
The International Journal of Engineering and Science (IJES)

|| Volume || 6 || Issue || 11 || Pages || PP 35-38 || 2017 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

DOI: 10.9790/1813-0611013538 www.theijes.com Page 35

Proof of Correctness: A Formal Software System Approach

Ejiofor C. I
1
& Mgbeafuluike .I .J

2

Chukwuemeka Odumegwu Ojukwu University
1,2

Corresponding Author: Ejiofor C. I

--ABSTRACT---

This research paper provides an expository description of software system specification from the perspective of

a diabetes diagnostic system with proof of correction in view.The papers explores Z notation as an integral

formalization language in decomposing formalized diabetes system properties into associated schema. Proof of

correctness has established the reliability of such system in eliminating associated errors within such system.

Keywords: Schema, Proof of Correctness

Date of Submission: 28-08-2017 Date of acceptance: 08-09-2017

I. BACKGROUND OF RESEARCH
Software system is concerned with the development of large, complex software system. It focuses on real-world

goals for services usually constrained by precise system specification. It is also concerned with the processes,

methods and tools for the development of software intensive systems in an economic and timely manner

(Pamela, 2014). Software systems usually are supported by formal method built to define precisely system

properties. Software system requires careful structural design.This design is usually specified using proper

schema and implementation components specified using schema formation under formal methods.

Formal methods are mathematical techniques for software system specification which provide an avenue for the

development and verification of software system (Gheorghe and Ancel, 2008). The uses of formal methods for

software and hardware design are motivated based on the expectation in obtaining reliability and robustness in

system design (Attie and Chockler, 2008). Formal methods are best described in application of broader

implementation.Formal methods are mathematical techniques, often supported by tools, for developing software

and hardware systems. These mathematical rigors enables user to analyze and verify model at any stage of

software life-cycle such as: requirement engineering, specification, architecture, design, implementation,

maintenance and testing. Formal methods also enhance data refinement involving abstraction functions and

simulation proof (Attie and Chockler, 2008). Z-notation and Wright are architectural description language based

on the formalization of the abstract behavior of these systems (Allen 1997). Z-notation also captures a precisely

defined formal method language embedding mathematical notations (Spivey, 1997).

Software systems are error prone which often are not discovered during the development phase. A possible

solution to this problem is the application of formal verification of software system through proof of correctness.

The goal of the application of formal methods in program verification is to prove the correctness of software

giving a mathematical proof that the software fulfills its specification. With formal proof for the correctness of a

program, the needs for system programming testing are usually eliminated. Hence, the verified systems are of

extreme quality as required in many industrial sectors, such as automotive engineering, security, and medical

technology. However to give a formal proof one needs to have a formal specification of the software.

Therefore, it is the intent of this research paper to explore proof of correctness for diabetes diagnostic system

using Z-notation.

II. APPLIED METHODOLOGY
Z-notation uses mathematical notation to describe in a precise way the properties a software system must

possess, without undulyconstraining the way in which these properties are achieved (Spivey 1998, Sannella,

1998 and Spivey, 1992). Formal specification uses mathematical data types to model data in a system and

achieves it underlining objectives. These data types are not oriented towards computer representation, but they

obey a rich collection of mathematical laws which make it possible to reason effectively about the way a

specified system will behave. We use the notation of predicate logic to describe abstractly the effect of each

operation of our system, again in a way that enables us to reason about their behavior.

The other main ingredient in Z is a way of decomposing a specification into small pieces called Schemas. By

splitting the specification into schemas, we can present it piece by piece. Each piece can be linked with a

commentary which explains informally the significance of the formal mathematics. In Z, schemas are used to

Proof of Correctness: A Formal Software System Approach

DOI: 10.9790/1813-0611013538 www.theijes.com Page 36

describe both static and dynamic aspects of a system (Spivey 1998). The static aspects includes: the state it can

occupy, the invariant (quantity that is unchanged by a set of mathematical operation) relationship that are

maintained as the system moves from states to state.The dynamic aspect includes: the operation aspect that are

possible, the relationship between their input and outputs and the changes of state that happen.

The schema presented in this paper provides an avenue wherein our formal specification could be presented in

fragment enabling us to associate commentaries; explaining informal the significance of the formal

mathematical notation representation.

III. Z-NOTATION SCHEMA AND PROOF OF CORRECTION
An empirical expository formalization of diabetes diagnostic system using Z-notation is the focal point of this

section. Z notation was explored due to the following reasons: decomposing system specification into schema

enhancing simplicity and clarity (Spivey, 1992; Spivey, 1998; and Jonathan, 2003). Z notation supports a large

array of intrinsic and user-defined data types (Spivey, 1992; Spivey, 1998).Z schemas describe both static and

dynamic aspects of formalized system properties (Spivey, 1992; Spivey, 1998 and Aneesh et al., 2003).

Z notation comprises of certain fundamental basic types. The following are some of the basic types in Z

{CHAR, STRING, CURRENCY, QUERY, OBJECT, COMPONENTS, BOOLEAN::=TRUE/FALSE, DATA

and OBJECT}. The main aim of this phase is the specification of the dynamic aspect of the diabetes system with

various schema, associated commentary and proof of correctness. The dynamic aspect includes physician login,

physician registration and diagnosis schema. Figure 3.1 to Figure 3.5 depicts the various system schemas with

associated proof of correctness.

Figure 3.1: AddPhysician Schema

The AddPhysician Schema shown on Figure 3.1, show the extension and contrition of registered physicians.

Proof of Correctness

For correctness of formal specification, invariants must be identified existing prior and succeeding the formal

statement P.

Registered_user’ = dom Registered_user’ [invariant after]

=dom (registered_user ∪ {physician? ⟶ credentials?}) [Spec. of AddPhysician]

= dom registered_user ∪ dom {physician? ⟶ credentials?} [fact about ‘dom’]

= dom registered _user ∪ {physician?} [fact about ‘dom’]

= registered_user ∪ {physician?} [invariant before]

Figure 3.2: DeletePhysician Schema

The DeletePhysician schema,shown on Figure3.2, shrinks the domain of registered physician.

Proof of Correctness

For correctness of formal specification, invariants must be identified existing prior and succeeding the formal

statement P.

Registered_user’ = dom Registered_user’ [invariant after]

= dom (registered_user - ({physician} credentials?) [spec. of deletePhysician]

= dom registered_user - dom ({physician} credentials?) [fact about ‘dom’]

= dom registered_user - {physician?} [fact about ‘dom’= registered_user - {physician?}

 [invariant before]

Proof of Correctness: A Formal Software System Approach

DOI: 10.9790/1813-0611013538 www.theijes.com Page 37

Figure 3.3: Registration Schema

The registration schema shown on Figure 3.3 provides physician registration mapping certain credentials

accepted by the system.

Proof of Correctness
For correctness of formal specification, invariants must be identified existing prior and succeeding the formal

statement P.

Registration = successful [invariant after]

= ∀p: physician ● credential?∈ registration [spec. of Registration]

= registration ∪{physician? ⟶credentials?} [fact about registration]

= registration ∪{physician?} [fact about registration]

= Registration ∪ (successful) [invariant before]

Figure 3.4: LoginPhysician Schema

The login schema, shown on Figure 3.4, grant access to registered users, based on their access levels. The

schema returns the “accepted” result for a registered user.

Proof of Correctness

For correctness of formal specification, invariants must be identified existing prior and succeeding the formal

statement P.

Login_user’ ⊆ dom register user’ [invariant after]

=dom (login_user ⊆{physician? ⟶ credentials?}) [Spec. of LoginPhysician]

= dom login_user ⊆dom {physician? ⟶ user.access} [fact about login]

= dom login_user ⊆{physician?} [fact about login]

= login_user ⊆{physician?} [invariant before]

PhysicianDiagnosis

symptoms: DIAGNOSIS

diagnosis: DIAGNOSIS

 Ξ domDiagnosis

∃symptoms: diagnosis ● Type I Diabetes∈Diagnosis ∧ diagnosis ≠ 𝝓

∃Symptoms: diagnosis ● Type II Diabetes∈diagnosis ∧diagnosis ≠ 𝝓

∀Symptoms: diagnosis ● symptoms∈Type I Diabetes∧Type II Diabetes∈diagnosis

 dom hscm_pt_diagnosis ⊆ Diagnosis

Figure 3.5: Diagnosis Schema

The physician Diagnosis shown in Figure 3.5 provides two class of diagnosis based on presented symptoms.

The predicate part receives as a request argument and returns two diagnostic results utilizing received

symptoms.

Proof of Correctness: A Formal Software System Approach

DOI: 10.9790/1813-0611013538 www.theijes.com Page 38

Proof of Correctness
For correctness of formal specification, invariants must be identified existing prior and succeeding the formal

statement P.

dom hscmpt_diagnosis’ ⊆ Diagnosis’ [invariant after]

= dom (hscm_pt_diagnosis ⊆{diagnosis? ⟶ symptoms}) [spec. of diagnosis]

= dom hscm_pt _diagnosis ⊆{diagnosis? ⟶ diagnosis}) [fact about diagnosis]

= dom hscm_pt_diagnosis ⊆{diagnosis? ⟶Type I diabetes}) [fact about diagnosis]

= dom hscm_pt_dignosis ⊆{diagnosis? ⟶Type II diabetes }) [fact about diagnosis]

= dom hscm_pt ⊆{diagnosis?} [fact about diagnosis]

= hscm_pt_diagnosis ⊆{diagnosis?}

IV. DISCUSSION

The application of formal proof or proof of correction has been devoid from numerous software system

specifications enhancing system with system errors. The diabetes diagnostic system has been formalized with

associated schemas, commentaries and proof of correction. The formalization specifing the properties of the

diabetes diagnostic system such as: add physician; delete physician, login, registration and diagnosis captured

through various schemas. The schemas were also complemented using associated commentary describing the

underlining purpose of the system. Proof of correction attached to each schemas has help established the

reliability and accurate of these formalized modules.

V. CONCLUSION

The quest for a formal approach with proof of correctness in establishing the correctness and reliability of

software system has been exemplified within this research paper using diabetes asan empirical case study. This

research paper captured five schemas with associated commentary and proof of correctness establishing the

correctness of formal specified properties. It is hoped that with this expository paper, formal proof will be

enshrined in future formalized approaches.

REFERENCES
[1] Allen, R. (1997), A formal approach to software architecture. Ph.D. thesis, School of Computer Science, Carnegie Mellon

University, Issued as CMU Technical Report CMU-CS-97-144.

[2] Aneesh, K..,Sergiy V. and Aditya G. (2003), A Case Study of Combining I* Framework and the Z Notation, retrieved online from

core.ecu.edu/vilkomirs/Papers/Vilkomir-ICEIS.pdf, April, 2015.

[3] Attie P. C., Chockler H., (2008) “Automatic verification of fault-tolerant register emulations”, Electronic Notes in Theoretical

Computer Science, vol. 149, no. 1, pp. 49–60.
[4] Jonathan, B. (2003), Formal Specification and Documentation using Z: A Case Study Approach retrieved online

www.macs.hw.ac.uk/~gabbay/201314-F28FS/Zbook.pdf, October, 2015.

[5] Pamela Z. (2014), Software System Engineering, retrieved online from http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/defn.html.
[6] Gheorghe, A. V., & Ancel, E. (2008), Unmanned aerial systems integration to National Airspace System. In Infrastructure Systems

and Services: Building Networks for a Brighter Future (INFRA), 2008 First International Conference on (pp. 1-5), IEEE.

[7] Spivey J. M. (1992), “The Z Notation: A Reference Manual, 2nd Edition”, Prentice Hall International (UK) limited, United
Kingdom.

[8] Spivey J. M. (1998), “The Z Notation: A Reference Manual”, Oxford, United Kingdom.

Ejiofor C. I Proof of Correctness: A Formal Software System Approach.” The International

Journal of Engineering and Science (IJES), vol. 6, no. 11, 2017, pp. 35-38.

http://www.macs.hw.ac.uk/~gabbay/201314-F28FS/Zbook.pdf

