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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

The lineament mapping and analysis through Remote sensing and Geographical Information System (GIS) 
technology occupies an important place in several fields of structural geological investigation. In this study, 

remote sensing applications through the processing of Landsat-7 ETM+ and Landsat-8 OLI/TIRS were used to 

assess their ability in automatic lineament identification and extraction. In addition to satellite data, the pre-

existing geological map was used. After finding the optimal parameters of the LINE module for automatic 

lineament extraction in the study area, the comparison and validation of obtained results were undertaken. It 

appears that the lineaments extracted from Landsat-8 are better correlated with the faults in the study area both 

in terms of spatial distribution and orientation. The latter is more efficient in lineament mapping. 

KEYWORDS: Landsat-8 OLI/TIRS, Landsat-7 ETM+, Remote sensing, Geographical information system, 
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I. INTRODUCTION 
The growing interest in Geographic Information System (GIS) and remote sensing technology has 

increased their application in various fields of study such as geology, hydrogeology, mining exploration etc. 

Since more than two decades, satellite imagery has been used for the identification and mapping of geologic 

structures which appear in geomorphology [1,2]. However, these geologic structures can be identified by 

lineament mapping, which is an important part of structural geology and they reveal the architecture of the 

underlying rock basement [3]. Lineament mapping plays a major role in geological studies, especially in mining 

and petroleum exploration [4]. Moreover, the localization of lineaments often close to several mineralogical 

deposits [5–7] qualifies them as an indirect indicator of mining potential [8]. Lineaments can be an expression 

on the ground surface of structural elements such as joints, faults, bedding plains, shear zones, fractures, fold 

hinges and foliation [9–11]. The latter may correspond to geologic structures (faults, joints, fracture traces, line 

weakness), geomorphic features (cliffs, structural ridges, terraces, linear valleys), tonal contrast (vegetation, soil 

moisture, rock composite) and anthropogenic features (roads, electric grids, railways etc.). Because of being 

hard and time-consuming, conventional ground-based mapping techniques are not efficient for structural 
geological studies of humid tropical regions due to the important vegetation cover and the thick terrigenous 

materials recovery [12], hence the need to use satellite images. Therefore, the speed and accuracy of lineament 

extraction have enhanced efficiently due to remote sensing and GIS techniques providing a synoptic view of any 

particular area [13]. Multispectral and high-resolution images prove to be a powerful and accurate tool in 

delineating structural discontinuities. Indeed, a number of authors used multispectral satellite images including 

Landsat 7 (ETM+) and Landsat 8 (OLI/TIRS) to identify and extract the structural lineaments [8,14–16]. 

Lineament identification and extraction in remote sensing can be carried out through two approaches including 

manual extraction, which mainly depends on visual interpretation and general knowledge of interpreter [3]; and 

automatic lineament extraction using computer software and algorithms [17,18]. Several studies have been 

carried out to extract lineaments automatically using computer algorithms. Many researchers used Hough 

Transformation [19–21], LINE module of PCI Geomatica [22,8,15], Multi-Hillshade Hiearchic Clustering 
(MHHC) [23]. Though there are various methods of automatic lineament extraction, this work will only 

consider the LINE module of PCI Geomatica. The aim of the present study is to compare the ability of Landsat 
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8 (OLI/TIRS) and Landsat 7 (ETM+) in automatic lineament extraction in the study area, using remote sensing 

techniques. This study is only interested in structural lineaments. 

 

II. GEOLOGICAL SETTING OF THE STUDY AREA 
The Study area (Figure 1) belongs to the Ntem Complex which represents the north-western extension 

of the Congo Craton in southern part of Cameroon [24-25] and lies in latitude 2º34’4 N to 2º51’N and longitude 

11º27’E to 11º45’E. This complex is made up of two main lithological groups, namely the Nyong and Ntem 
Groups. The Nyong Unit consists mainly of gneisses, amphibolites, metagranodiorites, metadolerites, 

micaschists, quartzites, serpentinites and eclogites; while the Ntem Unit Comprised High-K granites, syenites, 

charnockites, gneisses, and tonalite-trondhjemite-granodiorite suite. BIFs generally occur in greenstone belts 

throughout the Ntem Complex, and host gold mineralization and iron ore deposits  [26–30]. The basement rocks 

of study area consist of basalt, rhyolite, granites, gneiss and migmatites. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure. 1. Geological map of the study area 

 

III. MATERIALS AND METHODS 
III.1 Data sources 

Two types of data were used in this study, these included Landsat 8 OLI/TIRS image (dated 26-01-

2020, Path 185/ Row 58) and Landsat 7 ETM+ image (dated 07-04-2020, Path 185/ Row 58), corresponding to 

Zone 32 of the map projection, Universal Transverse Mercator (UTM) which uses the geodetic reference system 

WGS 84. Lineaments was extracted automatically from Pan-Sharpened Landsat 8 and Landsat 7 images using 

image processing and visual interpretation techniques. The Landsat-8 OLI/TIRS consist a free of cloud terrain-

corrected scene, which comprises 11 bands (coastal aerosol, blue, green, red, near infrared, two shortwave 

infrareds, panchromatic, cirrus, and two thermal infrareds; table 1). Regarding to Landsat 7 ETM+, it consists a 
4% of cloud terrain-corrected scene with nine bands (blue, green, red, near infrared, two medium infrareds, and 

two thermal infrareds and panchromatic; table 1). In order to derive details concerning lineament distribution, 

geospatial analysis was performed for the consequent structural lines. With the support of the Rockworks 17 

software, the lineament orientation was formed as a Rose diagram. 

 

III.2 Processing 
 [31] described digital image processing as an image manipulation method with the help of computer 

software besides greater image resolution. Throughout this ongoing project, the image processing was done as 

follows.  
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III.2.1 Image sharpening 

In many studies, pan-sharpening has proven to be a useful tool for identifying, extracting, and 

separating lineaments [22,10,32,33]. The latter has many algorithms, such as IHS (Intensity Hue Saturation), 

Brovey, Gram-Schmidt [34,35]. For this study, the Gram-Schmidt pan-sharpening algorithm was used on 

Landsat-8 and Landsat-7 images in the ENVI 5.3 program.  

   Table 1. The spectral bands and resolutions of Landsat-8 and Landsat 7 datasets used in this study. 

 

III.2.2 Principal Component Analysis 

The Principal Component Analysis (PCA) which is a statistical method widely used in geological 

studies to eliminate the redundancy of data, isolates noise, and then enhances the targeted information in the 

image [36], has proven to be effective in its use for lineament identification. Indeed, [37] compared five 
different enhancement techniques (average value of all bands, PCA, Band Ratios (BR), histogram equalization 

and high pass filter) performed by [38] and PCA was found to be more efficient in the identification of 

lineaments. Several authors used it for mapping lineaments [13,28,39]. Then, PCA transformation was 

performed using six channels of Landsat-8 (band 2, 3, 4, 5, 6, and 7) and Landsat-7 (1, 2, 3, 4, 5, and 7). All 

these channels of each dataset have the same resolution, 30 m. This operation was done through ENVI 5.3 

software and the first component of PCA for Landsat-8, and the second component of PCA for Landsat-7 were 

retained at the end of this operation, and exported to TIFF. 

 

III.3. Automated lineament extraction 

Lineaments were extracted from multispectral images used automatic lineament extraction. These was 

performed used the LINE module in PCI Geomatica software. The two TIFFs (Figure 2 a, b) from ENVI 5.3 
were planned and then imported into the PCI Geomatica LINE module. Three measures of parameters matching 

the software algorithm are edge detection (RADI: filter radius), threshold detection (GTHR: Edge Gradient 

Threshold) and curve detection (LTHR: Curve Length Threshold; FTHR:Line Fitting Threshold; 

ATHR:Angular Difference Threshold; DTHR :Linking Distance Threshold) to extract lineaments.  The lines of 

a raster image are specified in the LINE module and translated into vector formats, based on six parameters [40] 

provided in table 2. 

Landsat 8 OLI/TIRS Landsat 7 ETM+ 

Spectral range 
Wavelength range 

(µm) 

Resolution 

(m) 
Spectral range 

Wavelength 

range (µm) 

Resolution 

(m) 

B1-Coastal /aerosol 0.433-0.453 30    

B2- Blue 0.450-0.515 30 B1-Blue 0.45-0.52 30 

B3- Green 0.525-0.600 30 B2- Green 0.52-0.60 30 

B4- Red 0.630-0.680 30 B3- Red 0.63-0.69 30 

B5- NIR 0.845-0.885 30 B4-NIR 0.77-0.90 30 

B6- SWIR 1 1.56-1.66 30 B5-SWIR1 1.55-1.75 30 

B7-SWIR 2 2.10-2.30 30 B7- SWIR2 2.09-2.35 30 

B8- Panchromatic 0.50-0.68 15 B8- Panchromatic 0.52-0.90 15 

B9- Cirrus 1.36-1.39 30  

B10- TIRS 1 10.3-11.3 100 B6/1- TIR 

B6/2- TIR 
10.40-12.50 

60 

B11- TIRS 2 11.5-12.5 100 120 
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Figure 2. Principal components (a) (PC1) and (b) (PC2) of OLI and ETM+ sensors respectively. 

 

Table 2. The values used for the parameters of the LINE module. 
Threshold parameters and units    Default values Selected values 

RADI (In pixels) 10 8 

GTHR (In range, 0–255) 100 50 

LTHR (In pixels) 30 25 

FTHR (In pixels) 3 3 

ATHR (In degrees) 30 10 

DTHR (In pixels) 20 20 

 

IV. RESULTS AND DISCUSSIONS 
Image pre-processing techniques such as pan sharpening are applied to the data in order to prepare 

them for the processing step. The application of processing methods in different image (Figure 2a, b) lead to a 
lineament map of the study area (Figure 3a, b). The statistic information presented in fig. 6 shows that 873 and 

884 lineaments were identified and extracted from the Landsat-8 and Landsat-7 images respectively.  

 

 
Figure 3. Lineament map of the study area obtained from (a) OLI and (b) ETM+ sensors respectively 
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Figure 4. Distribution histograms showing the number of lineaments according to the length for the (a) OLI and 
(b) ETM+ images. 

 

According to the statistic, the Landsat- 8 length values range from 90 m to 1.96 km (Figure 4a). The 

most abundant lineaments lengths are between 0.71 and 1 Km (360) that occupy 41% of the total number of 

extracted lineaments. The Landsat- 7 length values range between 60 m to 1.82 km (Figure 4b). The most 

dominating lengths of extracted lineaments are extended between 0.35 and 0.65 km (278) corresponding to 31% 

of the total number of extracted lineaments. By comparing the obtained statistics, one can notice that the total 

number of lineaments extracted from each of the used data are nearly similar. However, in general the 

lineaments extracted from the OLI image turn out to be longer than those extracted from the ETM+ image. 

 

IV.1 Accuracy assessment 

IV.1.1 Density 
A density map is a classification map that provides information about lineaments concentration per unit 

area [41]. The lineament density maps in this study are derived for each of OLI and ETM+ lineament maps, in 

order to analyze the lineaments dispersion pattern. This task was performed using line density tool of the spatial 

analyst in ArcGIS 10.5 software. The highest density values on the maps are represented by a red color, while 

the lowest values are in green. In this work, the density was also used to find the correlation between the 

lineaments concentration and the existing faults distribution. The lineaments extracted from Landsat-7 (Figure 

5b) present the high density values concentrated mainly in the South-east of the image. Most of the faults are 

located near low and average density areas. Regarding to the Landsat-8 image, the extracted lineaments (Figure 

5a) show the high density values concentrated in the Northeastern, Northern and Southwestern parts of the 

image. Most of these high density values are located near the faults of the study area. The results obtained from 

the OLI sensor showed a better correlation with the distribution of the faults. Areas with high density values 
could indicate areas with mining potential. 

 

 

 

Number of lineaments: 884 

Minimum: 0.06 km 

Maximum: 1.82 km 

Total length of lineaments: 554 km 

Mean: 0.62 km 

Std : 0.31 

 

Number of lineaments: 873 

Minimum: 0.09 km 

Maximum: 1.96 km 

Total length of lineaments: 587 km 

Mean: 0.67 km 

Std: 0.32 
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Figure 5. Correlation between the density of lineaments and the location of the faults for the (a) OLI and (b) 
ETM+ images 

 

IV.1.2 Orientation 

The orientation allows identifying the most frequent directions of lineaments. Therefore, they can be 

compared with directions relating to existing faults in the study area [5,42]. Lineament orientation is analyzed 

by creating rose diagrams for each of the lineament maps, which allow highlighting the number of most frequent 

lineaments in a particular direction. The directional rosettes are then produced with an angular spacing of 15° 

and without using the frequency (Figure 6).  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Orientations of lineaments obtained from the (a) OLI and (b) ETM+ images comparing to those of (c) 

the faults of the study area. 

 

This procedure has been done using Rockworks 17 software. The rose diagram shows the orientations 

of lineament with the dominance of NE-SW direction for the OLI image (Figure 6a). The latter shows a good 

correlation with that of the faults of the study area. Regarding the ETM+ image, the N-S and NW-SE are shown 

as majority directions (Figure 6b). 

 

V. CONCLUSION 
The main objective of this study was to evaluate the ability of Landsat-8 and Landsat-7 in automatic 

lineament extraction. After image processing including PCA, the comparison of gained results indicates that the 

best bands for this extraction are PC1 and PC2 for Landsat-8 and Landsat-7 respectively. By comparing the 

statistics of the extracted lineaments for each of the used data, it emerges that the Landsat-8 and Landsat-7 

images nearly resulted in the same number of extracted lineaments. Furthermore, the comparison of the obtained 

   

(a) (b) (c) 
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results while including pre-existing geological map, density, orientation, compared to the pre-existing faults 

showed that, Landsat-8 gives better results than Landsat-7. The Landsat-8 lineaments converge better with the 

localization and the orientation of the existing faults in the study area than Landsat-7 ones. This result can be 

explained by the fact that Landsat-8 has narrower spectral bands compared to Landsat-7. 
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