface of the windows. This type of highly 

physical model is not really suited to energy management and planning. A behavioral model is preferred as it is 

easier to identify for each application case. In the model concerned, the only parameters useful are those 

accounting for the dynamics between temperature and energy consumption. For a room heating service i, it 

yields: 
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                 (12) 

 

This model provides a fairly accurate of indoor temperature dynamic variations where: 

 Tin, Tout respective indoor and outdoor temperatures [°C] 

 P, power consumed by the thermal generator [W] 

 
s , power generated by solar radiance [W] 

 G,Gs gains of the first-order dynamic from heating power and solar radiance respectively 

 τ constant time of the first-order dynamic 

The previous equation can be integrated on the discretized planning period [k∆,(k+1)∆]. In automatic control 

theory, one of the most commonly used formulations for integration of such an equation is based on the 

following hypothesis: the variables not controlled are assumed to be constant throughout the planning period. Tin 

is the only controlled variable. The operator ( )(1 )ie



  known as zero-order hold is used for constant parameters. 

The difference [Tin(i,t)−Tout(i,t)] is integrated, and the final value of Tout  is assumed to be equal to its initial 

value. It yields: 

 

   ( ) ( )

in out in out( ) ( ) ( ) ( ) (, 1 , , , + 1 ) ( ) ( ) ( ), ( , )i i

s sT i k T i k e T i k T i k e G i E i k G i i k  

 

                  (13) 

 

This equation modeling the service i can be written as a constraint as follows: 

 

 ( ) ( )

in in out( ) ( ), 1 , 1 , ,  ( ) ( ) ( ) ( ) ( ) ,( )i i

s sT i k e T i k e T i k G i E i k G i i k  

 

                        (14) 

 

The temperature is also constrained in an interval: 

 

min in max( ) (, , ) ( ),T i k T i k T i k                                      (15) 

 

In this model of modulable services, Tout(i,k), ( , )s i k , Tin(i,0), τ(i), Gs(i) and G(i) are the data of the optimization 

problem. Tin(i,k) and E(i,k) are the decision variables. 

 

3.4. Energy balance 

A constraint modeling the production/consumption balance must also be added. Generally speaking, this 

constraint can be written: 

 

u1,..., , ,{ } ( ( ),) ) (
s Ej i

k T E j k E i k P k
 

                                   (16) 

 

where Pu(k) stands for the power consumed by the unsupervised service, Is the set of indexes of the power 

supply services, and IE the set of indexes of the end-user services. 

 

3.5. Optimization criteria 

In the basic problem, optimization is achieved through the economic criterion. The optimization problem 

consists in minimizing the cost of energy consumption. The objective function to be minimized can be written 

as: 

1

( ) (, , )
s

T

j k

J C j k E j k
 

                                      (17) 

 

The objective function and the cost parameters can be adjusted to every pricing policy. Power supply services 

can be seen as different resources associated with a vector of supplies rather than a matrix. Indeed every end-

user service needs a given quantity of the energy resource irrespective of the supplier. 
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3.6. Comparison with the energy scheduling problem and RCPSP 

The HESP restricted to the shift-able services can be compared to both the Cumulative Scheduling Problem 

(CuSP) defined in [20] as a sub-problem of the RCPSP (Resource Constrained Project Scheduling Problem), and 

the Energy Scheduling Problem (EnSP) defined in [12]. In the HESP, CuSP and EnSP there is no precedence 

constraint, and only one resource is concerned at a time. In the CuSP, activities have to be processed without 

interruption on a given resource of capacity B. A resource requirement, a time window and an execution time are 

associated with each activity, just as in the HESP. However, in the CuSP, capacity B is constant throughout the 

planning horizon. The specificity of the EnSP relies on modulation of the resource requirement as a decision 

variable. The EnSP is also defined over a discretized planning horizon. In the proposed formulation of the 

HESP, the decision variable is the allocated energy at each period under resource constraint. Energy is also 

adjustable throughout the planning horizon for modulable services. The HESP restricted to modulable services is 

equivalent to the EnSP without any time constraints. Nevertheless, in the HESP, the energy allocation bounds are 

given by the physical phenomena to be managed as shown in section 3.3. 

In the scientific literature, continuous time formulations of scheduling problems are available [21,22,23]. 

However, these results concern scheduling problems with disjunctive resource constraints. Instead of computing 

the starting time of tasks, the aim is to determine the execution sequence of tasks on disjunctive shared 

resources. In the energy management problem, the issue is not limited to determining this sequence because a 

number of services can be achieved at the same time. Both discrete and continuous time models are available for 

the RCPSP [24,25,26]. However, in such models, availability of the renewable resource is a given data item that 

is constant throughout the planning horizon. In the HESP, it is a given data item that is constant only over a 

planning period. 

 

 
Figure 2.  Number of shift-able services per house 

 

Exact MILP formulations are available for the resource-constrained project scheduling problem RCPSP. A 

number of MILP formulations have been proposed. The basic discrete-time formulation has been proposed in 

[27,28]. Only one type of binary variable has been defined. These variables are indexed by both activities and 

time, and model the starting time of the activities. In these models, starting times are synchronized with planning 

periods. Continuous-time formulations are also proposed in the literature in [24,29]. In these models, starting 

times are continuous variables. Precedence relations are modeled through binary variables. Event-based models 

have more recently been proposed in [25,30]. In these formulations, continuous variables are introduced to 

represent the occurrence times of events and binary variables are used to decide whether an activity starts or 

ends at the event e. The model proposed in this paper can be related to the continuous-time formulation because 

the end time is a continuous variable, and the binary variables are introduced to deduce energy consumption in 

every a priori fixed length of the planning period. 
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3.7. Model size 

Table 1: Model sizing per service type 

Scenario Modulable service Shift-able service Energy balance 

Constraints 3T 20T + 1 T 

Continuous variables 3T 5T T 

Integer variables 0 3T 0 

 

The HESP leads to an optimization problem comprising power supply services and a set of modulable and shift-

able services depending on the number of supervised appliances in the house. Table 1 gives the number of 

constraints, continuous variables and integer variables used by each modulable and shift-able service as well as 

the added continuous variables and constraints corresponding to the energy balance for a given length T∆ of the 

planning horizon. 

Such discrete time formulation of the HESP restricted to shift-able services comprises some 20 times more 

constraints and 3 times more integer variables than the classic discrete time formulation of the RCPSP. This is 

due to non-synchronization of the planning period and execution of the shift-able services. In the HESP, time 

discretization is imposed by the power supply fluctuations. From a practical point of view and assuming the very 

specific application field involved in these models, data size is not particularly large. In point of fact, the length 

of the planning period ∆ is typically one hour and the planning horizon is 24 hours. However, the number of 

services that can be requested in households is limited. Only appliances that can be controlled and for which the 

user can describe the associated requirements are concerned. Typically, washing machines, dishwashers and 

electric ovens are addressed. Lighting appliances and communication devices requiring the user’s presence are 

not assumed to be supervised. 

 
Figure 3.  Number of shift-able services per appliance 

 

The project Residential Monitoring to Decrease Energy Use and Carbon Emissions in Europe 

(REMODECE) provides an energy database on residential consumption. This database is studied in [14] and 

stores the characteristics of residential electrical consumption by country. The IRISE project is a part of the 

REMODECE project dealing only with some 100 houses in France. One database is available for every house in 

which information is recorded every 10 minutes over a one year period for each appliance in the associated 

house. The energy consumed at every planning period by every appliance is given in this database. Based on this 

information we can find out the number of services requested each day. The average number of shift-able 

services each day out of 93 representative houses is 2 with a minimum value equal to 0 and a maximum value 

equal to 29. The average and maximum numbers of shift-able services for each house are given in figure 2. 

Houses are ordered in increasing number of addressed appliances. Figure 3 shows that a house has 2.5 

appliances on average and 0.8 requests for shift-able services per appliance. In these houses there are 1 to 6 

modulable services to be managed with an average of 2.3. It is thus easy to deduce that the typical size of an 
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HESP is around (47T+2) constraints and 10T integer variables. Thus for T=24 the basic HESP can be sized to 

1130 constraints and 240 integer variables. However the number of integer variables can be drastically reduced 

to only those variables that satisfy the time window constraints thanks to equation (23). 

 

IV. PROBLEM EXTENDED TO COMFORT SATISFACTION 
The basic energy management problem can be generalized to take into account the user’s comfort as an 

optimization criterion as well as energy cost. In this multi-criteria problem, the best compromise is sought 

between comfort and cost. The user’s comfort is defined by a satisfaction indicator quantifying service quality 

achievement. In this paper, service quality is quantified by the difference between a preferred value defined by 

the user and the optimized value. 

 

3.8. Modulable services 

The addressed modulable services control a physical variable such as temperature. Therefore user satisfaction 

can be quantified by the difference between an expected preferred value and the optimized value. Let us define 

Topt(i,k) as the preferred temperature at each planning period. According to the comfort standard 7730, [31] 

proposes typical models for thermal comfort that depend on type (office, room, etc.) and quality (humidity and 

air velocity) of the environment. These models are based on an aggregated criterion known as the predictive 

mean vote (PMV) modeling the deviation from a neutral environment. In this case, for a given type and quality 

of the environment, a discomfort index D(i,k) can be computed for the modulable service i at each planning 

period k from the following equation: 
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where Topt(i,k) stands for the requested temperature, and Tmin(i,k) and Tmax(i,k) stand, respectively, for the 

minimum and maximum acceptable temperatures. 

 

3.9. Shift-able services 

The user expects shift-able services such as washing to be finished at a given preferred time denoted by fopt(i). As 

such, service quality achievement depends on the amount of time it is shifted from this preferred value. Just as 

for modulable services, a dissatisfaction criterion for a service i is defined as follows: 
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where fopt(i) stands for the requested end time, and ef(i) and lf(i) stand, respectively, for the minimum and 

maximum acceptable end times. 

 

3.10. Linear dissatisfaction model 

Dissatisfaction of a shift-able service is a particular case of the dissatisfaction of a modulable service. 

Consequently, without loss of generality, we only show the equations for dissatisfaction incurred by modulable 

services. 

Let δD(i,k) be a binary variable such that 
in opt, 1 if and only ( ) (if , ) ( ),D i k T i k T i k   . The following linear 

constraints can be written to assign the binary variable: 
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where   is a given small number. 

Then the discomfort index can be written via the following constraints: 
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The variable zD(i,k) defined by the following inequalities must be added to obtain the linear formulation of the 

discomfort index: 
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3.11. Optimization criteria 

The extended HESP is a bi-criteria optimization problem. Depending on the user’s requests, a compromise 

between cost and comfort has to be formulated. This is generally the case when energy cost is variable, as the 

higher cost corresponds to peak consumption periods. In this paper focused on problem modeling, a very simple 

aggregation approach has been implemented. The corresponding objective function to be minimized is depicted 

by the following equation: 
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Modulable services are identified by indexes im, and shift-able services are identified by indexes is. Parameters α 

depict the priority between end-user services, while parameter β depicts the relative importance granted by the 

user to cost criteria and discomfort criteria. The parameter β helps us understand the distinction between the 

thrifty user and the comfort addict user. 

 

3.12. Extended model size 

The dissatisfaction proposed in this paper results in adding to the basic formulation 5T constraints, 2T 

continuous variables and T binary variables for every end-user service. 

 

V. COMPUTATIONAL RESULTS 
The HESP has been implemented and solved with the IBM ILOG CPLEX Optimizer 11.1 in a computer with XP 

SP3, 3.45 GB of RAM and an Intel Core 2 Duo 2.4GHz. A power supply service is assumed with a constant 

available power P on the planning horizon T = 24. Several sets of 100 instances of 10 shift-able services each 

have been randomly generated. Five parameters have been studied in order to show their impact on problem 

hardness: energy ratio, power ratio, time ratio, dissatisfaction, and energy price. 

 RE, the energy ratio, defines the ratio of the total amount of available energy required to execute the 10 shift-

able services. The total amount of available energy is P.T. In this case the total amount of energy consumed 

by the 10 shift-able services is assumed to equal RE.P.T. The values 0.3, 0.6 and 0.9 have been studied for 

the parameter RE. They are denoted by 3, 6 and 9, respectively, in the results. 

 RP, the power ratio, defines the maximum ratio of the available power required for execution of each 

service. The power of each service is assumed to be less than or equal to RP.P.T. From the maximum 

available power P the power ratio defines whether or not, the services can be executed in parallel. The values 

0.3, 0.5 and 0.8 have been studied for the parameter RP. They are denoted by 3, 5 and 8, respectively, in the 

results. 
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The sets of 100 random instances of 10 shift-able services to be scheduled have been built using the energy ratio 

and the power ratio as follows. Firstly, the amount of energy RE.P.T is randomly divided into 10 parts E(i) 

associated with the 10 services. Then 10 values P(i) of power, smaller than RP.P, are generated. The execution 

time d(i) of every service is derived from E(i) and P(i). Finally a feasible value of fopt(i) is randomly generated 

[fopt(i) ≥ d(i)]. 

 RT, the time ratio, defines the maximum length of the end time windows of the services. From the planning 

horizon T, the length of the end time window of each service is shorter than or equal to RT.[T−d(i)]. The time 

ratio defines the ratio of the available planning horizon that can be used to schedule a service. The values 0.2, 

0.6 and 1 have been studied for the parameter RT. They are denoted by 2, 6 and 1, respectively, in the results. 

 Dissatisfaction. For the basic HESP without a dissatisfaction indicator, the end time window is centered 

around fopt(i). Scenarios without dissatisfaction are denoted by 0 in the results. When dissatisfaction is 

involved, feasible values of ef(i) and lf(i) are randomly generated under the constraint of the length of the 

time window [ef(i)≤fopt(i)≤lf(i)] and [lf(i)−ef(i)]≤RT.[T−d(i))]. Scenarios with dissatisfaction are denoted by 

1 in the results. 

 Price. Three scenarios have been studied for energy cost. The constant scenario is denoted by C. The 

scenario denoted by PS has a low cost in slack periods 1,2,3,4,5,6,23{ },24k   and a cost 4 times greater 

than the low cost in the peak periods 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 2{ },2k . The scenario 

denoted by 3D has three randomly generated costs. For each instance, three values of the energy cost are 

generated satisfying minimum and maximum constraints given in Figure 4 as well as the associated time 

periods. 

 
Figure 4.  Minimum and maximum values of energy price for the 3D scenario 

 

Table 2 shows the computational results of the HESP obtained from 11 sets of values for the 5 parameters. 100 

random instances of 10 shift-able services have each been generated for every assumed set of parameters. Each 

set of instances is denoted by the corresponding values of the parameters RE−RP−RT−Price−Dissatisfaction. A 

maximum execution time of 15 minutes (900 seconds) has been chosen. The ratio of instances solved up to the 

optimality, the maximum solving time for the entirely solved instances, and the mean solving time obtained over 

the solved instances for the not entirely solved instances are given in Table 2. 
 

Table 2: Shift-able services solving 

Scenario Solved to optimality Maximum time (s) Mean time(s) 

351C0 100% 6 2.39 

651C0 100% 57 7.16 

951C0 93% - 124.3 

931C0 97% - 3.51 

981C0 94% - 115.77 

952C0 100% 1 0.04 

956C0 100% 156 4.26 

951PS0 88% - 182.64 

9513D0 88% - 183.26 

551C0 100% 38 5.84 

551C1 94% - 335.44 
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Figure 5.  Impact of energy price 

 

In instances with a constant energy price the HESP consists in finding an admissible solution. It can be observed 

that the power ratio has a greater impact than the energy ratio and the length of the time window. 100% of 

instances are solved to optimality in 2 out of 3 cases for the parameters RE and RT. However, no studied value 

of PT can solve to optimality 100% of instances. The impact of the dissatisfaction indicator has been studied for 

a rather easy set of parameters (RE−RP−RT−Price=551C). It can be observed that the dissatisfaction indicator 

has an impact on the solving properties of the HESP. Figures 5-a and 5-b show that energy price can structure 

the solution space. The solving times for prices PS and 3D do not vary greatly from the constant price solving 

time. Figures 5-c and 5-d show the potential financial savings of the optimization model. For each instance of the 

88% of instances solved to optimality, the solution provided by the first iteration of the optimizer (denoted as the 

first solution attained) and the optimal solution have been stored. The cost of the first solution attained (
FRc ) and 

the cost of the optimal solution (
Oc ) were compared. The difference between these two costs was then divided 

by the optimal cost. The financial saving was been estimated via the following indicator   /FR O OFS c c c  . 

The optimization formulation of the HESP prevents an increase of 50% cost for rates based on peak periods and 

slack periods. Financial savings are as much as 140% for the assumed dynamic price limited to 3 different 

periods. These results show the potential financial savings achieved by the HESP in the context of a dynamic 

energy market. 

 
 

VI. CONCLUSION 
This paper explains how operational research can provide solutions for the home energy management problem. 

The common features and differences with the Resource Constrained Project Scheduling Problem, the 

Cumulative Scheduling Problem and the Energy Scheduling Problem have been discussed. The complexity 

analysis of the HESP has been conducted. Also, a formulation of the HESP has been proposed, designed to 

schedule all the household services i.e. modulable, shift-able and unsupervised services. An enhanced problem 

that takes into account user comfort expectations has also been proposed. Numerical results show that, using the 

IBM ILOG CPLEX Optimizer, most HESP instances can be solved within a few seconds. Exact solving of the 

HESP using the MILP formulation would appear pertinent for one house. However, heuristics is required to cope 

with a multi-residential application. Finally, differences are frequently observed between prediction and reality. 

This issue can be managed either by a reactive adjustment mechanism or by a robust scheduling approach 

minimizing the risk of incorrect prediction by taking into account a statistical prediction model. The linear 

formulation of the HESP could prove useful for implementing robust approaches based on available results 

concerning robust linear programming.  
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