
The International Journal of Engineering and Science (IJES)

|| Volume || 6 || Issue || 4 || Pages || PP 01-06 || 2017 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

DOI: 10.9790/1813-0604020106 www.theijes.com Page 1

 One More Comments on Programming with Big Number Library

in Scientific Computing

Dongbo FU
Department of Computer Science, Guangdong Neusoft Institue FOSHAN CITY, GUANGDONG PROVINCE, PRC,

528200

--ABSTRACT---

This article makes a comment on programming with big number libraries like GMP and MPFR libraries. The

comment proposes not using recursive procedure in programs since recursive procedure that performs big

number computations might use big size of stack while neither the operation system nor a compile system can

afford to provide the needed size. Based on the comments, the article recommends designing proper algorithm that

avoids a recursive procedure. With an example that uses the GMP big number library in factorization of big odd

number, the article demonstrates how to convert a recursive procedure into a non-recursive procedure and its

numerical experiments sustain that the sample program reveals expected results.

Keywords –Big number computation, GMP library, C/C++ programming, recursive procedure.

Date of Submission:08 April 2017 Date of Accepted: 22 April 2017

I. INTRODUCTION
Article [1] has presented a practical guide to programming with GNU GMP big number library, including the data

type, the conditional expressions, the incremental treatment, the loops and the pointer arguments in coding skills. It

is really a necessary reference for a programmer who programs with big number libraries. However, the article

omitted two more important things in programming with big number libraries, the prohibition of using recursive

functions and the corresponding algorithm design that should avoid using the recursive functions. This article

makes a supplement on the two issues.

II. RECURSIVE FUNCTION AND STACK MANAGEMENT OF OS
School textbooks, as [2] and [3], tell us that, recursive function is a subroutine that can call itself as part of its

execution. A typical recursive function, say the function RecursiveProc, is illustrated by the following C++

pseudo-codes.

//============ C++ pseudo-codes ==============

type RecursiveProc (ParaLists)

{ type res;

 //Computing something

 //Computing new ‘Paralists’

 res=RecursiveProc (ParaLists); //call the function itself.

 //Computing some other things

 return res;

}

//==

Schoolbooks also tell us, any time a recursive function is called, a stack is used to save the ‘ParaLists’ and the more

arguments in the ‘ParaLists’ the bigger size of the stack is required. In another word, a recursive function is always

companied with a stack’s pushing-and-popping operations.

Now comes a question how big a size of a stack can own. Actually, the answer to this question depends on at least

two factors: the compiling system that is used to compile the source codes and the Operation System (OS).

Referring to the manual of Visual Studio 2010, for example, it can see that, on Windows System, either 32 bits or

 One More Comments on Programming with Big Number Library in Scientific Computing

DOI: 10.9790/1813-0604020106 www.theijes.com Page 2

64 bits, the maximal stack size is reserved to be 1Mb by default. Although a veteran programmer can adjust the

size to a little bigger, he/she will see that it cannot be enlarged to his/her expectations due to limitation of OS’s

managing capability.

III. ABANDON USING RECURSIVE FUNCTIONS

By the relationship between a recursive program and the stack it uses, one can draw a conclusion that, the size of

1Mb’s stack might be enough for a conventional recursive computation that might manage several Kb’s stack, but

for a large number computing, the 1Mb’s stack is never enough.

Let’s take an example in finding an integer’s divisor. According to article [4], an odd integer N=pq such that

3 p q  will have its divisor p to be found in the interval
(1 , ()) (1 , 2 1)

[,]m

N N

m q p m
N N

  
, where

(1 , 2 1)
2 1m

N m

m
N N

 
  ,

(1 , ()) (1 , 2 1)

1
2

2
m

N N

m q p m

N
N N

  

 
   

  

.

Now consider we use a divide-conquer approach to find the divisor p and suppose we designed a recursive function

to perform the search. Without loss of generality, we name the function by DCsearch and its C++ pseudo-codes (in

GMP library) are as follows.

//========= DC Search C++ pseudo-codes =========

int DCsearch (mpz_t &p,mpz_t N, mpz_t left, mpz_t right)

{

 int res;

 mpz_sub(mid, right, left); //where mid has been initialized earlier

 mpz_fdiv_q_ui(mid, mid,2);

 if(FindGCD(p, mid, N)) // test if mid contains p;

return 1;

 mpz_sud_ui(lft, mid,2);

 mpz_add_ui(rht, mid,2);

 res=DCsearch(p,N,left,lft); //recursive computing

if(res==1) return 1;

res=DCsearch(p,N,rht,right); //recursive computing

if(res==1) return 1;

 return 0;

}

//==

The above computing procedure is a typical binary search one. If N is small, the procedure can work well. But when

N is a big number, the procedure will cause a ‘stack overflow’ error, as RBarry Young declaimed in [5]. Why such

problem occurs? Taking a not very large number N=1123877887715932507 as an example, one can see

1
5 3 0 0 6 5 5 3 6

2

N 
 

  

, which results in costing a vast overflow stack even through a binary recursive search.

Consequently, abandon using recursive procedure is a regulation in programming with large number library.

IV. CONVERT RECURSIVE PROCEDURE INTO NON-RECURSIVE ONE

Now that a recursive procedure cannot work with big number programming, it is necessary to convert a recursive

procedure to a non-recursive one. Such conversional work has early been investigated. For example, the articles [6]

and [7] both explored how to turn a recursive algorithm into a non-recursive one. There are various approaches to

turn recursive algorithms to their non-recursive ones. This article does not intend to show their details. As an

example, here is introduced a frequently used approach in finding an integer that has the greatest common divisor

(GCD) with an integer N in an interval [,]Itv Il Ir . Suppose Itv contains
s n

N integers. We first subdivide Itv

into 2 1m  subintervals by

1
sn

N Ir Il   ;

and

 One More Comments on Programming with Big Number Library in Scientific Computing

DOI: 10.9790/1813-0604020106 www.theijes.com Page 3

(2) m o d (2)
2

sn

sn sn

N
N m N m

m

 
  

 
 

Let , m o d (2)
2

sn

sn sn

N
M M N m

m

 
 
 
 

; then there are 2m equal-length subintervals in each of which

contains M integers and there is one subinterval that contains
s n

M integers. Conventionally, a divide-conquer

algorithm search can be applied on each of the 2 1m  subintervals; however, as stated above, it is better to design

a non-recursive algorithm for big number operations. An appreciative sample is shown below

============Non-recursive Search============

For 0i  to 1i m 

 For 0j  to 1j M 

Begin

2(*)el Il j m i   ; if(FindGCD(N, el)) Return(i, j,el);

2(*)er Ir j m i   ; if(FindGCD(N, er)) Return(i, j,er);

End

For 0i  to 1
sn

i M 

Begin

2(*)
sn

el Il n m i   ; if(FindGCD(N,el,)) Return(i, 0,el);

End

===

V. INSTANCE OF BIG NUMBER COMPUTATION
This section presents an example of factoring a big odd number. The example is to realize the approach that was

introduced in [4].

5.1 Lemma and Algorithm

Lemma 1 Suppose N is an odd composite number; then N can be factorized in at most
1

2

N 
 
  

 searches. And an

algorithm is proposed below.

======== Squeeze Searching Algorithm==========

Input: Odd composite number N.

Step 1. Calculate searching level:
2

lo g 1K N    ;

Step 2. Calculate the largest searching steps:
m a x

1

2

N
l

 
  
  

;

Step 3. Calculate variables:

 2 1
K

ul N  ;
m ax

2ll u l l  ;

m ax
/ 2m l ll l  ; 2left m l  ; 2right ml 

Step 4. If FindGCD(N,ll) or FindGCD(N,ul)

 or FindGCD(N, ml) return GCD;

Else

Begin loop

 2ul ul  ; 2ll ll  ; 2left left  ; 2right right 

If FindGCD(N, ll) or FindGCD(N, ul)

or FindGCD(N, left) or FindGCD(N, right)

return GCD;

End loop

 ===

5.2 C++ Program to Realize the Algorithm

The previous search process can be realized by using GMP big number library as follows.

void Bsearch (mpz_t &Rt1,mpz_t &Rt2,mpz_t &steps,mpz_t left, mpz_t right)

{

 //Search from mid of [left, right], to find common divisor between Root and an activeNode;

 unsigned found=0;

 One More Comments on Programming with Big Number Library in Scientific Computing

DOI: 10.9790/1813-0604020106 www.theijes.com Page 4

 unsigned cmp=0;

 mpz_sub(ml,right,left); //calculate the middle point

 mpz_fdiv_q_ui(ml,ml,2);

 mpz_add(ml,ml,left);

 if(mpz_odd_p(ml)==0) //ensure the mid-point is odd

 mpz_add_ui(ml,ml,1);

 mpz_gcd(Rt1,Root,ml); //Find gcd between Root and ml and save it to Rt1

 cmp=mpz_cmp_ui(Rt1,1); //Check if gcd=1

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 return; }

//Not Found! Continue finding

 mpz_add_ui(rht,ml,2); //to right half-interval

mpz_sub_ui(lft,ml,2); //to left half-interval

 mpz_sub(tmp1,ml,left); //length of the left half-interval

 mpz_fdiv_q_ui(tmp1,tmp1,2);

 mpz_add(tmp1,tmp1,left); //mid of the left half-interval

 if(mpz_odd_p(tmp1)==0)

 mpz_add_ui(tmp1,tmp1,1);

 mpz_gcd(Rt1,Root,tmp1); //check the mid point

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 return; }

 //Not Found! Continue finding

 mpz_sub_ui(llft,tmp1,2); //to left half of the left half-interval

 mpz_add_ui(rlft,tmp1,2); //to right half of the left half-interval

 mpz_sub(tmp1,right,ml); //to right half of [left, right]

 mpz_fdiv_q_ui(tmp1,tmp1,2);

 mpz_sub(tmp1,right,tmp1); //mid of the right half-interval

 if(mpz_odd_p(tmp1)==0) //ensure the mid-point is odd

 mpz_add_ui(tmp1,tmp1,1);

 mpz_gcd(Rt1,Root,tmp1); //check the mid of the right half

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 return; }

//Not Found! Continue finding

 mpz_sub_ui(lrht,tmp1,2); //to left half of the right half-interval

 mpz_add_ui(rrht,tmp1,2); //to right half of the right half-interval

 while(1)

 { mpz_add_ui(steps,steps,1); //increment of the counter

 mpz_gcd(Rt1,Root,left); // check the left end

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 return; }

 mpz_gcd(Rt1,Root,llft); //check left-end of the left half

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 return; }

 mpz_gcd(Rt1,Root,rlft); //check the right-end of the left-half

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 One More Comments on Programming with Big Number Library in Scientific Computing

DOI: 10.9790/1813-0604020106 www.theijes.com Page 5

 return; }

 mpz_gcd(Rt1,Root,lft); //check lft

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 return; }

 mpz_gcd(Rt1,Root,rht); //check rht

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 {mpz_divexact(Rt2,Root,Rt1);

 return; }

 mpz_gcd(Rt1,Root,lrht); //check lrht

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 { mpz_divexact(Rt2,Root,Rt1);

 return; }

 mpz_gcd(Rt1,Root,rrht); //check rrht

 cmp=mpz_cmp_ui(Rt1,1);

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 {mpz_divexact(Rt2,Root,Rt1);

 return; }

 mpz_gcd(Rt1,Root,right); //check right-end

 if(cmp>0) //Find it! Use it to obtain Rt2, and then return

 {mpz_divexact(Rt2,Root,Rt1);

 return; }

 mpz_sub_ui(right,right,2); //shrink the intervals to their middle by 2

 mpz_add_ui(left,left,2);

 mpz_sub_ui(lft,lft,2);

 mpz_add_ui(rht,rht,2);

 mpz_sub_ui(llft,llft,2);

 mpz_add_ui(rlft,rlft,2);

 mpz_sub_ui(lrht,lrht,2);

 mpz_add_ui(rrht,rrht,2);

 }

}

5.3 Numerical Tests

Applying the previous codes to test factorizing some big numbers reveals expected results. Table1 1 shows the

experimental results, which are made on a PC with an Intel Xeon E5450 CPU and 4GB memory.

Table 1 Experiments on Big Numbers

N’s Factorization Searching Steps

N1= 1123877887715932507=2991558973756830131 17061564

N2=1129367102454866881=2586988943655660929 1025702

N3=29742315699406748437=37217342379915205819 1834479

N4=35249679931198483=59138501596052983 5166741

N5=208127655734009353=430470917483488309 12869593

N6=331432537700013787=1140982192904800273 2605343

N7=3070282504055021789=14362221732137748993 61027776

N8=3757550627260778911=16053127234069700393 3502182

N9=24928816998094684879=34791292371652460573 30523926

N10=10188337563435517819=70901851143696355169 667123

III. CONCLUSION
GMP and MPFR big number libraries are conventional tools that are frequently used in scientific computations.

Programming with these libraries requires a programmer to know their essences. Use non-recursive process is a

rule for the programming. As stated in this article, proper algorithm design is a key to the problem. As an example,

I list the source codes and hope it a valuable reference to the related developers and also hope to lear more.

 One More Comments on Programming with Big Number Library in Scientific Computing

DOI: 10.9790/1813-0604020106 www.theijes.com Page 6

ACKNOWLEDGEMENTS
The research work is supported by Foshan Bureau of Science and Technology under projects 2016AG100311,

2016AG100652, 2016AG100792 and 2016AG100382. The author sincerely presents thanks to them all.

REFERENCES
[1]. Jianhui LI, X Wang. Practical Guides on Programming with Big Number Library in Scientific Researches, The International Journal of

Engineering and Science,2016,5(9):64-66

[2]. S S Skiena. The Algorithm Design Manual. Springer London, 2008.

[3]. Aho A V , Hopcroft J E. The design and analysis of computer algorithms. China Machinery Press, 2006.

[4]. Xingbo WANG. Genetic Traits of Odd Numbers With Applications in Factorization of Integers [J]. Global Journal of Pure and Applied

Mathematics,2017,13(2): 493-517

[5]. RBarry Young.Spiraling number in Array - Stack Overflow with large numbers, http://stackoverflow.com/

questions/11417966/spiraling-number-in-array-stack-overflow-with-large-numbers

[6]. Zhu Z Y, Zhu C. Non-recursive Implementation of Recursive Algorithm, Mini-micro Systems, 2003, 24(3): 567-570

[7]. Gao Y, Guan F. Explore a New Way to Convert a Recursion Algorithm into a Non-recursion Algorithm, International Federation for

Information Processing, 2007, 258:187-193.

Author’s Biography

Dongbo Fu is a lecturer of Guangdong Neusoft Institute. He obtained his master degree in Beijing

University of Posts and Telecommunications in 2008, and since then has been a staff in charge of

affairs of computer network in the university. He is skill at computer programming, network

development and software engineering.

