
The International Journal of Engineering and Science (IJES) 
|| Volume || 13 || Issue || 1 || Pages || PP 35-43 || 2024 || 
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 
 

DOI:10.9790/1813-13013543                                  www.theijes.com                                                          Page 35 

Study on Electroosmotic Transport of Peristaltic Flow in 

Microchannel 
 

Dibjyoti Mondal1 and Mithilesh Kumar Chaube2 

1Discipline of Mathematics, National Institute of Technology Tiruchirappalli, Tamilnadu, India 

2Discipline of Mathematics, Dr. S.P. Mukherjee International Institute of Information Technology Naya 

Raipur, Chhattisgarh,  India 

 

--------------------------------------------------------ABSTRACT--------------------------------------------------------------- 

In this paper, the peristaltic transport of electroosmotic fluid flow is discussed. A model  for 

transporting a fluid bolus along the channel length is established by the presence of a non-

integral number of waves propagating in the channel.  An appropriate perturbation technique is 

applied for the analytical solution. To simplify the fluid mechanics analysis in capillary 

electrophoresis,  the electrical double layer (EDL) at the surface of the capillary wall is assumed 

to be extremely thin. The electroosmotic slip velocity at the wall is used  to approximate the 

impact of the applied electric field on the fluid velocity. 
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I. INTRODUCTION 

 

Electroosmotic transport has essential applications in various fields, including microfluidics, electrokinetic, and 

chemical analysis. An electric field can cause fluid to move, a phenomenon  known as electroosmotic transport. 

Peristaltic flow is a particular kind of fluid motion that happens when a fluid is forced to move through a tube or 

channel by a sequence of contractions and relaxations of the tube or channel walls. There are several real-world 

applications for peristaltic flow, including peristaltic pumps used in industrial, medical, and food processing 

activities. Combining electroosmotic transport and peristaltic flow has several advantages over traditional fluid 

pumping mechanisms. Fung and Yih [1] presented a theoretical analysis of the dynamics of peristaltic 

transport and discussed its applications in various biological systems. Misra and Pandey [2] provided 

valuable insights into the complex dynamics of blood flow in  microvessels and highlighted the potential 

role of peristalsis in regulating blood flow and oxygen delivery. In [3], Chu and Fang described the flow of 

a Newtonian fluid in a two-dimensional channel with an elastic wall that undergoes sinusoidal peristaltic 

motion using a mathematical model based on the Navier-Stokes equations and the slip boundary condition. 

Siklauri and Beresnev [4] investigated the consequences of non Newtonian behavior on peristaltic flow in 

a tube filled with a Maxwell fluid. Also,  Peristaltic transport is being explored by a group of researchers 

listed in references [5, 6, 7, 8]. Furthermore, Abd-Alla et al. [9] examined the movement of a Jeffrey fluid 

in a channel using peristaltic motion, considering the impact of both  a magnetic field and gravity. The 

recent work of Vijayakumar and Reddy [10] contributed to the study of non-Newtonian fluid peristaltic 

transport. Their analysis of the flow behavior in the context of suction and injection can help to understand 

and optimize many critical industrial and physiological processes. 

Understanding fundamental fluid dynamics, creating effective microfluidic systems, and creating new 

applications in biomedical engineering and environmental engineering all depend on  the research of 

electroosmotic transport of peristaltic flow. Electroosmotic transport refers to the movement of fluids 

through a channel propelled by an electric field. The zeta potential represents a crucial parameter that 

affects the electroosmotic transport through the channel. The Helmholtz Smoluchowski equation [11] can 

be used to describe the electroosmotic transport in a  channel with small zeta potentials. This equation 

relates the electroosmotic flow velocity to the zeta potential, the permittivity of the fluid, the viscosity of 
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the fluid, and the applied electric field. Dutta  [12] discussed the phenomenon of electroosmotic transport, 

which is the motion of a fluid caused by an applied electric field in a charged porous medium. Chakraborty 

[13] demonstrated the correlation between the electroosmotic and peristaltic mechanisms. Later, Tripathi 

[14] analyzed the electrokinetic transport of aqueous electrolyte fluid with a Newtonian  model in the 

presence of peristaltic through the microchannel. To make the problem simpler, he applied Debye-Huckel 

linearization and employed the electroosmotic slip velocity at the wall as a boundary condition. Guo and 

Qi [15] presented a theoretical analysis of the electroosmotic peristalsis of a fractional Jeffreys fluid in a 

microchannel. Kiran et al. [7] provided a theoretical frame work for understanding the complex fluid 

dynamics and chemical reactions in the digestive process. It highlighted the importance of considering the 

coupling between fluid mechanics and chemical kinetics in such systems. Moreover, Tripathi et al.[16] 

developed a hydrodynamics model to examine the impact of the electric double layer’s thickness and the 

external electric field on the peristaltic pumping of viscous fluids within a microchannel. See [17, 18, 19] 

for a  recent review of this topic. 

Motivated by the studies mentioned earlier, the aim is to study how the Helmholtz-Smoluchowski velocity 

affects peristaltic flow in a microchannel, as well as to explore the role of electrokinetic transport in 

peristaltic pumping. Non integral fluid boluses are assumed to flow down the channel, and the electrical 

double layer (EDL) is treated very thin for simplicity’s sake. The effect of the applied electric field on the 

channel wall is described using the electroosmotic slip velocity at the wall, and a perturbation method is 

employed. Additionally, the mean axial velocity is calculated for the free-pumping case. 

The mathematical formulation and solutions of the considered problems are presented in  Section II and 

Section III, respectively. In Section IV, the results are discussed in detail. Finally, conclusions are drawn 

in Section V. 

 

II     MATHEMATICAL MODEL 

Consider a two-dimensional flow that is unsteady, viscous, and incompressible while being subject to an 

electrokinetic body force applied axially. Then, the equations of motion are given as  [14] 

   𝜌 (
𝜕 𝑢

𝜕 𝑡
+ 𝑢

𝜕 𝑢

𝜕 𝑥
+ 𝑣

𝜕 𝑢

𝜕 𝑦
) = −

𝜕 𝑝

𝜕 𝑥
+ 𝜇 𝛻2 𝑢 + 𝜌𝑒𝐸,                                                                                           (1)  

                𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇𝛻2 𝑣,                                                                                                (2) 

 

and  

                                
∂ u

∂ x
+

∂ v

∂ y
  = 0,                                                                                                                              (3)  

where 𝜌 stands for fluid density, 𝑢 and 𝑣 represent the velocity components, 𝑝 signifies pressure, µ denotes 

viscosity, and 𝐸  symbolizes the electric field, and ∇2 is the Laplacian operator. Here 𝜌𝑒  is electric charge 
density which is defined as [14] 

 

𝜌𝑒 = −2𝑛0 𝑒𝑧 (
𝑧𝑒𝜙

𝐾𝐵𝑇
),                                                                                                                                                 (4) 

 

where 𝑛0 is concentration of ions at the bulk, 𝑒 be the charge of electron, 𝑧 is charge balance, 𝐾𝐵 be 

Boltzmann constant, 𝑇 represents the temperature and 𝜙 represents electric potential function. The 

expression for the Poisson-Boltzmann equation takes the form of 

                                                          ∇2ϕ = −
ρ𝑒

ϵ1 

.                                                                                                          (5)    

Here, 𝜖1 refer to the permittivity. 

Let η be vertical wall displacement, defined as [1], 𝜂 = 𝑎 cos
2𝜋

𝜆
(𝑥 − 𝑐𝑡). Here, 𝑎 is the wave’samplitude, 𝜆 is 

the wavelength, and 𝑐 is the wave speed; see Figure 1. Now we are applying the following non-
dimensional form [1] 
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𝑥 ′ =
𝑥

𝑑
,  𝑦′ =

𝑦

𝑑
,  𝑢′ =

𝑢

𝑐
, 𝑣′ =

𝑣

𝑑
,   η′ =

η

𝑑
, 

                                   𝑝′  =  
𝑝

ρ  𝑐2
,   ϕ′   =  

ϕ

ζ
,  ϵ  =

𝑎

𝑑
, α  =  

2 π 𝑑

λ
,   𝑅 =

𝑐 𝑑

λ
.                                           (6) 

 

Here, 𝜖 denotes the ratio of amplitudes, 𝑎 signifies the wave number, 𝑅  stands for the Reynolds number, 𝜁 

represents  the zeta  potential, and d indicates half of the average space between the 

 

 

 

Figure1: Schematic diagram of physical problem 

 

boundaries. After using the non-dimensional parameter as in (6) and using the equations (4)-(5), we get the 

dimensionless form of (1)-(3) 

 

                          𝑅 (
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕 𝑢

𝜕 𝑥
+ 𝑣 

𝜕 𝑢

𝜕 𝑦
) = −𝑅 

𝜕 𝑝

𝜕 𝑥
+  ∇2𝑢  + 𝑚2 𝑈𝐻𝑆𝜙,                                                    (7) 

 

                       𝑅 (
𝜕𝑣 

𝜕𝑡
+ 𝑢 

𝜕 𝑣 

𝜕 𝑥
+ 𝑣 

𝜕 𝑣 

𝜕 𝑦
) = −𝑅 

𝜕 𝑝

𝜕 𝑥
+  ∇2𝑣 ,                                                                            (8)  

 

                                                     
𝜕 𝑢

𝜕 𝑥
+

𝜕 𝑣

𝜕 𝑦
  = 0,                                                                                                              (9) 

 

𝑤ℎ𝑒𝑟𝑒   𝑈𝐻𝑆 = −
𝐸 𝜖1𝜁

𝜇𝑐
, represents Helmholtz-Smoluchowski velocity and 𝑚 = 𝑎𝑒𝑧 √

2𝑛0

𝜖1𝐾𝐵 𝑇
   represents 

electroosmotic parameter. The momentum equation for a  thin electric double layer (EDL) may exclude the 

electrokinetic body force term [14]. Then, from(7)-(9), we have  

                            𝑅 (
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
) = −𝑅 

𝜕𝑝

𝜕𝑥
+  ∇2 𝑢,                                                                                (10)      

                        𝑅 (
𝜕𝑣 

𝜕𝑡
+ 𝑢 

𝜕𝑣 

𝜕𝑥
+ 𝑣 

𝜕𝑣 

𝜕𝑦
) = −𝑅 

𝜕𝑝

𝜕𝑥
+  ∇2 𝑣,                                                                             (11) 

                     
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
  = 0,                                                                                                                                       (12)  

After eliminating the pressure term from (10) and (11), the resulting equation becomes  

 
∂  

∂𝑡
 ∇2 ψ  +  ψ𝑦  ∇2 ψ𝑥   −  ψ𝑥  ∇2 ψ𝑦 =  

1

𝑅
 ∇2  ∇2 ψ,                                                                                         (13) 

where 𝜓 be stream function, defined as 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣  = −

𝜕𝜓

𝜕𝑥
, and ψx and ψy are  partial derivative of ψ with 

respect to x and y, respectively. Now, the boundary conditions are written as 
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                   𝑢 = ψ𝑦 = 𝑈𝐻𝑆  and 𝑣 = ψ𝑥 = ∓αϵ sin α (𝑥 − 𝑡),                                                                     (14) 

when 𝑦 = ±(1 + η). 

 

III SOLUTION PROCEDURE 

Consider 𝜓 and 
𝜕𝑝

𝜕𝑥
  as [1] 

                 ψ = ψ0 + ϵψ1 + ϵ2ψ2+. ..,                                                                                                         (15)  

 
∂𝑝

∂𝑥
= (

∂𝑝

∂𝑥
)

0
+ ϵ (

∂𝑝

∂𝑥
)

1
+ ϵ2 (

∂𝑝

∂𝑥
)

2
+. . . .                                                                                                       (16) 

Substituting (15) into (13) and equating the coefficient of ϵ, and also neglecting the higher term after the square 

of ϵ, we get 

1

 𝑅
 ∇2∇2ψ0 =

∂

∂𝑡
∇2ψ0 + ψ0𝑥

∇2ψ0𝑥
− ψ0 𝑥

∇2ψ0 𝑦
 ,                                                                                   (17) 

1

𝑅
∇2∇2ψ1 =

∂

∂𝑡
∇2ψ1 + ψ0 𝑦

∇2ψ1𝑥
+ ψ1𝑦

∇2ψ0𝑥
− ψ0𝑥

∇2ψ1 𝑦
− ψ1𝑥

∇2ψ0𝑦
,                                          (18) 

1

𝑅
∇2∇2ψ2 =

∂

∂𝑡
∇2ψ2 + ψ0𝑦

∇2ψ2𝑥
+ ψ1 𝑦

∇2ψ1𝑥
+ ψ2𝑦

∇2ψ0𝑥
− ψ0𝑥

∇2ψ2𝑦
 

                                                                          −ψ1𝑥
∇2ψ1𝑦

− ψ2 𝑥
∇2ψ0 𝑦

 .                                                      (19) 

Also, by substituting (15) into (14), we get the boundary conditions 

ψ0𝑦
(±1) = 𝑈𝐻𝑆  ,                                                                                                                                                 (20) 

       ψ1𝑦
(±1) ± ψ0 𝑦𝑦

(±1) cos α (𝑥 − 𝑡) = 0,                                                                                              (21) 

ψ2𝑦
(± 1)  ±  ψ1𝑦𝑦

(± 1)  cos 𝛼(𝑥 − 𝑡)   +
1

2
 ψ0 𝑦𝑦𝑦

(± 1) 𝑐𝑜𝑠2  α(𝑥 − 𝑡) = 0,                                    (22) 

and 

                                                        ψ0𝑥
(±1) = 0,                                                                                                (23) 

 

ψ1 𝑥
(±1) ± ψ0 𝑥𝑦

(±1) cos α (𝑥 − 𝑡) = ∓α sin α (𝑥 − 𝑡),                                                                          (24) 

ψ2𝑥
(±1) ± ψ1𝑥𝑦

(±1) cos α (𝑥 − 𝑡) +
1

2
ψ0 𝑥𝑦𝑦

(±1) cos 2 α (𝑥 − 𝑡) = 0,                                              (25) 

Under the following two conditions [1] (a) the flow exhibits symmetry, and (b) there is a  uniform pressure 

gradient along the x axis, from (17), (20), and (23), the solution leads to the standard Poiseuille flow 

equation 

 

                                                                      ψ0 = 𝐾 (𝑦 −
𝑦3

3
) + 𝑈𝐻𝑆𝑦  ,                                                       (26) 

where 

 

                                                           𝐾 = −
𝑅

2
(

∂𝑝

∂𝑥
)

0
.                                                                                        (27) 

Now assume that the solutions of equations (18), (21), and (24) and equations (19), (22), and (25) are [1] 
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            2ψ1 = Φ1
(𝑦)𝑒−𝑖α (𝑡−𝑥)

+ Φ1
∗(𝑦) 𝑒𝑖α(𝑡 −𝑥)

,                                                                               (28) 

and 

          2ψ2 = Φ20
(𝑦) + Φ22

(𝑦)𝑒 −𝑖2α(𝑡 −𝑥)
+ Φ22

∗ (𝑦) 𝑒𝑖2α (𝑡−𝑥)
,                                                       (29) 

respectively, where the asterisk indicates the complex conjugate. After putting (28) and (29) into equations (18), 

(19), (21), (22), (24), and (25), we get 

(
𝑑2

𝑑𝑦2 − α2 + 𝑖α𝑅[1 − 𝑈𝐻𝑆 − 𝐾(1 − 𝑦2)]) × (
𝑑2

𝑑𝑦2 − α2 ) Φ1 − 𝑖2𝐾α𝑅 Φ1 = 0,                                  (30) 

with 

 

                                                          ϕ1
′(±1) − 2𝐾 = 0,                                                                       (31) 

                                                          ϕ1
(±1) = ±1,                                                                                (32) 

and  

 

Φ20
′′′′ = −

𝑖αR

2
(Φ1Φ1

∗′′ − Φ1
∗Φ1

′′)′                                                                                                                                                  (33) 

(
𝑑 2

𝑑 𝑦2
− 4 α2) [

𝑑 2

𝑑 𝑦2
− (4 α2 − 2 𝑖 α 𝑅) ] Φ22 = 𝑖 2 𝛼 𝑅𝐾 ((1 − 𝑦2) + 𝑈𝐻𝑆)  

(
𝑑2

𝑑 𝑦2 − 4 α2)  Φ22 + 𝑖 4 α 𝑅 𝐾 Φ22 +
𝑖 α 𝑅

2
(Φ1

′  Φ1
′ ′ − Φ1 Φ1

′ ′ ′),                                                          (34) 

with 

Φ20
′ (±1) − 2𝐾 ±

1

2
[Φ1

′′(±1) + Φ1
′′′

(±1)] = 0,                                                                             (35) 

Φ22
′ (±1) ±

1

2
Φ1

′′(±1) −
𝐾

2
= 0,                                                                                                         (36) 

              Φ2
(±1) ±

1

4
Φ1

′ = 0,                                                                                                                (37) 

 

Now we consider that the pumping is free [1], which means that the pressure gradient at the boundary is zero  

i.e., (
∂𝑝

∂𝑥
)

0
=0. Under this assumption, the coefficient 𝐾 in the fourth-order differential equation that 

describes the flow can be set to zero, which simplifies the equation  considerably. This is because 

𝐾 represents the resistance to the bending of the fluid streamlines, and when there is no pressure gradient 

at the boundary, there is no bending of the streamlines. Now, the solution of (30) with (31)-(32) is found 

as [1] 

 

Φ1
(𝑦) = 𝐴 sinh α 𝑦 + 𝐵 sinh β 𝑦,                                                                                                         (38) 

in which          

𝐴 =
−β cosh β

α sinh β cosh α−β sinh α cosh β
 ,                                                                                                               (39) 

 

𝐵 =
α cosh α

α sinh β cosh α−β sinh α cosh β
,                                                                                                              (40) 
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where  

 

                                                                            β2 = α2 − 𝑖α𝑅 (1 − 𝑈𝐻𝑆
).                                                           (41) 

Now, for determining the mean flow, substituting (38) into (33) and after integrating once, we get  

Φ20
′′′ =

𝛼2 𝑅2

2
[𝐴∗𝐵 sinh 𝛼 𝑦 sinh 𝛽 𝑦 + 𝐴𝐵 ∗ sinh 𝛼 𝑦 sinh 𝛽∗ 𝑦 + 2𝐵 𝐵 ∗ sinh 𝛽 𝑦 sinh 𝛽∗ 𝑦] + 2𝐶1,        (42) 

Φ20
′ (±1) =

1

2
[(𝐴 + 𝐴∗ )α2 sinh α + 𝐵β2 sinh β+𝐵 ∗β∗2 sin β∗] ≡ 𝐷,                                                    (43) 

where 𝐶1, 𝐷  are constants. An integration of (42) yields the result 

Φ20
′ (𝑦) = 𝐹(𝑦) + 𝐶1𝑦2 + 𝐶2𝑦 + 𝐶3,                                                                                                     (44) 

where 𝐶2, 𝐶3 are constants for integration and 𝐹(𝑦) is defined as 

𝐹(𝑦) =
α2𝑅2

2
{

𝐴∗𝐵

2
[

cosh(α+β)𝑦

(α+β)2 −
cosh(α−β)𝑦

(α−β)2
] +

𝐴𝐵∗

2
[

cosh (α+β∗)𝑦

(α+β∗)2 −
cosh (α−β∗)𝑦

(α−β∗)2
] + 𝐵𝐵 ∗ [

cosh (β+β∗)𝑦

(β+β∗)2 −

                     
cosh(β−β∗)𝑦

(β−β∗)2
]}.                                                                                                                        (45) 

By using (43), we can say that both 𝐶1 and the mean pressure gradient 
𝜕𝑝

𝜕𝑥
 are proportional, and it can be written 

as [1] 

∂𝑝

∂𝑥
= ϵ2 (

∂𝑝

∂𝑥
)

2
=

ϵ2

2R
Φ20

′′′ +
ϵ2

4
𝑖α(Φ1Φ1

∗′′ − Φ1
∗ Φ1

′′) + 𝑂(ϵ3), 

                                                                         =
ϵ2

𝑅
𝐶1 + 𝑂(ϵ3 ),                                                                            (46) 

i.e. 

                                                            (
∂𝑝

∂𝑥
)

2
=

𝐶1

𝑅
.                                                                                                    (47)  

Now, we can express the average velocity in the axial direction [1] 

𝑢 =
ϵ2

2
Φ20

′ =
ϵ2

2
[𝐷 + 𝐹(𝑦) − 𝐶1

(1 − 𝑦2) − 𝐹(1)].                                                                             (48) 

Now, using (47), it can be written as   

𝑢 =
ϵ2

2
[𝐷 + 𝐹(𝑦) − 𝑅 (

∂𝑝

∂𝑥
)

2

(1 − 𝑦2) − 𝐹(1) ].                                                                                            (49) 

We define  

𝐺(𝑦) =
200

α2𝑅2
[𝐹(1) − 𝐹(𝑦)].                                                                                                                  (50) 

Since on the centreline, the mean velocity to be zero is the condition of critical reflux. Therefore, 

mathematically, it can be written as 

(
∂𝑝

∂𝑥
)

2 critical reflux
=

1

𝑅
[𝐷 −

α2𝑅2

200
𝐺(0) ].                                                                                                   (51) 

 

 

IV  RESULTS AND DISCUSSION 

In the preceding section, we computed the time-averaged velocity and the critical pressure for reflux. This 

section will look into the problem and create a graph for the quantities, as mentioned earlier. 
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From Figure 2 and Figure 3, we have seen that the flow and wave amplitude ratio depend on each other very 

strongly. When the amplitude ratio increases, the mean axial velocity also increases, and the flow changes very 

close to the boundary since the amplitude ratio takes higher values. Figure 4 and Figure 5 agree with the 

reported results of [1]. This represents that the said critical reflux is reduced with the rise in Reynolds numbers. 

Figure 6 shows the effect of the external electric field in the variation of mean axial velocity against the 

transverse displacement at constant values of  𝛼 = 0.25, 𝜖 = 0.5, and 𝑅 = 15. We noticed that the velocity 

profile increases with an added electric field while decreasing with an opposing electric field. So, we can say 

that the mean axial velocity may be controlled by using electric chips. 

 

 

 

                            Figure2:Mean velocity in axial direction vs. displacement for various 

                                               value of amplitude ratio (𝜖), (
∂𝑝

∂𝑥
)

2
= 2.5 and 𝑈𝐻𝑠 = −1. 

 

 

Figure3:Mean velocity in axial direction vs. displacement for various 

                                           value of amplitude ratio (𝜖), (
∂𝑝

∂𝑥
)

2
= 2.5 and 𝑈𝐻𝑠 = 0. 
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                                 Figure 4: Critical pressure for reflux vs. Reynolds number for 

                                                 (
∂𝑝

∂𝑥
)

2 critical reflux
, α = 0.2 and 𝑈𝐻𝑆 = −1. 

 

  

Figure 5: Critical pressure for reflux vs. Reynolds number for 

                                                                (
∂𝑝

∂𝑥
)

2 critical reflux
, 𝛼 = 0.2 and 𝑈𝐻𝑆 = 0. 

  

Figure 6: Mean axial velocity vs. transverse displacement for various 

Helmholtz-Smoluchowsk i velocity values at constant values α=0.25 , ϵ=0.5 , R=15 and (
∂𝑝

∂𝑥
)

2
= 2.5.
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V CONCLUSIONS 

 
A few key results of the study are outlined below 

• For any value of Helmholtz-Smoluchowski velocity, the mean axial velocity is proportional to the   
amplitude ratio squared. 

• The wave’s amplitude ratio has a significant impact on the flow. 

• When the amplitude ratio increases, the mean axial velocity also increases. 

• For any value of Helmholtz Smoluchowski velocity, the rise of Reynolds numbers, the said critical 

reflux is reduced. 

• An applied electric field may control mean axial velocity. 

• This model may be generalized for flow and non-Newtonian fluid types. 
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