
The International Journal Of Engineering And Science (IJES)

|| Volume || 6 || Issue || 1 || Pages || PP 87-98|| 2017 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

DOI : 10.9790/1813-0601038798 www.theijes.com Page 87

Software Architecture Design Recovery through Run-Time

Source Code Collaboration Pattern Analysis

Lei Wu
1
, Sankalp Vinayak

2
, Hua Yan

3

1
Software Engineering, University of Houston-Clear Lake, Houston, Texas U.S.A

2
Computer Science, Clear Creek Independent School District, Houston, Texas U.S.A
3
Institutional Research, University of Houston-Clear Lake, Houston, Texas U.S.A

--ABSTRACT---

Interoperability between enterprise legacy systems and contemporary information systems requires more

efficient ways to analyze the architecture and design of legacy systems. However, the original source code

collaboration design information is dispersed at the implementation level. The analysis of system design

architecture therefore becomes a difficult task. In this paper, the authors present a novel approach to efficiently

recover and analyze legacy system architecture and design through run-time source code collaboration pattern

and role analysis. The extraction of code artifact collaborations and their roles is therefore an important

support aspect in legacy software comprehension and architecture design recovery. The authors’ approach

consists of two major parts, both of which are supported by their reverse engineering tools. The first part

focuses on the dynamic analysis of target legacy systems and the automatic discovery of the legacy system’s

architecture. The second part is concentrated on the recovery and study of legacy system design through

collaboration pattern and role analysis. The study demonstrates that this novel approach is promising.

Keywords: Design analysis, software architecture, dynamic analysis, system decomposition, collaboration

pattern, role, design recovery, software visualization, reverse engineering

Date of Submission: 31 December 2016 Date of Accepted: 05 February 2017

--- ---------

I. INTRODUCTION
When facing a legacy system integration project, interoperability among enterprise legacy systems and

contemporary information systems requires a more efficient method to analyze the legacy system’s architecture

and design [Bas03][Bri02]. Software engineers inevitably encounter the difficult task of understanding legacy

software system’s architecture and design [Ede03][Elo02][Jac00]. Hall’s research work shows that

understanding the documentation and logic of programs occupies about 50 to 60 percent of a maintenance

programmer’s time [Hal88]. In many cases, even the original developers find it difficult to comprehend their

own code after a long period of time [Som00]. As a consequence, integration tasks tend to be difficult,

expensive, and error prone [Mic03][Gan00][Gan01].

This research focuses on following two aspects of legacy system architecture and design analysis: (i) Legacy

system source code collaboration pattern and role recovery and (ii) Legacy system decomposition. The code

collaboration pattern and role recovery concentrate on the identification of legacy system architecture features

and constructional structures. This work informs how legacy functionalities are implemented through modular

units’ collaboration, and the patterns/roles of various types of code cooperation forms. The system

decomposition makes it possible to further apply a divide-and-conquer approach to implement enterprise legacy

system interoperability re-architecturing.

II. SYSTEM ARCHITECTURE & DESIGN RECOVERY WITH COLLABORATION

PATTERN ANALYSIS
Software functionality and behavior are accomplished by the cooperation of code artifacts. Consideration of this

type of modular unit collaboration provides an important aid to system interoperability and legacy software

evolution. However, the original collaboration design information is dispersed at the implementation level. The

extraction of code collaborations and their roles is therefore an important method in legacy software design

recovery. In this paper, the novel approach to recover and study legacy system architecture and design with code

collaborations and roles analysis are presented.

2.1 APPROACH INTRODUCTION

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 88

Large enterprise legacy systems are normally organized in a structured form [Let99][Lak97], with code divided

into separated source files based on different design criteria [Pau94][Let99]. For example, in COBOL,

FORTRAN, C and Ada, the functions that relate to the same topic (such as ―error‖) are usually grouped together

into a single program file. Source files are further structured into different directories according to the

functionalities to which they contribute [Let99]. This kind of program code organization reflects the original

legacy design rational [Pau97]. Each source file and directory represents a certain design concept [Let99]. Each

code cooperation instance contains a limited number of such code units. These construction units are viewed as

source code modules, which interact with each other to realize the system functional behavior [Let99].

Moreover, each module plays a set of conceptual roles inside of the cooperation. The role relationship among

code modules reflects the control characters of source code, and the code collaboration pattern reveals code

organizational structure.

Source

Code

Code Collaboration

Patterns

Recovery

Process

Code Relationships

and Roles

+
Legacy Software Design

& Constructional

Structure Recovery

Figure 1: Legacy System Architecture & Design Recovery

Recovering such code collaboration patterns and conceptual roles from code artifacts is therefore an important

aspect for better understanding and re-engineering legacy code [Ric02]. It further facilitates the recovery of

legacy software design and constructional architecture, as illustrated in Figure 1. However, the large number of

code modules and the complexity of dynamic relationships make discovering and analyzing module

collaboration patterns and code roles a difficult task.

2.2 GENERAL CONCEPTS

This section introduces the underlying analysis concepts, terminologies, and formalisms used in the research

work of legacy system analysis.

Source code module: the source code of a system is usually organized in a structured form [Let99][Lak97].

Code units related to the same concept or topic lay in a single source file and are further stored into different

directories, which reflect the original design rational [Let99]. The source file or directory were viewed as source

module, or simply module.

Interaction instance: an interaction instance is a dynamic information transaction between two modules. It

triggers a message flow from sender module to receiver module.

Collaboration instance: a collaboration instance is the sequence of contiguous interaction instances, which

together form a chain of events.

Collaboration (or cooperation) pattern: a collaboration pattern is a frequently repeated serial of several

collaboration instances. During the whole process of interactions, modules show strong cooperative forms:

certain modules always cooperate together to implement a particular type of task. This kind of phenomenon

were viewed as a collaboration pattern. (See the detailed analysis terminology in Figure 2.)

Cooperation Pattern

Color.c:

Void color_set(int colidx,…)

{ chart_color[colidx].color.red = red;

chart_color[colidx].color.blue = blue;

repeat

{ ds_set_color(chart_color,colidx);

cf_start_paint(TRUE);

colidx--;

} While (colidx>0);

}

Configuration.c:

Void cf_start_paint(bool start) {…}

Dataset.c:

Void ds_set_color(ds_t *set, int
colidx) {…err_pro();…}

Error.c:

Void err_pro() { …}

Interaction instance

Color.c -->Configuration.c

Interactions sequence

Color.cDataset.c;

Color.c Configuration.c

Code module

Figure 2: Analysis Terminology Illustration

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 89

Dynamic trace record: the dynamic trace record is the program trace information captured during the

execution of target legacy system. A sample segment of the trace is given in Table 1.

Fun_id, Level, Module, Routine, Direction

 3, 5, indateentry.c, in_dateentry_set_text, In

 3, 6, intransinp.c, on_input_data_changed, In

 3, 7, transaction.c, *trans_get_typelist, In

 3, 7, transaction.c, *trans_get_typelist, Out

 3, 6, intransinp.c, on_input_data_changed, Out

 3, 5, indateentry.c, in_dateentry_set_text, Out

Table 1: Dynamic Tracing Data Format

An interaction instance includes six major components, namely system functionality ID, invocation (call) level,

sender module, receiver module, invocated routine, and direction. In Table 1, the module represents the receiver

module at that call level. The sender module is the module that locates at the nearest former interaction instance

which has one call level less than the call level of the current interaction instance. The Fun_id stands for system

functionality identification number, which correspondent to the specific system functionality that was

performed. The level represents the invocation depth. Direction is the orientation of message flow. The module

and routine represent the module name and the function/procedure that carries out the invocation event.

Conceptual role: a conceptual role is the predictable stereotype of an individual module. It represents the general

characteristic of the module’s utility in program.

Role definition: the definition of a specific role that a code module plays in a collaboration pattern reflects the

relationship between two modules. A particular module may have multiple roles in different relationships with

other modules, but normally it has a major dominant role. From the construction point of view, a simple job-

dispatch relationship can be metaphorized into ―manager-worker‖ roles for the sender and receiver modules.

This role-pair relation explains that the module with high level ―manager‖ role dispatches tasks to the modules

with lower level ―worker‖ role. Four pairs of conceptual role relationships can be defined based on the

invocation contributions among the relationship.

III. COLLABORATION PATTERN AND ROLE RECOVERY APPROACH
This section presents the program analysis approach for the recovery of code collaboration patterns and

conceptual roles from source code artifacts. The study applies dynamic program analysis and software

visualization techniques to accomplish the goal. Two reverse engineering program analysis tools, namely

Dynamic-Analyzer and Collaboration-Investigator, have been designed to carry out this approach. The tools are

used to automate the process of detecting, recovering, and analyzing legacy source code collaboration patterns

and roles.

Collaboration and conceptual roles are two design concepts that have been scattered throughout source code

[Ric02]. Inside collaborations, participant modules interact with each other to carry out specific tasks. The

cooperation is confined in an interaction structure form, which describes a set of allowed collaboration

behaviors for each module. Such structure is implemented with two major design concepts and dispersed in

code: the repetitive code cooperation pattern and conceptual role. Each participant plays a certain type of role in

the collaborations. Recovering such information can largely facilitate the program comprehension process and

promote program analysis into a deeper level. Since procedural languages do not provide explicit means to

capture such design information, maintainers have to rely heavily on human efforts to investigate these design

logics in legacy software.

To recover collaborations and roles from legacy source code, the study proposes a new approach that uses

dynamic analysis, software visualization, and automatic/semi-automatic detection techniques to achieve the

goal, as illustrated in Figure 3. The study first executes system functionalities separately and captures dynamic

interaction information among modules during system execution period.

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 90

Dynamic Information Capturing

Visualization
Expert

Semi-automatic Collaboration

Pattern Discovery

Automatic Collaboration

Pattern Detection

Semi-automatic

Role Discovery

+ +

+

Refined Collaboration Pattern &

Conceptual Role Recovery

Interaction Data Repository

Figure 3: Recovery Approach Schema

It then applies software visualization technique to analyze and identify dynamic program features. Later on,

automatic pattern detection process is performed to recover all significant repetitive collaboration instances.

Meanwhile, with the intervention of maintainers, the semi-automatic process detects the collaboration pattern

and participants’ roles, and investigates their features. In addition, a crosscheck and refinement process is

conducted to combine the two outcomes, and distill the final refined results. The following are the key issues

addressed in the approach.

Dynamic information capturing. The study applies dynamic analysis technique [Bal99] to capture module

interaction messages, data transformation routes and control flow information during program execution.

Software visualization. The study applies graphic simulation to represent the captured information into a more

understandable visual form as a set of comprehensive graphical diagram views. Two kinds of information are

visualized: first is the pure interaction information that represents what is going on inside the code; the second is

the statistical data information. For the first, both static visualization and animation were used to simulate the

dynamic nature of code artifacts cooperation. For the latter, graphical diagrams and graphs were used to

visualize the statistical analysis results.

Automatic and semi-automatic collaboration pattern and role detection mechanism. With the results from

former two processes, the features of dynamic code interaction instances—such as the components of the code

cooperation, their directions, the serials of code collaboration sequence and their frequencies—can be studied.

To discover the collaborations and conceptual roles dispersed over the huge amount of code transactions, it is

crucial to limit the searching space. The difficulty lies in the efficient identification of those significant

repetitive interactions, which jointly form a meaningful collaboration pattern and role relationships in the large

transaction space. By applying automated detection technique on the visualization results, the study was able to

extract fine-grained collaboration patterns. The advantage of such an approach is that it is capable to detect a

wide range of collaboration patterns, while the disadvantage is that a maintainer may lose the control of

expressing the emphasis on discovering patterns. As a remedy to this shortage, the study adopted a semi-

automated recovery of collaboration patterns and roles with human intervention.

Based on an investigator’s emphasis, the recovery criteria can be interactively selected, which gives the

preferable weight on different aspects of automated pattern recovery. The collaboration pattern and role

relationship discovery results reflect the emphasized interests of maintainer. As a result, the system can only

recover those collaboration patterns and roles, which exhibit the most interesting features defined by human.

Finally, these two types of outcomes are compared and refined to produce the final recovery result.

In order to efficiently recover collaboration patterns from execution trace information, certain types of criteria

have to be designed to emphasize aspects that are more important in detecting sequences of collaboration where

instances are related, thereby creating opportunities to further combine instances together to form a concrete

collaboration pattern. The criteria are divided into the following three categories:

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 91

Interaction instance component. An interaction instance includes six major components, namely system

functionality id, invocation level, sender module, receiver module, invocated routine, and direction. Based on

different emphasis, a maintainer may use any combination of these components to define the recovery criteria.

Collaboration instance selection. The main purpose of finding collaboration instance is to recover the

invocation path. For this reason, only the interaction instances involving specific modules can be selected to

view. Meanwhile, to limit the observation scope, a consideration boundary that confines the recovery process to

a certain depth range may also be defined.

Collaboration pattern matching. When several frequently repeated collaboration instances form one

collaboration pattern, the shape of that pattern may not be unique. Different interaction sequence may lead to

various visual outlines, while the semantics of these patterns are identical. Therefore, the study defines the

criteria to let the tools compare two collaboration patterns.

IV. AUTOMATION WITH DYNAMIC-ANALYZER
As discussed in the introduction, static analysis does not present sufficient information to study the interactions

of source modules. Recording dynamic information of a program can provide one with sufficient knowledge

about message exchanges during program execution period. However, this technique faces two major issues: the

overwhelming volume of tracing data and incomplete coverage of the code. In the current approach, since the

focus is on a limited set of system functionalities and behaviors, the dynamic coverage contains only the

relevant code artifacts. In fact, this focus is beneficial because it reduces the volume of tracing data. Based on

the previously presented, the Dynamic-Analyzer, a reverse engineering tool has been developed to automate the

dynamic capturing and visualization of dynamic source code message process information among source

modules (See Figure 4). First, legacy source code is instrumented to record execution information. Then, the

target system functionalities are executed to observe system behaviors; meanwhile, program dynamic

information is retrieved, processed (normalized) and fed into data repository.

Subsequently, the visualization and animation program would present the information through visual effects to

create a meaningful way to investigate the interactions. Finally, the automatic collaboration pattern detection

process will be performed to distil all the patterns. The Dynamic-Analyzer tool can automatically discover all

fine-grained collaboration patterns. Another reverse engineering tool has been developed to incorporate human

intervention in the discovery process and combine those with the outcomes from Dynamic-Analyzer to improve

the result. This semi-automatic approach is detailed in following section. One advantageous feature of the

Dynamic-Analyzer is that both the observed system and analysis tool run in parallel. Maintainers are now able

to observe system behavior and the visualization of source module interactions/patterns simultaneously. Thus,

any specific system behavior can be directly related to the visual effects of module interactions in a real-time

manner, reducing the cognitive load to remember and match these two subjects.

Figure 4: Workflow of Dynamic-Analyzer

The study used the Dynamic-Analyzer tool to define different types of views, to exhibit information at different

granularity levels, and to facilitate the smooth navigation among those levels. Two types of information were

visualized: the pure interactions and the statistic data information. For the first, static and animate visual effects

were applied to enhance the recovery process. Figure 5 illustrates the fine-grained dynamic module interaction

footprint view and animated pattern detection views produced by Dynamic-Analyzer.

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 92

(i) Dynamic Module Interaction Visualization: Footprint View

The left-most vertical part shows the name of modules; the horizontal direction represents the time sequence;

the dark (red) box indicates an invocation interaction instance from the sender module; the gray (green) box

shows the return of interaction instance from the receiver module; the dark (red) line with direction point shows

an outgoing message from sender module towards receiver module; the gray (green) line with direction point

represents the returning of the interaction message from receiver module back to sender module.

The Dynamic-Analyzer automatically detected all the repetitive collaboration instances, and distilled them as

candidate collaboration patterns. To further reveal the construction structure of particular system functionality, a

more effective means to discover the dynamic module interaction space is needed.

The study proposes a new approach to visualize the dynamic information in a form that illustrates the

relationships between difference source code modules which are involved in the activities that generate the

specific system functionality.

(ii) Automated Collaboration Pattern Detection

Figure 5: Footprint (i) and pattern detection (ii) views from Dynamic-Analyzer

As demonstrated in Figure 6, the visual representation of the comprehensive module interaction relationships

reveals system constructional structure that implements observed system functionality.

The invocation level: corresponds to the call depth from sender module to receiver module.

The link between modules: represents the invocation instance from higher level module to lower level module.

The location of rectangle: shows at the specific location (invocation level & module), there’s a certain amount

of module invocation activities.

Entering Receiver Module Leaving Receiver Module

Returning

Direction

Collaboration

Pattern

Invocation

Direction

Sender Module

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 93

The size of rectangle: stands for the percentage of invocations the module has at the particular level, compared

with the total number of invocations that the module has among all the levels. Suppose the ―Full_Size‖ square

has 1cmX1cm height and width. The mathematic formula is expressed as following:

Size(Module_a,Level_b)=FullSize*Invocations(Module_a, Level_b)/Invocations(Module_a, All Levels)

Here, the Full_Size represents the maximum square space between two nodes. The size of each rectangle shows

the relative impact of invocations that a module has at certain level, which indicates the activity intensity degree

at each invocation depth for one particular module.

The color of rectangle: reveals the module at certain level external relative impact, which specifies the activity

intensity degree (―weight‖) at each invocation level for one particular module in comparison to total invocations

of all modules. Color scale schema is applied to reflect the weight. The notation of color is shown in Figure 7.

The color of link: illustrates the coupling degree of these two linked modules, which reflects the weight of that

link. For the color of link and color of rectangle, the study applies 10 color scale schema to symbolize the

weight variance gradient from ―High‖ to ―Low.‖ Figure 7 illustrates the color representation scheme of the

weight variance gradient.

Figure 6: Construction Structure View of System Functionality

Red

 Tomato

 LightSalmon

 PeachPuff

 Gold

 Yellow

 GreenYellow

 Lime

 LimeGreen

 DarkGreen

 1 2 3 4 5 6 7 8 9 10

High (Weight) Low

Figure 7: Color Representation Scheme of Weight Variance Gradient

Module ID

Invocation Level

Line: module

interaction direction

Size of rectangle:

module level

internal relative

impact

Color of rectangle:

module level external

relative impact

Color of line: module

coupling degree

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 94

The color of both link and rectangle use ―weight‖ to represent the percentage of invocations it occupies

compared with the total number of invocations that all modules have. The mathematic formulas are expressed as

following:

Weight_Link(a,b) = 10 * Invocations (Module_a Module_b) / Invocations (All Modules) (i)

Weight_Rectangle (Module_a, Level_b) = 10 * Invocations (Level_b) / Invocations(All Modules) (ii)

V. RECORDING SYSTEM FUNCTIONALITY SCENARIO
While analyzing system functionalities and their source code construction structure, it is desirable to record

system behavior for the comparison and analysis. As such, Figure 8 illustrates a scenario recording function for

Dynamic-Analyzer to capture the screen snapshots of system functionality and behavior.

Figure 8: System Functionality Scenario Recorder

The recorded scenario screen snapshots were labeled and stored into repository database for analysis usage.

Later, when performing the dynamic visual analysis, the user is able to retrieve the scenario pictures to reflect

the observed system functionality, thereby linking the system behavior and the visual analysis results (views and

diagrams). In this way, the target system does not need to be executed every time there is a need to study it.

VI. ANALYSIS WITH COLLABORATION-INVESTIGATOR
Implementation of observed system functionality: As discussed previously, a collaboration pattern is a

frequently repeated series of collaboration instances, which involves different modules cooperating together to

perform a certain type of work that contributes to the system functionality. During the whole process of

interactions, those modules involved in the pattern show strong collaboration manners: cooperatingto implement

a particular task.

To study the coloration patterns, and further analyze the roles of participant modules, Collaboration-

Investigator was designed as another reverse engineering tool (see Figure 9) to carry out the approach explained

in the previous section.

Seven major tasks are carried out for the recovery and analysis of collaboration patterns and conceptual roles.

1. Pattern criteria establishment

2. Interaction investigation

3. Collaboration pattern recovery

4. Visualization of collaboration pattern

5. Role recovery

6. Collaboration pattern investigation

7. Role investigation

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 95

Figure 9: Collaboration-Investigator: A Reverse Engineering Tool for Collaboration Pattern and Role

Recovery and Analysis

Figure 10: Collaboration Pattern Recovery and Visualization

Collaboration pattern criteria establishment: Three categories of pattern recovery criteria were set up,

namely interaction component selection, collaboration instance selection, and pattern matching. The choice of

optional items in each category reflected the maintainer’s observation emphasis of pattern recovery aspects. The

naming convention of distilled collaboration pattern is the unique sequential id number plus the first sender

module’s name and the first invocation routine name.

Interaction Investigation. This component is designed to explore all the components of any interaction

instance. When selecting the pattern name, the sender module and receiver module, the user can generate all the

routines (functions and procedures) that are invoked from sender module to receiver module within the selected

collaboration pattern. By selecting a routine name, the tool will also generate the full interaction information in

Collaboration Pattern

Visualization

Collaboration

Pattern

Recovery

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 96

the collaboration pattern which contains that routine. Through this component, the module interaction space can

be fully explored.

Collaboration Pattern Recovery: This component recovers the collaboration patterns based on the criteria that

have been previously created. It identifies those significant repetitive interactions, which jointly form a

collaboration pattern and role relationships in the large transaction space. The result will be shown in the

―collaboration pattern‖ frame; see Figure 10.

Visualization of Collaboration Pattern. The Dynamic-Analyzer is used to generate the visual effects of

recovered collaboration pattern. It also generates the visual representations of the corresponding collaboration

instances for a pattern. Figure 10 illustrates a sample recovered collaboration pattern.

Role Recovery: Based on the recovered collaboration patterns, the module relationships and the module roles

will be defined according to the role pairs classification, illustrated in Figure 11. For each pattern, a module role

table will be generated for the participant. The Collaboration-Investigator would recover four role relationship

pairs based on module invocation frequency: ―director-manager‖ (few, few); ―manager-worker‖ (few, many)‖;

―consumer-supplier‖ (many, few); and ―worker-colleague‖ (many, many).

Module_A

Invocation

instance

Module_B

Module_A

Invocation

instance

Module_B

Invocation instance times: Few or Many

few

few many

many

Invocation instance times: Few or Many

few

few many

many

22 44

11 33

 1. Director vs Manager 3. Worker vs Colleague

 2. Manager vs Worker 4. Consumer vs Suplier

Figure 11: Conceptual Role Pairs

The invocation times indirectly reflect a particular module’s level of involvement while contributing to system

functionality. The study uses fuzzy concepts ―few‖" and ―many‖ to symbolize the invocation frequency. It

reveals the amount of computation work contributed by this module to the specific system functionality. ―Few‖

indicates that this module generally dispatches the work load to partner modules, and it is in charge of

management work whereas ―many‖ reveals that this module has taken a considerable work load portion of the

system functionality and is in charge of the implementation part of system functionality.

Four role-relation pairs and eight roles to reveal the relationships among code modules have been designed: (i)

Director vs Manager (Few-Few); (ii) Manager vs Worker (Few-Many); (iii) Retailer vs Wholesaler (Many-

Few); (iv) Worker vs Colleague (Many-Many).

Collaboration Investigation. This component will generate the query results for related collaboration patterns.

The collaboration pattern list can be produced which contains a set of selected routines, and can discover the

features by exploring the collaboration pattern components. The selection of a sender module or receiver

module in order to find out the other related parts had similar effects. Any combination of these four elements

(pattern, sender module, receive module and routine) can be used to generate the list of the remaining elements.

Role Investigation. This component explores the role space of each module in a selected collaboration pattern.

When the sender module assigns a certain conceptual role, the modules that have the corresponding role in a

given collaboration pattern can be retrieved. Further, roles for a single module can be compared in different

patterns and produce the dominant role for a particular module based on the multiple role information that it has

carried out in different collaboration patterns.

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 97

Figure 12: Partial System Constructional Structure Visualization

With the help of visual expression provided by the Dyanmic-Anaylzer and the analysis components provided by

the Collaboration-Investigator, a comprehensive system functionality construction structure can be generated to

reveal partial system architecture.

Figure 12 illustrates the system module constructional structure that implements one sub-system’s functionality

in a sample case study. It exhibits the inter-relationships among all the modules that contribute to the

implementation of one specific system functionality. The integrated diagram can be further decomposed into a

set of visual representations of collaboration patterns, and the assignments of the major role for each module.

VII. CONCLUSION
Interoperability among an enterprise legacy system and a contemporary information system requires a more

efficient way to analyze the legacy system’s architecture and design. This paper presents a novel approach to

efficiently recover and analyze legacy system architecture and design through collaboration pattern and role

analysis.

The approach consists of two major parts, both of which are supported by the reverse engineering tools used in

this study. The first part focuses on the dynamic analysis of target legacy systems and the automatic discovery

of legacy system’s architecture. The second part concentrates on the recovery and analysis of legacy system

design through collaboration pattern and role analysis.

Each recovered collaboration pattern represents a concrete implementation block of the observed system

functionality. By characterizing program construction, the insight can be gained about the way legacy system

behavior is carried out through the collaborations of its basic design unit. It is also useful to apply the discovered

collaboration patterns to further decompose the whole system into a role-based hierarchical representation.

Inspectors can use this information to study each module within various collaboration patterns, regaining more

detailed architecture and design information. Cohesive measurement is also used to perform legacy re-

construction [Van00][Kui00][Cha02]. Within a collaboration pattern, composition modules intensively

cooperate together to perform a concrete system function. Therefore, both Dyanmic-Anaylzer and

Collaboration-Investigator can be further used in the re-modularization of enterprise legacy system, providing

the interoperability with other contemperary software systems.

The architecture and design recovery process provides a decomposition view of legacy software [Kos02]. Most

research on understanding interactions has focused on visualization techniques[Lan03][Lud02][Boh11][Wat15],

where the challenge is to develop efficient way to visualize the large amount of dynamic information

[Wal98][Sys01]. The work of DePauw et al. [Pau98], which is currently integrated with Jinsight, allows

engineers to visually recognize patterns in the interactions of classes and objects. ISVis displays interaction

diagrams using a mural [Jer97] technique. The current work in visualization is the combination of these two

approaches. Instead of the mere focus on visualization, the current approach places greater emphasis on the

recovery of legacy sytem architecture and the understanding of legacy system design. Tamar et al. also propose

Software Architecture Design Recovery Through Run-Time Source Code Collaboration Pattern ..

DOI : 10.9790/1813-0601038798 www.theijes.com Page 98

an approach to analysis of roles within collaborations [Ric02], using the invocation methods as representative of

roles. Their approach is not sufficient to analyze the general function of a module inside of recovered

collaboration pattern. The study proposes a significantly improved model that uses predefined conceptual role

stereotypes for the recovery of roles based on the invocation relations with other modules. Test results using

case studies presented in this paper confirm that the novel approach proposed in this paper offers a more robust,

accurate and efficient solution for architecture recovery of legacy systems.

REFERENCES
[1]. [Bal99] T.Ball, ―The concept of dynamic analysis.‖ Proceedings of ESEC/FSE, LNCS, 1999, pp. 216-234
[2]. [Bas03] L. Bass, P. Clements, R. Kazman, ―Software Architecture in Practice‖ (2nd edition), Addison-Wesley 2003:

[3]. [Bri02]Liam O’Brien, Christoph Stoermer, Chris Verhoef, ―Software Architecture Reconstruction: Practice Needs and Current

Approaches,‖ Carnegie Mellon Software Engineering Institute, Technical Report, CMU/SEI-TR-024, 2002
[4]. [Cha02] S. M. Charters, C. Knight, N. Thomas, M. Munro: ―Visualisation for informed decision making; from code to

components.‖ Proceedings of the 14th international conference on software engineering and knowledge engineering, July 15-19,

2002, Ischia, Italy. ACM, p765-772 2002
[5]. [Can00] G. Canfora, A. Cimitile, A. De Lucia, G.A. Di Lucca, ―Decomposing Legacy Programs: A First Step Towards Migrating to

Client-Server Platforms,‖ The Journal of Systems and Software, vol. 54, 2000, pp. 99-110.

[6]. [Can01]G. Canfora, A. Cimitile, A. De Lucia, G.A. Di Lucca, "Decomposing Legacy Systems into Objects: An Eclectic Approach,"
Information and Software Technology, vol. 43, no. 6, 2001, pp. 401-412.

[7]. [Ede03] A. Eden, R. Kazman, ―Architecture, Design, and Implementation,‖ Proceedings of the 25th International Conference on

Software Engineering (ICSE 25), (Portland, OR), pp. 149-159, May 2003.
[8]. [Elo02] J. Eloff, ―Software Restructuring: Implementing a Code Abstraction Transformation,‖ ACM International Conference

Proceedings of SAICSIT 2002.
[9]. [Hal88] HALL, R.P. ―Seven Ways to Cut Software Maintenance Costs (Digest),‖ in PARIKH, G.: Techniques of Program &

System Maintenance (QED Information Sciences Inc., 1988 2nd edition.

[10]. [Jac00]Daniel Jackson & Martin Rinard. ―Software Analysis: a Road Map,‖ "The Future of Software Engineering,‖ Anthony
Finkelstein (Ed.), ACM Press 2000.

[11]. [Jer97] D.Jerding, S.Rugaber, ―Using visualization for architectural localization and extraction,‖ Proceedings WCRE, IEEE

Computer Society, 1997, pp. 56-65.
[12]. [Kos02] Rainer Koschke. ―Atomic Architectural Component Recovery for Program Understanding and Evolution,‖ In Proceedings

of the International Conference on Software Maintenance, Montréal, Canada, October 2002.

[13]. [Lan03] Michele Lanza, Stephane Ducasse. ―Polymetric Views - A Lightweight Visual Approach to Reverse Engineering.‖ IEEE
Transactions on Software Engineering (TSE), Vol. 29, No. 9, pp. 782-795, September 2003.

[14]. [Lak97] A. Lakhotia. ―A Unified Framework for Expressing Software Subsystem Classification Techniques.‖ Journal of Systems

and Software, pp. 211–231, March 1997.
[15]. [Lud02]Martin Ludger, Anke Giesl, Johannes Martin. ―Dynamic Component Program Visualisation.‖ In Proceedings of the 9th

Working Conference for Reverse Engineering, Richmond, Virginia, October 2002.

[16]. [Let99] A.N. Lethbridge, "Recovering Software Architecture from the Names of Source Files,‖ Journal of Software Maintenance:
Research and Practice, November, 1999, pp. 201-221.

[17]. [Mic03] Isabel Michiels, Dirk Deridder, Herman Tromp and Andy Zaidman, ―Identifying Problems in Legacy Software,‖ Elisa

ICSM workshop 2003
[18]. [Pau98] W.D. Pauw, D. Lorenz, J.Vlissides, and M. Wgman, ―Execution Patterns in Object-Oriented Visualization,‖ Proceedings

Conference on Object-Oriented Technologies and Systems (COOTS’98), USENIX, 1998, pp. 219-234

[19]. [Ric97]R. Richardson, D. Lawless, J. Bisbal, B. Wu, J. Grimson, and V. Wade ―A Survey of Research into Legacy System
Migration,‖ Technical Report TCD-CS-1997-01, Computer Science Department, Trinity College Dublin. January 1997.

[20]. [Som00] Ian Sommerville ―Software Engineering,‖ 6th edition. Addison-Wesley 2000

[21]. [Sys01] T. Systa, K. Koskimies, H. Muller. ―Shimba – An Environment for Reverse Engineering Java Software Systems.‖ Software
–Practice and Experience, 1(1), January 2001.

[22]. [Wal98]R.J. Walker, G.C. Murphy, B.F. Benson, D. Wright, D. Swanson and J. Issaak. ―Visualizing Dynamic Software System

Information Through High-Level Models,‖ Proceeding OOPSLA’98, 1998, pp.271-283.
[23]. [Boh 11] J. Bohnet and J. Dollner, ―Monitoring Code Quality and Development Activity by Software Maps,‖ In Proceedings of the

International Workshop on Managing Technical Debt, 2011.

[24]. [Wat 15] R.N.M. Watson, J. Woodruff, P.G. Neumann et al. Cheri: A Hybrid Capability-System Architecture for Scalable Software
Compartmentalization, 2015 IEEE Symposium on Security and Privacy. IEEE, 2015: 20-37.

