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ABSTRACT
Abstract. In this paper, we use both Newton’s Interpolation and Lagrange Polynomial to create cubic
polynomials for solving the initial value problem. By this new method, it is simple to solve linear and nonlinear
first order ordinary differential equations and to yield and implement actual precise results.Some numerical
examples are provided to test the performance and illustrate the efficiency of the method.
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I.  Introduction

Many mathematical models in science and engineering fields ([3],[4].[5]1.[6].[7],[10],[13]) can be
formulated in the form linear and nonlinear ordinary differential equations ([9],[12]) which need an analytical
method ([2],[15].[17]) to solve the exact equations. However in some problems, we can obtain the exact
solution by analytical method in [7] for example y’ = x* + y?. Therefore the numerical method is an important
tool to solve this kind of problems such as Euler’s method, Runge-Kutta method ([11],[14]) and Runge-Kutta-
Fehlberg method ([8],[18]). Many methods have been widely developed by a lot of researchers ([1],[11],[14]
and [16]) to solve these problems. Some problems in form of partial differential equations can be converted to
ordinary differential equations form ([10],[13]). In this article, we consider only the first order ordinary
differential equations with an initial condition (initial value problems) in form:

2= f6y), y(x) =¥

(1)

Where f (x,y), is a known function and the value of initial conditions x,y, are known numbers. In 2018, to
find solutions of (1), [14] used Newton’s interpolation and three points to build a quadratic equation by
Lagrange method. Also [11] and [16] used Newton’s interpolation and constructed a quadratic equation by
Aitken’s method to solve the same problems. Moreover [20] gave an idea to solve these problems for combining
Pi-card’s method and Taylor’s Series. Furthermore [21] proposed a new solving technique by improved Euler’s
method.

Ultimately [1] applied all techniques from [11], [14], [16], [19], [20] and [21] to approximate the solution of (1)
and other systems of first order ordinary differential equations. The goal of this study is to estimate
approximated solutions and relative errors by comparing the results of our new method with other methods such
as Euler’s method and methods in [11] and [14].

I1.  Our proposed method
To improve the accuracy of in [11] and [14] which are the same quadratic solutions, we combine
Newton’s interpolation and Lagrange's method for solving (1) to create higher degree polynomial. Newton’s
interpolation is applied to find four valuesy; for i= 0,1,2,3 to form a cubic polynomial, P;(x) = ¢y + c;x +
¢,x% 4 c3x3. This polynomial approximates solutions of (1) by using Lagrange’s method as following.

2.1 Newton’s interpolation method

This method uses the initial point (x,,y,) from (1) to estimate the values of a function from any
intermediate values of the independent variables. The general form of the n*"* degree polynomial that goes
through n+1 points ((x;, y;) for i = 0,1,...n is written as
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fn(x) =apg+ a;(x —x) + ay(x —x9)(x — x)+... +a,(x — x5)(x — x1)... (X — xp_1),

()

Where aq,a,,a,,as3, ... are given by 3)
Ao = Yo,
a = Yo 4)
LT XX
NV YiYe (5)
Xoi= XiXo
Xz - Xo
Y3¥2-YoNa Y2-Y1 - Y1-Yo (6)
X3-Xg - Xp-Xg X2-X1 - X1-Xg
Xa=X1 X2=Xo
az= 5 eee s
Xs=Xo

Since y; Yy, andysin (4) - (6) are unknown values, we use differential values for approximation i.e

yiyi-1 _dy
x:-x: T g Lyi— 1)

For our method, we require three more values yy, y, and y; which are given by

Y1 = ag + ay(Xq - Xo), )
Y2 = @ + as(Xz - Xo) + ax(X2 - Xo)(X2 - X1), ®)
Y3 = ag + ay(X3 - Xo) + @x(X3 - Xo)(X3 - X1) + a3(X3 - Xo)(Xa-Xa), )

where X;,1 = X;+h and the step size h is very small constant.

2.2. Lagrange’s method

Lagrange’s method is a method to find a n™ degree polynomial that takes on certain values at an
arbitrary point. We have only (xo,Yo), (X1,Y1),(X2Y2) and (xs,ys) to build the 3" degree polynomial equation (cubic
function), P3(X;) =Co + C1X +CoX” + C3X

(z — z1)(z — z2)(z — z3) (z = z0)(z — 22)(z — z3)

@ —=)(z0-22) (@0 —2) " (=1~ Z0)(@1 — z2) (@1 — 73) | (10)
(z = zo)(z — z1)(z — z3) (z = Zo)(z — 21)(x — z3)

(@2 - 2o)(@a — 21)(2 — 23) * | (%3 — Z0)(Z3 — 21)(T3 — 22) >

Ry(z) =

+

Then we apply (10) to approximate y; = P3(X;) where i =4,5, ...8 which are solutions of (1)as shown in Figure 1

14 —N\
Aaal | N
= A .
’“mn e, 1) : N
u“ \
4T o inepome I : "‘¥ f
@ 3 points from Newton's inter. l

02 1=~ P3(x) from Lagrange method ¥

@0 05 10 15 20 25 30 35 40
X values

Fi 1: Showi initial point, ,%0), the red points from the N 's i ion, ), (z2,
;:lu'(:,,y,) mdntgh:n initial ppo&nm(:yq (1%))' e poin ewton's interpolation, (z1,1), (z2,12)

2.3. Algorithm of our method

# Consider IVP dy/dx = f(x,y) with initial conditions y(Xo) = Yo
1. Define function f(x,y)
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2. Set values of initial condition (X, Yo), number of steps (n) and steps size (h)
3. Use Newton’s interpolation method to find (x1, y1), (x2, y2) and (x3, y3)
4. Use Lagrange’s method to find P3(x)

5. Seti=4

6. Loop whilei<=n
yi = P3(xi)
Xi=xi+h

i=zi+1l
7. Display yi as results

1. Numerical results

We will use our method to find the numerical solutions and relative errors and compare results with
Euler’s method, methods of [11] and [14] in the following examples.

Example 1. Consider the initial value problem

Z—z=1—y, y(0) = 0.
Then take the step size h = 0.1 and use Newton s interpolation
8 =0.0,a; = 1.0, a, = -0.499999, a; = 0.166667
and
y;=0.1,y,=0.19,y; = 0.271.
Apply (0,0), (0.1, 0.1), (0.2, 0.19) and (0.3, 0.271) to find cubic polynomial by (10). Then we obtain

P3(x) = 0.166667x° - 0.549997x + 1.053333x
(11)

In order to approximate the solutions, we substitute x; in P3(x) to get y; = P5(x;) for i=4,5, ...20 and compute
relative error Vi - Vi ‘

Yxi

where yy;, is exact solutions at x; as shown in Table 1 and Figure 2.

The approximate solutions are close to exact solutions where x € [0,0.8] and relative errors when x = 0.9
highly increase as shown in Figure 2.

Table 1: Showing results of Example 1 with h = 0.1 on z; € [0,2]

0.50 0409510 0400000 0.410000 0.393490 0.040712 0.016543 0.041957
0.60 0468559 0.450000 0.470000 0.451186 0.038506 0.002628 0.041699
0.70 0.521703 0.490000 0.525000 0.503399 0.036361 0.026617 0.042910
0.80 0569533 0.520000 0.576000 0.550681 0.034234 0.055714 0.045978
0.90 0.612580 0.540000 0.624000 0.593488 0.032169 0.090124 0.051412
10 100 0651322 0550000 0.670000 0.632211 0.030228 0.130037 0.059773
11 110 0.686189 0.550000 0.715000 0.667221 0.028429 0.175686 0.071609
12 120 0.717570 0.540000 0.760000 0.698868 0.026761 0.227322 0.087473
13 1.30 0.745813 0.520000 0.806000 0.727479 0.025202 0.285203 0.107935
14 140 0771232 0490000 0.854000 0.753364 0.023718 0.349584 0.133583
15 150 0.794109 0.450000 0.905000 0.776808 0.022272 0.420706 0.165025
16 160 0.814698 0.400000 0.960000 0.798069 0.020837 0.498790 0.202004
17 170 0.833228 0.340000 1.020000 = 0.817336 0.019444 0.584015 0.247956
18 1.80 0.849905 0.270000 1.086000 0.834771 0.018130 0.676558 0.300956
19 190 0864915 0.190000 1.159000 0.850528 0.016915 0.776609 0.362683
20 2.00 0.878423 0.100000 1.240000 0.864758 0.015803 0.884361 0.433928
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Figure 2: Comparing graph of approximate solutions (left) and relative errors (right) in Example 1 with h = 0.1
on z; € [0,2]

Example 2. Consider the initial value problem

ay _ 2 _ _
o =Xy vy =1

Then take the step size h = 0.1 and use Newton's interpolation

ap=1.0, a;=-1.0, a,=0.549999, a; = 0.149999
and

y: = 0.9, y, = 0.811, y; = 0.7339.

Apply (0, 1.0), (0.1,0.9), (0.2, 0.811) and (0.3, 0.7339) to find cubic polynomial by (10).
Then we obtain

P3(x) = 0.149999x> + 0.505x* - 1.052x +1 (12)
In order to approximate the solutions, we substitute xi in P3(x) to get y; = P3(x;) for i =4,5,...20 in (12) and

relative error as shown in Table 2 and Figure 3. The approximate solutions are close to exact solutions where
€ [0,0.6] and relative errors when x = 0.7 highly increase as shown in Figure 3.

Table 2: Shanin.mluofExample!Mdnh=0.lonmel0.2)
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561 0.496000 0.571600 0.603586 0.070023 0.178245 0.052004
10 ?z g&m 0.495000 0.603000 0.632280 0.072896 0.217119 0.046308
11 1.0 0627570 0505000 0.653500 ° 0.677123 0.073181 0.254188 0.034888
12 120 0.685813 0.526000 0.724000 0.738595 0.071462 0.287837  0.019760
13 130 0761282 0.558000 0.815400 0.817114  0.068389 0317109 0.002097
14 140 0854100 0.601000 0.028600 0.913027 0.064531 0.341750  0.017056
15 150 0.964698 0.655000 1.064500 1.026610 0.060307 0.361078  0.036008
16 160 1003228 0720000 1.224000 1.158067 0.055989 0.378274 0.056034
17 170 1.239805 0.796000 1.408000 1.307528 0.051718 0.391218  0.076841
18 180 14049156 0.883000 1.617400 1475055 0.047551 0.401378  0.096502
19 1.90 1588423 0981000 1.853100 1.660676 0.043508 0.409277 0.115871
20 200 1.790581 1.090000 2.116000 1.864644 0.039720 0.415438  0.134801
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Figure 3: Comparil -‘rapl'l:f-". imate solutions (left) and relative errors (right) in Example 2 with h = 0.1
on z; € [0,2]
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Example 3. Consider the initial value problem

dy —
— =55 Y0 =1
Then take the step h = 0.1 and use Newton's interpolation

ap = 1.0, a; =-0.367879, a, = 0.348868, a; = -0.129608
and

y1 = 0.963212, y, = 0.933401, y; = 0.909791.

Apply (0,0.1), (0.1, 0.963212), (0.2, 0.933401) and (0.3, 0.909791) to find cubic polynomial by (10).Then we
obtain

P3(x) = -0.129608x° + 0.387751x” - 0.405358x + 1 (13)

In order to approximate the solutions, we substitute Xi in P5(x) to get y; = P3(x;) for i = 4,5, ...20 in(13) and

relative error as shown in Table 3 and Figure 4. The approximate solutions are close to exact solutions where x
€ [0,0.8] and relative error when x = 0.9 highly increase as shown in Figure 4.

Table 3: Mmﬂud&nm*}vﬁﬁlh-o.lmz.e[o.ﬂ

0.10 0963212 00963212 0963212 0.966759 0.003669 0.003660 0.003669
020 0933401 0933401 0933401 0.940092 0.007117 0.007117 0.007117
0.30 0.009791 0.010568 0.909791 0.919197 0.010233 0.009387 0.010233
040 0891603 0894712 0.891602 0903288 0.012936 0.009403 0.012937
0.50 0878092 00885834 0.878057 0.891643 0.015198 0.006515 0.015237
0.60 0.868562 0.883933 0.868380 0.883609 0.017029 0.000366 0.017235
070 0.862378 0.889009 0.861791 0.878595 0.018457 0.011854 0.019125
0.80 0.858974 0.901063 0.857514 0.876075 0.010520 0.028522 0.021186
0.90 0.857852 0920094 0.854771 0.875591 0.020259 0.050826 0.023778
10 1.00 0858579 0946102 0.852784 0.876747 0.020723 0.079105 0.027332
11 110 0.860783 0.079088 0.850776 0.879215 0.020064 0.113504 0.032346
12 120 0.864150 1.019051 0.847968 0.882720 0.021037 0.154444 0.039369
13 1.30 0.868413 1.0685001 0.843583 0.886895 0.020840 0.201936 0.048835
14 140 0873349 1.119909 0.836845 0.891563 0.020430 0.256119 0.061373
15 1.50 0.878771 1.180804 0.826974 0.896627 0.019915 0.316940 0.077684
16 1.60 0.884528 1.248677 0.813193 0.902001 0.019371 0.384342 0.098456
17 170 0.890492 1.323527 0.794725 0.907601 0.018850 0.458270 0.124368
18 1.80 0.896562 1.405354 0.770792 0.913352 0.018383 0.538677 0.156085

cmNOaawN~O -

20 200 0908704 1.580941 0.703420 0.925037 0.017657 0.718787 0.239576
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Figure 4: Comparing graph of approximate solutions (left) and relative errors (right) in Example 3 with h = 0.1
on z; € [0,2]

IV. Conclusions

In this article, we studied many numerical techniques for solving initial value problems. Then we
decided to combine the Newton’s interpolation and Lagrange’s method to construct cubic polynomials as the
solutions of linear and non-linear of ordinary differential equations. We compared our numerical results and
relative errors with the results of Euler’s method, methods from [11] and [14] and exact solutions. From
example 1-3, where we compare the result in other methods, our method gives numerical approximated
solutions which is much closer to the exact solution as shown in Table 1-3. Also our relative errors are nearly
close to zero and much smaller that errors from [11] and [14] methods are shown in Figure 2-4. Notice that to
compute each yi in each step of Euler’s method is so much time-consuming. Therefore, our method is much
more accurate and simpler to find approximated solutions directly from y; = P3(x;) at any value of x;. For the

future work, we aim to apply our method to solve other problems of first differential equations or higher order
differential equations.
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