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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

One of important problem in Mathematics is solving differential equations by analytic methods and numerical 

methods. Most of researchers treated numerical methods to solve first order ordinary differential equations. 

These methods such as Taylor series method , Runge Kutta method and Euler's method, etc. Faith Chelimo 

Kosgel studied this problem by combined the newton's interpolation and Lagrange method, Nasr Al Din IDE 

also studied this problem by Using Newtons Interpolation and Aitkens Method for Solving Riccatt First Order 

Differential equation. This study will use Newton's interpolation and Aitkens method to solve Bernoulli 

Differential Equations, some examples treated to illustrate the efficiency of this method. 
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I. INTRODUCTION 
In Mathematics many of problems can be formulated to form the ordinary differential equation, 

specially Bernoulli differential equations of first order, here we study and solve the Bernoulli differential 

equations. A numerical method is used to solve numerical problems. The differential 

equation problem [1-10], consists of at least one differential equation and at least one additional 

equation such that the system together have one and only one solution called the analytic or exact solution to 

distinguish it from the approximate numerical solutions that we shall consider in this paper of first order, Faith 

C. K [1] studied the problem of Riccati by using combination of newton's interpolation and Lagrange method, 

Nasr Al Din Ide [2,3] studied this problem also by using of Newton's Interpolation and Lagrange Method for 

Solving Bemolli equation and he combined of  Newton's interpolation and Aitken's method as hybrid technique 

by using these two types of interpolation to solve first order differential equation. In present study we will study 

Bernoulli Differential Equations by combined of Newton's interpolation and Aitken's method [4-10]. Finally we 

verified on a number of examples and numerical results obtained show the efficiency of the method given by 

present study in comparison with the exact solution. 

Let the Bernoulli differential equation which be written in the following standard form: 

  y' + P(x)y = Q(x)y
n
                                                                (1) 

where P and Q functions of x, and n is a constant 

n # 1 (the equation is thus nonlinear). 

Where y is a known function and the values in the initial conditions also known numbers. 

 

II. PRESENT AITKEN INTERPOLATION METHOD 

2.1.Combined Newton's Interpolation and Lagrange Method [1, 2] 

This study combine both Newton's interpolation method and Lagrange method. it used newton's 

interpolation method to find the second two terms then use the three values for y to form a quadratic 

equation using Lagrange interpolation method as follows; 

 

2.1.1.Newton's interpolation method [1, 2, 9] 

 

fn(x) = a0 + a1(x-x0) + a2(x-x0)(x-x0)+ … +an(x-x0)(x-x1)…a2(x-xn-1)                                                                                           

 

 Where 

 

 a0 = y0, a1 =   a2 =       (3) 

 

 

f (x1) - f (x0) 

(x1 - x0) 

f (x2) - f (x1)    f (x1) - f (x0)       

(x2 - x1)       (x1 - x0) 

(x2 - x0)             

 

(2)  
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 2.1.2. Lagrange interpolation method [1, 8] 

 

yn =     y0 +        y1 +  y2 

 

                                                                

 

III. DESCRIPTION OF THE METHOD 

This method will combine both Newton's interpolation method and Lagrange method .it used newton's 

interpolation method to find the second two terms then use the three values for y to form a linear or 

quadratic equations using Lagrange interpolation method as follows; 

   

fn(x) = a0 + a1(x-x0) + a2(x-x0)(x-x0)+ … +an(x-x0)(x-x1)…a2(x-xn-1) 

                                                                                                                                      

 Where 

 

 a0 = y0, a1 =   a2 = 

etc 

y1 = a0+ a1 (x-x0) 

y2 = a0+ a1 (x-x0) + a2(x-x0)(x-x1)                     

 

Forming quadratic interpolation of Lagrange, we have: 

                                                         
                                                                                                                                                    

 Note: we can use Newton's Forward Interpolation Formula instead of Newton's divided Interpolation method in 

(2.1). 

 

3.1.Aitken interpolation method [3,8] 

 
 

3. EXAMPLES 

In this section, we will check the effectiveness of the present technique (3). First numerical comparison for the 

following test examples taken in [3]. 

 

IV. Example 1 

 

Solve y' = y+x.y,  the exact solution of this problem is 

               

y = (c.e - x - 2)
2
 

 

For c=1, the exact solution of this problem is y = (e  - x - 2)
2
, hence,y(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, we have 

 a0 =1=y0 

  

a1 =  

 

y1 = 1 +0(0.01 - 0) = 1 

𝑥

2
 

1

2
 

𝑥

2
 

f (x1) - f (x0) 

(x1 - x0) 
= [

𝑑𝑦

𝑑𝑥
]0,1 = 0 

f (x1) - f (x0) 

(x1 - x0) 

f (x2) - f (x1)    f (x1) - f (x0)       

(x2 - x1)       (x1 - x0) 

(x2 - x0)             

  

 
(x-x1)-(x-x2) 

 

(x0-x1)(x0-x2) 

 
 

(x-x0)-(x-x0) 

  

(x1-x0)(x1-x2) 

 
 

(x-x0)-(x-x0) 

 

(x2-x0)(x2-x1) 

 
 

(4)  

(5)  

(6)  

(7)  

(8)  

(9)  

(10)  

(11)  

(12)  
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a2 =  

 

y2 =1+0(0.02-0)+0.55(0.02-0)(0.02-0.01) =1.000110000 

 

Now, forming linear and quadratic using Aitken Method                                                                                                                                                      

P0,1(x) = 1 

P0,2(x) = 0.0055x + 1 

P0,1,2(x) = 0.55x
2
 - 0.0055x + 1 

 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 1 gives the approximation solutions of Runge-Kutta method and 

combined Newton's Interpolation and Aitken method with the exact solution of example 1 with the errors for : 

x = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1                                                      

  

Table 1.  Solution of  y' = y+x.y ,  y(0)=1 
x Combined Newton’s Interpolation and Aitken Exact Values Absolute error 

0 1 1 0 

0.01 1 1.009999833      0.009999833 

0.02 1.000110000 1.019998665 0.019888665 

0.03 1.000330000 1.029995492 0,029665492 

0.04 1.000660000 1.039989307 0.039329307 

0.05 1.001100000 1.049979102 0.048879102 

0.06 1.001650000 1.059963867  0.058313867 

0.07 1.002310000 1.069942587 0.067632587 

0.08 1.003080000 1.089877829 0.076834247 

0.09 1.003960000 1.090000000 0.086040000 

0.1 1.004950000 1.100000000 0.095050000 

             

Example 2 
Solve y' = 2xy + 2x

3
.y

2
, the exact solution of this problem is 

 

y=1/(c.e
-x

 +1-x
2
) 

For c=0, the exact solution of this problem is y = 1/(1-x
2
), hence, y(0) = 1 

Now, by taking the step h=0.01 

 

First by using Newton's interpolation, we have 

 

a0 = l = y0 

   

a1 =  

 

y1 = 1 +0(0.01 - 0) = 1 

 

 

a2 =  

 

y2 = 1.000002 

 

Now, forming linear and quadratic using Aitken Method 

P0,1(x) = 1 

P0,2(x) = 0.0001x + 1 

P0,1,2(x) = 0.01x
2
 - 0.0001x +1 

 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 2 gives the approximation solution and the exact solution of example 1 

with the error for : 

x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1. 

 

 

f (x2) - f (x1)    f (x1) - f (x0)       

(x2 - x1)       (x1 - x0) 

(x2 - x0)             0.02 - 0 

 

 [
𝑑𝑦

𝑑𝑥
]0.01,0.01  [

𝑑𝑦

𝑑𝑥
]0,0   

= =0.55 

1

2
 

2 

f (x1) - f (x0) 

(x1 - x0) 
= [

𝑑𝑦

𝑑𝑥
]0,1 = 0 

f (x2) - f (x1)    f (x1) - f (x0)       

(x2 - x1)       (x1 - x0) 

(x2 - x0)             

 

= 0.01000001 
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Table2. Solution of y' = 2xy+2x
3
.y

2
,  y(0) = 1 

x 

 

Combined Newton’s Interpolation and Aitken Exact Values Absolute error 

0 1 1 0 

0.01 1.000009000 1.000100010  0.000099110 

0.02 1.000002000 1.000400610 0.000381600 

0.03 1.000006000 1.000900811 0.000394160 

0.04 1.000012000 1.001602564 0.001390364 

0.05 1.002495000 1.002506266 0.002566760 

0.06 1.000093000 1.003613007 0.003583007 

0.07 1.000042000 1.004924128 0.004882128 

0.08 1.000056000 1.006441224 0.006385224 

0.09 1.000072000 1.008166146 0.008094146 

0.1 1.000090000 1.010101010 0.010011010 

 

Example 3 
Solve y' = x

3
.y

3 
- xy, the exact solution of this problem is 

y = 1/(c.e
x  

+ 1 +x
2
) 

 

For c=0, the exact solution of this problem is y = 1/(1+x
2
), hence,y(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, have 

 

a0 = 1 = y0 

   

a1 =  

 

y1 = 1 +0(0.01 - 0) = 1 

 

 

a2 =  

 

y2 = 0.999999 

 

Now, forming linear and quadratic using Aitken Method 

P0,1(x) = 1 

P0,2(x) = -0.00005x + 1 

P0,1,2(x) = -0.005x
2
 + 0.00005x + 1 

 

Hence, we can take the approximation solution of linear using Aitken Method, if we take quadratic using Aitken 

Method, Table 3 gives the approximation solution and the exact solution of example 1 with the error for : 

x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1. 

 

Table3. Solution of y' = x
3
.y

3 
- xy,  y(0) = 1 

x 
 

Combined Newton’s Interpolation and Aitken Exact Values Absolute error 

0 1 1 0 

0.01 0 0.999900010 0.000099990 

0.02 0.999999000 0.999600160 0.000398840 

0.03 0.999997000 0.999100809 0.000896191 

0.04 0.999994000 0.998402556 0.001591444 

0.05 0.999990000 0.997506234 0.002483766 

0.06 0.999985000 0.996412914 0.003572086 

0.07 0.999979000 0.995123893 0.004855107 

0.08 0.999972000 0.993640700 0. 004855107 

0.09 0.999964000  0.991965083 0.007998917 

0.1 0.999950500 0.990099010 0.00985 1490 

 

V. CONCLUSION 

In this paper, we have been applied the combined Newton's interpolation and Aitken method to solve 

nonlinear Bernoulli differential equation of first order, we find a good result compared to the exact solution 

through a three examples showing that. 

 

2 

f (x1) - f (x0) 

(x1 - x0) 
= [

𝑑𝑦

𝑑𝑥
]0,1 = 0 

f (x2) - f (x1)    f (x1) - f (x0)       

(x2 - x1)       (x1 - x0) 

(x2 - x0)             

 

= 0.005 
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