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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

Integer programming is an important class of mathematical programming problems which is a useful tool for 

modelling and optimizing real-life problems. The knapsack problem is a form of integer programming problem 

that has only one constraint and can be used to strengthen cutting planes for general integer programs. These 
facts make the studies of the knapsack problems and their variants extremely important area of research in the 

field of operations research. This thesis seeks to apply the branch-and-bound algorithm to model site 

development for solid waste disposal in Sekondi-Takoradi metropolis as a 0-1 knapsack problem. The model 

developed could be adopted for any land site management problem that can be modelled as a single 0-1 

knapsack problem. Seven sites were proposed for development and the study reveals that sites A, B, F and G 

should be selected to obtain an optimum output and recommend that Knapsack problem model should be 

adopted by the district assembly for refuse disposal management 
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I. INTRODUCTION 
1.1 Background of the Study 

                  Mathematical programming is a fast growing branch of mathematics with a surprisingly short 

history. Most of its development has occurred during the second half of this century. Basically, one deals with 

the maximization or minimization of some function subject to one or more constraints. 

                  Today, mathematical programming problems arise in all sorts of areas; this is the age of optimization 
as a scientist stated (Geir, 1997). Modern society, with advanced technology and competitive businesses 

typically needs to make best possible decisions such as, best possible use of resources, maximizing some 

revenue, minimizing production or design costs, etc. For instance in Mathematical areas, one may meet 

approximation problems like solving some equations “within some tolerance” but without using too many 

variables (resources). In Computer Science, the very large scale integration (VLSI) area gives rise to many 

optimization problems: physical layout of microchips, routing, via minimization and so on. In 

telecommunications, the physical design of networks lead to many different optimization problems, e.g. that of 

minimizing network design (or expansion) costs subject to constraints reflecting that the network can support 

the described traffic. In fact, in many other areas, problems involving communication networks can be viewed 

as optimization problems. In Economics (Econometrics), optimization models are used for e.g. describing 

money transfer between sectors in society or describing the efficiency of production units. 
                  The large amount of applications, combined with the development of fast computers, has led to 

massive innovation in optimization. In fact, today optimization may be divided into several fields, e.g. linear 

programming, non-linear programming, discrete optimization and stochastic optimization. Integer programming 

is an important class of mathematical programming problems used to optimize linear systems that require the 

variables to be integers. It is the natural way of modeling many real-life and theoretical problems, including 

some combinatorial optimization problems and it is a broad and well-studied area with a lot of potential to 

improve. Integer programming problems are typically much harder to solve than linear programming problems 

and there are no fundamental theoretical results like Duality or Computational algorithms like the Simplex 

algorithm to help one to understand and solve the problems. This sad realization has made the study of integer 

programming problems goes in two directions. First, people study specialized model. These problems can be 

solved as linear programming problems (that is, adding the integer constraints does not change the solution). In 

many cases, they can be solved more efficiently than general linear programming problems using new 
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algorithms. Second, people introduce general algorithms. These algorithms are not as computationally efficient 

as the simplex algorithm, but can be formulated generally. 

                  Integer programs are beneficial because, if one can solve them, then one is guaranteed to obtain the 

best solution. However, this guarantee of optimality has a computational tradeoff, and integer programs 

currently may require exponential times to solve. The computational problems are so extreme that many integer 

programs cannot be solved, even using supercomputers (Geir,1997). 

One example of the usefulness of integer programs optimized the scheduling and deployment of San Francisco 
Police Department Patrol Officers (Hillier and Lieberman, 2001). The criteria used in their study were the level 

of public safety, level of officer’s morale, and cost of operations. The computerized system that was developed 

used a mathematical model to incorporate each of the goals and increased San Francisco Police Department’s 

net income by 14 million dollars and decreased response times by twenty (20) percent. Similarly, Delta Airlines 

saved approximately 100 million dollars per year by implementing optimal fleet assignments. More than 2,500 

domestic flights and 450 airplanes per day are assigned by this integer programming (IP) (Scheff et al., 1994). 

                  In addition to the above application, integer programs have been used to solve a number of real- life 

problems, including airline scheduling (Gutierrez, 2007), and (Huschka, 2007), sports scheduling (Easton, et al., 

2003), construction site location (Nemhauser and Wolsey, 1988), manufacturing job scheduling, and telephone 

network optimizations (Tomastik, 1993). Thus, integer programming has played an important role in supporting 

managerial decisions in the areas of capital budgeting, warehouse location, and scheduling. 
The Knapsack Problems are among the simplest integer programming problems which are NP- hard. Problems 

in this class are typically concerned with selecting from a set of given items, each with a specific weight and 

value, a subset of items whose weight sum does not exceed a prescribed capacity and whose value is maximum. 

The specific problem that arises depends on the number of knapsack (single or multiple) to be filled and on the 

number of available items of each type (bounded or unbounded). Because of their wide range of applicability, 

knapsack problems have known a large number of variations such as: single and multiple constrained 

knapsacks, knapsack with disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks, 

single and multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and stochastic 

knapsacks, knapsacks with convex / concave objective functions, etc. 

                  The classical 0-1 Knapsack Problem arises when there is one knapsack and one item of each type. 

Knapsack Problems have been intensively studied over the past forty-five (45) years because of their direct 

application to problems arising in industries and also for their contribution to the solution methods for integer 
programming problems. Several exact algorithms based on branch and bound, dynamic programming and 

heuristics have been proposed to solve the Knapsack Problems. 

 

1.2 PROBLEM STATEMENT 

                   This study seeks to optimally select the best site among the various proposed sites that have been 

ear-marked for refuse disposal in Sekondi-Takoradi Metropolis given the budget constraint. An example of this 

problem is a camper going backpacking. He wishes to bring the best combination of equipment he can. Each 

piece of equipment (tent, food, water, etc) has a value to the camper that is assigned a numerical representation. 

Each piece of equipment also has a corresponding weight, but the capacity of the bag is b. The camper can only 

bring as much equipment as he can carry. There are various items he can carry in the bag, but the total weight of 

these items is greater than the weight the bag can carry. If each item has a value, Vi and a weight Wi for each i 
(such that i = 1, 2, 3… N, where N is the total number of items) and xi the number of units of item i in the bag. 

Two examples of areas where knapsack problems can be applied are resource allocation (Granmo et al., 2007) 

and portfolio management (Bertsimas et al., 1999).  

                   In resource allocation, a company wishes to maximize its return from resources invested into each 

division or product subject to the total resources available. In portfolio management, the goal is to maximize 

returns while minimizing risk. The knapsack problem is widely studied because of its importance to integer 

programs. Any single constraint of a binary integer program can be viewed as a knapsack constraint. 

                 The garbage disposal site management and development are among the biggest challenges facing 

most of the metropolitan and municipal assembles in Ghana. Hence the indiscriminately disposal of refuges in 

most of the urban centres in the country. The general practice is that most establishments do not have a well - 

structured plan on how to allocate land for waste disposal and management. Lands are allocated by the 
discretion of people or departments in charge. These methods are faulted, and are basically inefficient as lands 

available are not optimally utilized. In view of that the researchers seek to come out of the Mathematical model 

to help solve the problem.  

 

1.3 OBJECTIVES 

The objective of the study are: 

 to model a rubbish disposal site development problem as a 0-1 knapsack problem, 
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 to minimize the cost of execution of the project, 

to maximize the optimal capacity of the site. 

 

1.4 JUSTIFICATION 

           The aim is to optimize the land capacity allocated for waste disposal in the metropolis so that the 

metropolis gets the best usage of land at a minimal cost. The general practice is that most 

establishments do not have a well-structured plan on how to allocate land for waste disposal and 
management. Lands are allocated by the discretion of people or departments in charge. These 

methods are faulted, and are basically inefficient as lands available are not optimally utilized. Besides the 

traditional site development and management practices do not also ensure the value for money on the part of 

cost of site development and management. 

         The developed model if well adopted by the government as well as the authorities of the metropolitan, 

municipal and district assembly, will help minimize the indiscriminately disposal of refuges in the urban centres 

in the country since there would be enough space for waste disposal. Again, the authorities may also get surplus 

funds for other developmental projects. In the country.  

          The developed Mathematical model of garbage site management and development will ensure the optimal 

site capacity as well as minimizes the cost of site development. 

          

1.5 METHODOLOGY 

          The study sought to apply the branch-and-bound algorithm for solving the proposed knapsack problem.  

The problem here is to select land in such a way that the optimal capacity would be achieved without over 

shooting the amount allocated for the land development. 

           In comparison to the knapsack problem model, the holding capacity of the bag is the resource limit, 

given here as the town budget (W). The items to be considered are the different sites that can be developed 

(    , the weight of any item is the cost of developing the site (   , and the value of the item is the capacity of 

the site (    . 
                            The problem could be modeled as: 

Maximize, C =      
 
    

Subject to            
    

          , i = 1, 2, 3, 4, . . ., N 
            The data was collected from Sekondi Takoradi Metropolis. First, the algorithm was presented along with 

relevant examples. A real life computational study was performed and a code in FORTRAN 90 programming 

language was employed to implement the algorithm. 

 

1.3 LIMITATIONS OF THE STUDY 

               The revenue generation or the income of the assembly is most at times uncertain and can affect the 

budgeted amount for refuse management. Also, the rate of inflation is unpredictable which could lead to high 
cost of goods and services. 

 

II. LITERATURE REVIEW 
               The knapsack problem is a classical combinatorial problem used to model many industrial situations. 

Faced with uncertainty on the model parameters, robustness analysis is an appropriate approach to find reliable 

solutions. Kalai and Vanderpooten (2006) studied the robust knapsack problem using a max-min criterion, and 

proposed a new robustness approach, called lexicographic α-robustness. The authors showed that the 

complexity of the lexicographic α- robust problem does not increase compared with the max-min version and 

presented a pseudo- polynomial algorithm in the case of a bounded number of scenarios. 
              Knapsack problems with setups find their application in many concrete industrial and financial 

problems. Moreover, they also arise as sub-problems in a Dantzig-Wolfe decomposition approach to more 

complex combinatorial optimization problems, where they need to be solved repeatedly and therefore 

efficiently. 

             Micheal et al. (2009) considered the multiple-class integer knapsack problem with setups. Items are 

partitioned into classes whose use imply a setup cost and associated capacity consumption. Item weights are 

assumed to be a multiple of their class weight. The total weight of selected items and setups is bounded. The 

objective is to maximize the difference between the profits of selected items and the fixed costs incurred for 

setting-up classes. A special case is the bounded integer knapsack problem with setups where each class holds a 

single item and its continuous version where a fraction of an item can be selected while incurring a full setup. 

The authors showed the extent to which classical results for the knapsack problem can be generalized to these 

variants with setups. In particular, an extension of the branch-and-bound algorithm of Horowitz and Sahni 
(1974) is developed for problems with positive setup costs. 
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            The multidimensional knapsack problem (MKP) is a well-known, strongly NP-hard problem and one of 

the most challenging problems in the class of the knapsack problems. In the last few years, it has been a favorite 

playground for meta-heuristics, but very few contributions have appeared on exact methods. Renata and Grazia 

(2009) presented an exact approach based on the optimal solution of sub-problems limited to a subset of 

variables. Each sub-problem is faced through a recursive variable-fixing process that continues until the number 

of variables decreases below a given threshold (restricted core problem). The solution space of the restricted 

core problem is split into subspaces, each containing solutions of a given cardinality. Each subspace is then 
explored with a branch-and-bound algorithm. Pruning conditions are introduced to improve the efficiency of the 

branch-and-bound routine. 

The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic objective function subject to a 

knapsack constraint, where all coefficients are assumed to be nonnegative and all variables are binary. The 

problem has applications in location and hydrology, and generalizes the problem of checking whether a graph 

contains a clique of a given size. 

             Alberto et al. (2007) proposed an exact branch-and-bound algorithm for QKP, where upper bounds are 

computed by considering a Lagrangian relaxation that is solvable through a number of (continuous) knapsack 

problems. Suboptimal Lagrangian multipliers are derived by using sub-gradient optimization and provide a 

convenient reformulation of the problem. The authors also discussed the relationship between our relaxation 

and other relaxations. Heuristics, reductions, and branching schemes were described. In particular, the 
processing of each node of the branching tree is quite fast: Their approach does not update the Lagrangian 

multipliers, and use suitable data structures to compute an upper bound in linear expected time in the number of 

variables. The authors reported exact solution of instances with up to 400 binary variables, i.e., significantly 

larger than those solvable by the previous approaches. The key point of this improvement is that the upper 

bounds we obtain are typically within 1% of the optimum, but can still be derived effectively. They also showed 

that their algorithm is capable of solving reasonable-size Max Clique instances. 

            The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in this 

class are typically concerned with selecting from a set of given items, each with a specified weight and value, a 

subset of items whose weight sum does not exceed a prescribed capacity and whose value is maximum. The 

specific problem that arises depends on the number of knapsacks (single or multiple) to be filled and on the 

number of available items of each type (bounded or unbounded). Because of their wide range of applicability, 

knapsack problems have known a large number of variations such as: single and multiple-constrained 
knapsacks, knapsacks with disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks, 

single and multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and stochastic 

knapsacks, knapsacks with convex / concave objective functions, etc. The classical 0-1 Knapsack Problem 

arises when there is one knapsack and one item of each type. Knapsack Problems have been intensively studied 

over the past forty (40) years because of their direct application to problems arising in industry (for example, 

cargo loading, cutting stock, and budgeting) and also for their contribution to the solution methods for integer 

programming problems. Several exact algorithms based on branch and bound, dynamic programming and 

heuristics have been proposed to solve the Knapsack Problems 

Oppong (2009) presented the application of classical 0-1 knapsack problem with a single constraint to selection 

of television advertisements at critical periods such as Prime time News, news adjacencies, Break in News and 

peak times. The Television (TV) stations have to schedule programmes interspersed with adverts or 
commercials which are the main sources of income of broadcasting stations. The goal in scheduling 

commercials is to achieve wider audience satisfaction and making maximum income from the commercials or 

adverts. The author  approach is flexible and can incorporate the use of the knapsack for Profit maximization in 

the TV adverts selection problem, and focused on using a simple heuristic scheme (Simple flip) for the solution 

of knapsack problems. 

             The collapsing knapsack problem is a generalization of the ordinary knapsack problem, where the 

knapsack capacity is a non-increasing function of the number of items included. Whereas previous methods on 

the topic have applied quite involved techniques, Ulrich et al. (1995) presented and analyze two rather simple 

approaches: One approach that was based on the reduction to a standard knapsack problem, and another 

approach that was based on a simple dynamic programming recursion. Both algorithms have pseudo-

polynomial solution times, guaranteeing reasonable solution times for moderate coefficient sizes. 
Computational experiments are provided to expose the efficiency of the two approaches compared to previous 

algorithms. 

              Kosuch and Lisser (2009) studied a particular version of the stochastic knapsack problem with 

normally distributed weights: the two-stage stochastic knapsack problem. Contrary to the single- stage knapsack 

problem, items can be added to or removed from the knapsack at the moment the actual weights become known 

(second stage). In addition, a chance-constraint is introduced in the first stage in order to restrict the percentage 

of cases where the items chosen lead to an overload in the second stage. According to the authors, there is 
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no method known to exactly evaluate the objective function for a given first-stage solution, and therefore 

proposed methods to calculate the upper and lower bounds. These bounds are used in a branch-and-bound 

framework in order to search the first-stage solution space. Special interest was given to the case where the 

items have similar weight means. Numerical results are presented and analyzed. 

            Stefanie (2010) presented an Ant Colony Optimization algorithm for the Two-Stage Knapsack problem 

with discretely distributed weights and capacity, using a meta-heuristic approach. Two heuristic utility measures 

were proposed and compared. Moreover, the author introduced the novel idea of non-utility measures in order 
to obtain a criterion for the construction termination. The author argued why for the proposed measures, it is 

more efficient to place pheromone on arcs instead of vertices or edges of the complete search graph. Numerical 

tests show that the author’s algorithm is able to produce, in much shorter computing time, solutions of similar 

quality than CPLEX after two hour. Moreover, with increasing number of scenarios the percentage of runs 

where his algorithm is able to produce better solutions than CPLEX (after 2h) increases. 

             Mattfeld and Kopfer (2003) described terminal operations for the vehicle transshipment hub in 

Bremerhaven as a knapsack and have derived an integral decision model for manpower planning and inventory 

control. The authors proposed a hierarchical separation of the integral model into sub models and can develop 

integer programming algorithm to solve the arising sub problems. 

In bus transit operations planning process, the important components are network route design, setting 

timetables, scheduling vehicles, assignment of drivers, and maintenance scheduling. 
            Haghani and Shafahi (2002) presented integer programming model to design daily inspection and 

maintenance schedules for the buses that are due for inspection so as to minimize the interruptions in the daily 

bus operating schedule, and maximize the utilization of the maintenance facilities. 

The setting of timetables and bus routing or scheduling are essential to an intercity bus carrier’s profitability, its 

level of service, and its competitive capacity in the market. Yan and Chen (2002) developed a model that help 

Taiwanese intercity bus carriers in timetable settings and bus routing or scheduling. The model employs 

multiple time-space networks that can formulate bus movements and passenger flows and manage the 

interrelationships between passenger trip demands and bus trip suppliers to produce the best timetables and bus 

routes or schedules. 

            Higgins et al. (1996) described the development and use of integer programming model to optimize train 

schedules on single-line rail corridors. The model has been developed with two major applications in mind: as a 

decision support tool for train dispatchers to schedule trains in real time in an optimal way and as a planning 
tool to evaluate the impact of timetable changes, as well as railroad infrastructure changes. The model was 

developed based on a real-life problem. 

            Ghoseiri et al. (2004) developed an optimization model for the passenger train-scheduling problem on a 

railroad network, which includes single, and multiple tracks, as well as multiple platforms with different train 

capacities. Claessens et al. (1998) considered the problem of cost optimal railway line allocation for passenger 

trains for the Dutch railway system. A mathematical programming model was developed, which minimized the 

operating costs subject to service constraints and capacity requirements. The model optimized on lines, line 

types, routes, frequencies, and train lengths. First, the line allocation model was formulated as an integer 

nonlinear programming model. The model was then transformed into an integer linear programming model with 

binary decision variables. The model was solved and applied to a sub network of the Dutch railway system for 

which it showed a substantial cost reduction. 
           The deterministic knapsack problem is a well-known and studied NP-hard combinatorial optimization 

problem. It consists in filling a knapsack with items out of a given set such that the weight capacity of the 

knapsack is respected and the total reward maximized. In the deterministic problem, all parameters (item 

weights, rewards, knapsack capacity) are known (deterministic). In the stochastic counterpart, some (or all) of 

these parameters are assumed to be random, i.e. not known at the moment the decision has to be made. Stefanie 

et al. (2010) studied the stochastic knapsack problem with expectation constraint. The item weights are assumed 

to be independently normally distributed. The authors solved the relaxed version of this problem using a 

stochastic gradient algorithm in order to provide upper bounds for a branch-and-bound framework. Two 

approaches to estimate the needed gradients are applied, one based on Integration by Parts and one using Finite 

Differences. Finite Differences is a robust and simple approach with efficient results despite the fact that the 

estimated gradients are biased; meanwhile Integration by Parts is based upon a more theoretical analysis and 
permits to enlarge the field of applications. 

             Stefanie et al, (2009) proposed a mixed integer bi-level problem having a probabilistic knapsack 

constraint in the first level. The problem formulation is mainly motivated by practical pricing and service 

provision problems as it can be interpreted as a model for the interaction between a service provider and clients. 

The authors assumed the probability space to be discrete which allows us to reformulate the problem as a 

deterministic equivalent bi-level problem. Via a reformulation as linear bi-level problem, we obtain a quadratic 

optimization problem, the so called Global Linear Complementarity Problem. Based on this quadratic problem, 
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the authors finally proposed a procedure to compute upper bounds on the initial problem by using a Lagrangian 

relaxation and an iterative linear min-max scheme. 

The knapsack problem (KP) and its multidimensional version (MKP) are basic problems in combinatorial 

optimization. 

            Thibaut and Jacques (2010) presented the multi-objective extension (MOKP and MOMKP), for which 

the aim is to obtain or to approximate the set of efficient solutions. In a first step, the authors classified and 

described briefly the existing works that are essentially based on the use of meta-heuristics. In a second step, the 
authors proposed the adaptation of the two-phase Pareto local search (2PPLS) to the resolution of the MOMKP. 

With this aim, the authors used a very- large scale neighborhood (VLSN) in the second phase of the method that 

is the Pareto local search. They compared their results to state-of-the-art results and showed that they obtained 

results never reached before by heuristics, for the biobjective instances. Finally they considered the extension to 

three-objective instances. 

              Eleni and Nicos (2010) presented a new exact tree-search procedure for solving two-dimensional 

knapsack problems in which a number of small rectangular pieces, each of a given size and value, are required 

to be cut from a large rectangular stock plate. The objective is to maximize the value of pieces cut or minimize 

the wastage. The authors considered the case where there are a maximum number of times that a piece may be 

used in a cutting pattern. The algorithm limits the size of the tree search by using a bound derived from a 

Langrangean relaxation of a 0–1 integer programming formulation of the problem. Sub-gradient optimization is 
used to optimize this bound. Reduction tests derived from both the original problem and the Lagrangean 

relaxation produce substantial computational gains. The computational performance of the algorithm indicates 

that it is an effective procedure capable of solving optimally practical two- dimensional cutting problems of 

medium size. 

             Lawler (1997) presented fully polynomial approximation algorithms for knapsack problems are 

presented. These algorithms are based on ideas of Ibarra and Kim, with modifications which yield better time 

and space bounds, and also tend to improve the practicality of the procedures. Among the principal 

improvements are the introduction of a more efficient method of scaling and the use of a median-finding routine 

to eliminate sorting. The 0-1 knapsack problem, for n items and accuracy ε > 0, is solved in (n log (1/ε) + 1/ε4) 

time and 0(n + 1/ε3) space. The time bound is reduced to 0(n + 1/ε3) for the "unbounded" knapsack problem. 

For the "subset-sum" problem, 0 (n + 1/ε3) times and 0 (n + 1/ε2) spaces, or 0(n + 1/ε2 log (1/ε)) time and 

space, are achieved. The "multiple choice" problem, with m equivalence classes, is solved in 0(nm2/ε) time and 
space. 

              The 0-1 knapsack problem is a linear integer-programming problem with a single constraint and binary 

variables. The knapsack problem with an inequality constraint has been widely studied, and  several  efficient  

algorithms  have  been  published.  Balasubramanian and  Sanjiv (1988) considered the equality-constraint 

knapsack problem, which has received relatively little attention. The authors described a branch-and-bound 

algorithm for this problem, and present computational experience with up to 10,000 variables. An important 

feature of this algorithm is a least-lower-bound discipline for candidate problem selection. 

              Esther et al., (1993) studied a variety of geometric versions of the classical knapsack problem. In 

particular, the authors considered the following   fence enclosure problem: given a set S of n points in the plane 

with values 

 Vi > 0, we wish to enclose a subset of the points with a fence (a simple closed curve) in order to maximize the   
value of the enclosure. The value of the enclosure is defined to be the sum of the values of the enclosed points 

minus the cost of the fence. They also considered various versions of the problem, such as allowing S to consist 

of points and/or simple polygons. Other versions of the problems are obtained by restricting the total amount of 

fence available and also allowing the enclosure to consist of at most M connected components. When there is an 

upper bound on the length of fence available, we show that the problem is NP-complete. We also provide 

polynomial-time algorithms for many versions of the fence problem when an unrestricted amount of fence is 

available. 

             Volgenant and Zoon (1990) presented a multidimensional 0-1 knapsack problem using heuristic, based 

on Lagrange multipliers, that also enables the determination of an upper bound to the optimal criterion value. 

This heuristic is extended in two ways: (1) in each step, not one, but more multiplier values are computed 

simultaneously, and (2) at the end the upper bound is sharpened by changing some multiplier values. From a 
comparison using a large series of different test problems, the extensions appear to yield an improvement, on 

average, at the cost of only a modest amount of extra computing time. 

             The binary knapsack problem is a combinatorial optimization problem in which a subset of a given set 

of elements needs to be chosen in order to maximize profit, given a budget constraint. Das and Ghosh (2003) 

studied a stochastic version of the problem in which the budget is random. The authors proposed two different 

formulations of this problem, based on different ways of handling infeasibility, and propose an exact algorithm 

and a local search-based heuristic to solve the problems represented by these formulations. The authors also 
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presented the results from some computational experiments. 

             Goyal and Ravi (2009) presented a stochastic knapsack problem where each item has a known profit 

but a random size. The goal is to select a profit maximizing set of items such that the probability of the total size 

of selected items exceeding the knapsack size is at most a given threshold. The authors presented a parametric 

linear programming (LP) formulation and showed that it is a good approximation of the chance-constrained 

stochastic knapsack problem. Furthermore, they gave a polynomial time algorithm to round any fractional 

solution of the parametric LP to obtain an integral solution whose profit is within (1 +  ).  
             The knapsack problem is known to be a typical NP-complete problem, which has 2n possible solutions 

to search over. Thus a task for solving the knapsack problem can be accomplished in 2n trials if an exhaustive 

search is applied. In the past decade, much effort has been devoted in order to reduce the computation time of 

this problem instead of exhaustive search. In 1984, Karnin proposed a brilliant parallel algorithm, which needs 

O(2n/6) processors to solve the knapsack problem in O(2n/2) time; that is, the cost of Karnin's parallel algorithm 

is O(22n/3). Der-Chyuan Lou and Chin-Chen Chang (1997) proposed a fast search technique to improve Karnin's 

parallel algorithm by reducing the search time complexity of Karnin's parallel algorithm to be O (2n/3) under the 

same O(2n/6) processors available. Thus, the cost of the proposed parallel algorithm is O (2n/2). Furthermore, the 

authors extended their technique to the case that the number of available processors is P = O (2x), where x ≥ 1. 

From the analytical results, the saw that their search technique is indeed superior to the previously proposed 

methods. They do believe their proposed parallel algorithm is pragmatically feasible at the moment when 
multiprocessor systems become more and more popular. 

              Knapsack problem is a typical NP complete problem. During last few decades, Knapsack problem has 

been studied through different approaches, according to the theoretical development of combinatorial 

optimization. Garg and Sunanda (2009) put forward the evolutionary algorithm for 0/1 knapsack problem. A 

new objective function evaluation operator was proposed which employed adaptive repair function named as 

repair and elitism operator to achieve optimal results in place of problem specific knowledge or domain specific 

operator like penalty operator (which are still being used). Additional features had also been incorporated which 

allowed the algorithm to perform more consistently on a larger set of problem instances. 

Their study also focused on the change in behavior of outputs generated on varying the crossover and mutation 

rates. New algorithm exhibited a significant reduction in number of function evaluations required for problems 

investigated. 

             Srisuwannapa and Charnsethikul (2007) presented a variant of the unbounded knapsack problem (UKP) 
into which the processing time of each item is also put and considered, referred as MMPTUKP. The 

MMPTUKP is a decision problem of allocating amount of n items, such that the maximum processing time of 

the selected items is minimized and the total profit is gained as at least as determined without exceeding 

capacity of knapsack. In this study, we proposed a new exact algorithm for this problem, called MMPTUKP 

algorithm. This pseudo polynomial time algorithm solves the bounded knapsack problem (BKP) sequentially 

with the updated bounds until reaching an optimal solution. The authors presented computational experience 

with various data instances randomly generated to validate their ideas and demonstrate the efficiency of the 

proposed algorithm. 

               Ronghua et al., (2006) presented a new multiobjective optimization (MO) algorithm to solve 0/1 

knapsack problems using the immune Clonal principle. This algorithm is termed Immune Clonal MO Algorithm 

(ICMOA). In ICMOA, the antibody population is split into the population of the non-dominated antibodies and 
that of the dominated anti-bodied. Meanwhile, the non-dominated antibodies are allowed to survive and to 

clone. A metric of Coverage of Two Sets are adopted for the problems. This quantitative metric is used for 

testing the convergence to the Pareto-optimal front. Simulation results on the 0/1 knapsack problems show that 

ICMOA, in most problems, is able to find much better spread of solutions and better convergence near the true 

Pareto-optimal front compared with SPEA, NSGA, NPGA and VEGA. 

             Deniz et al., (2010) studied maximization of revenue in the dynamic and stochastic knapsack problem 

where a given capacity needs to be allocated by a given deadline to sequentially arriving agents. Each agent is 

described by a two-dimensional type that reflects his capacity requirement and his willingness to pay per unit of 

capacity. Types are private information. The authors first characterize implementable policies. Then they solved 

the revenue maximization problem for the special case where there is private information about per-unit values, 

but capacity needs are observable. After that they derived two sets of additional conditions on the joint 
distribution of values and weights under which the revenue maximizing policy for the case with observable 

weights is implementable, and thus optimal also for the case with two- dimensional private information. In 

particular, they investigated the role of concave continuation revenues for implementation. We also construct a 

simple policy for which per- unit prices vary with requested weight but not with time, and prove that it is 

asymptotically revenue maximizing when available capacity/ time to the deadline both go to infinity. This 

highlights the importance of nonlinear as opposed to dynamic pricing. 

           Computational grids are distributed systems composed of heterogeneous computing resources which are 
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distributed geographically and administratively. These highly scalable systems are designed to meet the large 

computational demands of many users from scientific and business orientations. However, there are problems 

related to the allocation of the computing resources which compose of a grid. 

            Van dester et al., (2008) studied the design of a Pan-Canadian grid. The design exploits the maturing 

stability of grid deployment toolkits, and introduces novel services for efficiently allocating the grid resources. 

The changes faced by this grid deployment motivate further exploration in optimizing grid resource allocations. 

By applying this model to the grid allocation option, it is possible to quantify the relative merits of the various 
possible scheduling decisions. Using this model, the allocation problem was formulated as a knapsack problem. 

Formulation in this manner allows for rapid solution times and results in nearly optimal allocations. 

             Last few years have seen exponential growth in the area of web applications, especially, e- commerce 

and web-services. One of the most important qualities of service metric for web applications is the response 

time for the user. Web application normally has a multi-tier architecture and a request might have to traverse 

through all the tiers before finishing its processing. Therefore, a request’s total response time is the sum of 

response time at all the tiers. Since the expected response time at any tier depends upon the number of servers 

allocated to this tier, many different configurations (number of servers allocated to each tier) can give the same 

quality of service guarantee in terms of total response time. Naturally, one would like to find the configuration 

which minimizes the total system cost and satisfies the total response time guarantee. Zhang et al. (2004) 

modeled this problem as integer optimization problem. 
             The strike-force asset allocation problem consists of grouping strike force assets into packages and 

assigning these packages to targets and defensive assets in a way that maximizes the strike force potential. Chi-

Wei, et al. (2001) modeled this problem as integer programming formulation, and proposed a branch and bound 

algorithm to solve it.  

            Sung-Ho (1998) presented a techniques for obtaining strategies to allocate rooms to customers 

belonging to various market segments, considering time dependent demand forecasts and a fixed hotel capacity. 

This technique explicitly accounts for group and multi-night reservation requests in an efficient and effective 

manner. This is accomplished by combining an optimal discrete-dynamic model for handling single-night 

reservation requests, bases on a static integer programming model, developed to handle multi-night reservation 

requests. 

            Allocation of resources under uncertainty is a very common problem in many real-life scenarios. 

Employers have to decide whether or not to hire candidates, not knowing whether future candidates will be 
stronger or more desirable. Machines need to decide whether to accept jobs without knowledge of the 

importance or profitability of future jobs. Consulting companies must decide which jobs to take on, not 

knowing the revenue and resources associated with potential future requests. More recently, online auctions 

have proved to be a very important resource allocation problem. Advertising auctions in particular provide the 

main source of monetization for a variety of internet services including search engines, blogs, and social 

networking sites. Additionally, they are the main source of customer acquisition for a wide array of small online 

business, of the networked world. In bidding for the right to appear on a web page (such as a search engine), 

advertisers have to tradeoff between large numbers of parameters, including keywords and viewer attributes. In 

this scenario, an advertiser may be able to estimate accurately the bid required to win a particular auction, and 

benefit either in direct revenue or name recognition to be gained, but may not know about the tradeoff for future 

auctions. All of these problems involve an online scenario, where an algorithm has to make decisions on 
whether to accept an offer, based solely on the required resource investment (or weight) and projected value of 

the current offer, with the total weight of all selected offer not exceeding a given budget. When the weights are 

uniform and equal to the weight constraint, the problems above reduces to the famous secretary problem which 

was first introduced by (Dynkin, 1963). Moshe et al. (2008), studied this model as a knapsack problem. 

           Kleinberg (2009) presented a model for the multiple-choice secretary problem in which k elements need 

to be selected and the goal is to maximize the combined value (sum) of the selected elements. 

Babaioff et al. (2007) studied the matriod secretary problem in which the elements of a weighted matriod arrive 

in a random order. As each element is observed, the algorithm makes an irrevocable decision to choose it or 

skip it, with the constraint that the chosen elements must constitute an independent set. The objective is to 

maximize the combined weight of the chosen elements. The authors proposed an integer programming 

algorithm for this problem. 
            Aggarwal and Hartline (2006) designed truthful auctions which are revenue competitive when the 

auctioneer is constrained to choose agents with private values and publicly known weights that fit into a 

knapsack. 

Boryczka (2006) presented a new optimization algorithm based on ant colony metaphor and a new approach for 

the Multiple Knapsack Problem. The MKP is the problem of assigning a subset of n items to m distinct 

knapsacks, such that the total profit sum of the selected items is maximized, without exceeding the capacity of 

each of the knap sacks. The problem has several difficulties in adaptation as well as the trail representation of 
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the solutions of MKP or a dynamically changed heuristic function applied in this approach. Presented results 

showed the power of the ACO approach for solving this type of subset problems. 

             The Multiple-Choice Multi-Dimension Knapsack Problem (MMKP) is a variant of the 0-1 knapsack 

problem, an NP-Hard problem. Due to its high computational complexity, algorithms for exact solution of the 

MMKPs are not suitable for most real-time decision-making applications, such as quality adaptation and 

admission control for interactive multimedia systems, or service level agreement (SLA) management in 

telecommunication networks. 
            Shahadat et al. (2002) presented a heuristic for finding near-optimal solutions of the MMKP, with 

reduced computational complexity, and is suitable for real-time applications. Based on Toyoda’s concept of 

aggregate resource, the heuristic employs an iterative improvement procedure using savings in aggregate 

resource and value per unit of extra aggregate resource. Experimental results suggest that this heuristic finds 

solutions which are close to the optimal (within 6% of the optimal value), and that it out-performs Moser’s 

heuristic for the MMKP in both solution quality and execution time. 

Speeding up knapsack problem, one of the NP complete problems, which could be used to design public-key 

cryptosystems, was presented by Lu and Feng (2004) using quantum algorithm. How to use Grover's quantum 

searching algorithm to speed up the knapsack problem was presented based on computational complexity 

theory. Comparisons of quantum searching algorithm with Shor's factoring algorithm were delivered and the 

factors that affected the performance of quantum algorithms were discussed from group theory point of view. 
The future of the quantum algorithms was also augmented in the later. 

             An instance of the geometric knapsack problem occurs in air lift loading where a set of cargo must be 

chosen to pack in a given fleet of aircraft. Chocolaad (1998) presented a new heuristic to solve this problem in a 

reasonable amount of time with a higher quality solution then previously reported in literature. The author also 

reported a new tabu search heuristic to solve geometric knapsack problems. He then employed a novel 

heuristics in a Master and slave relationship, where the knapsack heuristic selects a set of cargo and the packing 

heuristic determines if that set is feasible. The search incorporates learning mechanisms that react to cycles and 

thus is robust over a large set of problem sizes. The new knapsack and packing heuristics compare favorably 

with the best reported efforts in the literature. Additionally, the author proposed the JAVA language to be an 

effective language for implementing the heuristics. The search is then used in a real world problem of 

determining how much cargo can be packed with a given fleet of aircraft. 

             Knapsack problem has been widely studied in computer science for years. There exist several variants 
of the problem, with zero-one maximum knapsack in one dimension being the simplest one. 

Islam (2009) studied several existing approximation algorithms for the minimization version of the problem and 

propose a scaling based fully polynomial time approximation scheme for the minimum knapsack problem. The 

author compared the performance of this algorithm with existing algorithms. His experiments show that, the 

proposed algorithm runs fast and has a good performance ratio in practice. He also conducts extensive 

experiments on the data provided by Canadian Pacific Logistics Solutions during the MITACS internship 

program. The author proposed a scaling based varepsilon-approximation scheme for the multidimensional (d -

dimensional) minimum knapsack problem and compares its performance with a generalization of a greedy 

algorithm for minimum knapsack in d- dimensions. The author’s experiments showed that the varepsilon-

approximation scheme exhibits good performance ratio in practice. 

            Maya and Dipti (2011) presented a research project on using Genetic Algorithms (GAs) to solve the 0-1 
Knapsack Problem (KP). The Knapsack Problem is an example of a combinatorial optimization problem, which 

seeks to maximize the benefit of objects in a knapsack without exceeding its capacity. The author’s research 

contains three sections: brief description of the basic idea and elements of the GAs, definition of the Knapsack 

Problem, and implementation of the 0-1 Knapsack Problem using GAs. The main focus of the research was on 

the implementation of the algorithm for solving the problem. In the program, he implemented two selection 

functions, roulette-wheel and group selection. The results from both of them differed depending on whether to 

use elitism or not. Elitism significantly improved the performance of the roulette-wheel function. Moreover, the 

author tested the program with different crossover ratios and single and double crossover points but the results 

given were not that different. 

             Maya and Dipti (2005) studied several algorithm design paradigms applied to a single problem – the 0/1 

Knapsack Problem. The Knapsack problem is a combinatorial optimization problem where one has to maximize 
the benefit of objects in a knapsack without exceeding its capacity. It is an NP-complete problem and as such an 

exact solution for a large input is practically impossible to obtain. The main goal of the studies was to present a 

comparative study of the brute force, dynamic programming, memory functions, branch and bound, greedy, and 

genetic algorithms. The study discussed the complexity of each algorithm in terms of time and memory 

requirements, and in terms of required programming efforts. The author’s experimental results showed that the 

most promising approaches are dynamic programming and genetic algorithms. The study examines in more 

details the specifics and the limitations of these two paradigms. 
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             Yunhong and Victor (2008) modeled a budget constrained keyword bidding in sponsored search 

auctions as a stochastic multiple-choice knapsack problem (S-MCKP) and proposed a new algorithm to solve 

SMCKP and the corresponding bidding optimization problem. The author’s algorithm selects items online 

based on a threshold function which can be built/updated using historical data. Their algorithm achieved about 

99% performance compared to the offline optimum when applied to a real bidding dataset. With synthetic 

dataset, its performance ratio against the offline optimum converges to one empirically with increasing number 

of periods. 
Rajeev and Ramesh (1992) presented a new greedy heuristic for the integer knapsack problem. The 

proposed heuristic selects items in non-increasing order of their maximum possible contribution to the solution 

value given the available knapsack capacity at each step. The lower bound on the performance ratio for this 

“total-value” greedy heuristic is shown to dominate the corresponding lower bound for the density-ordered 

greedy heuristic. 

               George (1995) proposed the average-case behavior of the Zero–One Knapsack problem, as well as an 

on-line version. The authors allowed the capacity of the knapsack to grow proportionally to the number of 

items, so that the optimum solution tends to be Θ (n). Under fairly general conditions on the distribution, they 

obtained a description of the expected value of the optimum offline solution which is accurate up to terms 

which are o (1). The authors then considered a simple greedy method for the on-line problem, which is called 

Online Greedy and is allowed to use knowledge of the distribution, and shown that the solution obtained by this 
algorithm differs from the true optimum by an average of Θ(log n); in fact, and can determine the multiplicative 

constant hidden by the Θ-notation. Thus on average the cost of being forced to give answers on-line is quite 

small compared to the optimum solution. 

               The constrained compartmentalized knapsack problem is an extension of the classical integer 

 Constrained knapsack problem which can be stated as the following hypothetical situation: a climber must load 

his/her knapsack with a number of items. For each item a weight, a utility value and an upper bound are given. 

However, the items are of different classes (food, medicine, utensils, etc.) and they have to be loaded in separate 

compartments inside the knapsack (each compartment is itself a knapsack to be loaded by items from the same 

class). The compartments have flexible capacities which are lower and upper bounded. Each compartment has a 

fixed cost to be included inside the knapsack that depends on the class of items chosen to load it and, in 

addition, each new compartment introduces a fixed loss of capacity of the original knapsack. The constrained 

compartmentalized knapsack problem consists of determining suitable capacities of each compartment and how 
these compartments should be loaded, such that the total items inside all compartments does not exceed the 

upper bound given. The objective is to maximize the total utility value minus the cost of the compartments. This 

kind of problem arises in practice, such as in the cutting of steel or paper reels. Doprado and Nereu (2007) 

modeled the problem as an integer non-linear optimization problem for which some heuristic methods are 

designed. Finally, computational experiments were given to analyze the methods. 

              The Multiple Knapsack Problem (MKP) is a NP-hard combinatorial optimization problem in many 

real-word applications. An algorithm with the behaviors of preying, following and swarming of artificial fish 

for searching optimal solution was proposed by Ma Xuan (2009). With regard to the problem that infeasible 

solutions are largely produced in the process of initializing individuals and implementing the behaviors of 

artificial fish due to the multiple constraints, which undermines the algorithm performance, an adjusting 

operator based on heuristic rule was designed to ensure all the individuals in the feasible solution areas. 
Computational results show that the algorithm can quickly find optimal solution. The proposed algorithm can 

also be applied to other constrained combinatorial optimization problems. The above literature shows that 

knapsack is a very important tool which has helped in many field. 

 

III. METHODOLOGY 
3.1 Overview of Branch - and – Bound for General Integer Programming 

           Formally, an integer programming problem is formulated as: 

                 Maximize cT  x 

                 Subject to:   Ax ≤ b 
                                    x ≥  0 and integer. 

  Where; A   Rn,  x   Zn,  b         

 The only difference between this form and the common form of linear programming problem is the 

integrality restriction. The problem with integer programming problems are the time and resources needed to 

solve such problems. Integer programming problems are NP Complete Karp (1972), meaning that all known 

algorithms require exponential time to solve. 

Although, many small integer programming problems can be solved quickly, more complex integer 

programming problems can take extraordinary amount of time to solve and frequently use the entire memory of 

a computer without obtaining an optimal or even a feasible solution. 
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Solving integer programming problem is difficult but beneficial, considerable effort has been made to develop 

methods that can decrease solution times for integer programming problems. The two most common algorithms 

use a linear relaxation. Linear relaxation is the solution to the integer programming problem without the integer 

constraint. Linear programming problems can be solved faster than an integer programming, so the integer 

programming is reformulated as a linear programming problem. The optimal value in the linear programming 

problem (called the linear relaxation point) is found using the methods available to solve linear programming 

problem. Once the linear relaxation point is found either branch and bound or cutting planes can be used to find 
the solution to the integer programming problem. 

            Branch and bound uses the linear relaxation as starting point to search for the optimal integer solution. 

Every linear relaxation solution that is found during the branch and bound process is given a corresponding 

node on the branching tree. Once a node’s relaxations point has been found, any variable with a fractional value 

may be chosen as the branching variable. Two child nodes with corresponding branches are created from this 

parent node. One branch requires the branching variable to be greater than or equal to its relaxation value 

rounded up to the nearest integer. The other branch requires the branching variable to be less than or equal to 

the relaxation solution rounded down to the nearest integer. Using these values, two new relaxation points are 

found and two more nodes are created in the tree. This process is repeated until all nodes have been fathomed. 

                 A fathomed node is finished, and no more nodes or branches are created below any fathomed nodes. 

Fathoming a node in a branch and bound algorithm occurs under three circumstances. If a node is found that: (i) 
cannot produce a feasible solution to the linear relaxation, then that node is fathomed. (ii) returns an integer 

solution, then that node is fathomed. Although other feasible solutions may exist below that node, none will be 

better than that node’s solution. (iii) has a linear relaxation solution with a value lower than the value of a 

previously discovered integer solution, then that node is fathomed. 

                 An alternative to the branch and bound method is to use cutting planes to reduce the linear relaxation 

space. The basic idea of the cutting plane method is to cut off parts of the feasible region of the corresponding 

linear program, so that the optimal integer solution becomes an extreme point and can be found by the simplex 

algorithm. This method attempts to find a hype r plane that intersects the solution space below the current linear 

relaxation point without eliminating any integer solutions. Once such a hyper plane has been put in place, a new 

linear relaxation point is found, and branch and bound can be implemented or additional cutting planes can be 

added until an integer solution is returned as the solution to the linear programming problem 

 

3.2 Branch-and-Bound Algorithms for Knapsacks 

                 The first branch-and-bound approach to the exact solution of KP was presented by Kolesar (1967). 

The algorithm consists of a highest-first binary branching scheme with: 

(a) at each mode, select the not-yet-fixed item j having the maximum profit per unit weight and generates two       

descendent nodes by fixing Xi, respectively, to 1 and 0; 

(b) Continue the search from the feasible node for which the value of upper bound U1 is a maximum. 

             The large computer memory and time requirements of the Kolesar algorithm were greatly reduced by 

the Greenberg and Hegerich (1970) approach, differing in two main respects: 

(a) at each mode, the continuous relaxation of the induced sub problem is solved and the corresponding critical 

items    is selected to generate the two descendent nodes (by imposing X last node generated by imposing  

X    =   
                        
              

  

(b). the search continues from the node associated with the exclusion of item    (condition X   = 0). 

When the continuous relaxation has an all-integer solution, the search is resumed from the last node generated 

by imposing X   = 1, i.e. the algorithm is of depth – first type. 

              Horowitz and Sahni (1997) ( and independently, Ahrens and Finke (1975) ) derived from the previous 

scheme on depth-first algorithm in which; 
(a) Selection of the branching variable Xj is the same as in Kolesar; 

(b) The search continues from the node associated with the insertion of item j (condition Xj = 1), i.e. 

following a greedy strategy. 

Other algorithms have been derived from the Greenberg – Hegerich approach (Barr and Ross (1975), Lauriere 

(1978)] and from different techniques (Lageireg and Lenstra (1972), Guignard and Spielberg (1972), Fayard 

and Plateau (1975), Veliev and Mamedov (1981). The Horowitz – Sahni one is, however, the most effective, 

structured and easy to implement and has constituted the basis for several improvements, including that of 

Martello – Toth algorithm (Martello and Toth, 1977), which is generally considered highly effective. Hence, we 

will also restrict our research work to that of the Horowitz and Sahni algorithm ad Martello and Toth algorithm. 

 

3.3 The Horowitz – Sanni Algorithm 

                Assume that the items are sorted. A forward move consists of inserting the largest possible set of new 
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consecutive items into the current solution. A backtracking move consists of removing the last inserted item 

from the current solution. Whenever a forward move is exhausted, the upper bound U1 corresponding to the 

current solution is computed and compared with the best solution so far, in order to check whether further 

forward moves could lead to a better one; if so, a new forward move is performed, otherwise a backtracking 

follows. When the last item has been considered, the current solution is complete and possible updating of the 

best solution so far occurs. The algorithm stops when no further backtracking can be performed. In the 

description of the algorithm, the following notations were used: 

  
 = current solution; 

  = current solution value = (      
 
    ) 

  = current residual capacity (= C -         
     

Xj = best solution so far; 

Z = value of the best solution so far (=      
 
   ) 

THE ALGORITHM 

Input: n, C, (Pj), (wj); 

Output: Z; (xj); 

   Begin 

1. [Initialize] 

     Z: = 0; 

      : = 0; 
      : = C; 

     Pn + 1: = 0; 

     Wn + 1:= + ∞; 

    j: = 1 

         2. [Compute upper bound U1] 

                find r = min {i:    
 
    >  }; 

    U: =    
   
    +  (  −    

   
   ) 

  

  
] ; 

    If    ≥   + U then go to 5; 

3. [Perform a forward step] 

    while Wj ≤   do 

          begin 

                    :=   - Wj; 

                    :=  + Pj 

                      j : = 1 
                  j : = j + 2 

       end 

                if  j ≤  n then 

     begin 

   
  = 0 

                j = j + 1 

        end 

             if j < n then go to 2; 

             if j = n then go to 3; 

     4. [Update the best solution so far] 

           If    > Z then 
     begin 

             : =  ; 

            for K: = 1 to n do   : =   
  

        end 

                j: = n; 

               if   
  = 1 then 

        begin 

                   : =   + Wn;; 

                   :=   - Pn; 

                     
 : = 0; 

          end 

 

5. [Backtracking] 
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                  find i= max {k < j:   
  = 1}; 

                  if no such i then return;   : =    + Wi; 

                     ∶ =   − Pi; 

                       
  ∶ = 0; 

                   j: = i + 1; 

           go to 2 

      end 

 

3.4 The Martellow – Toth Algorithm 
                 Their method differs from that of Horowitz and Sahni (1974) in the following main respect (we use 

the notations introduced in the previous method). 

(a) Upper bound U2 is used instead of U1 

(b) The forward move associated with the selection of the jth item is split into two phases: 
 building of a new current solution and saving of the current solution. In the first phase, the largest set Nj of 

consecutive items which can be inserted into the current solution starting from the jth is defined, and the upper 

bound corresponding to the insertion of the jth item is computed. If this bound is less than or equal to the value 

of the best solution so far, a backtracking move immediately follows. If it is greater, the second phase, that is, 

insertion of the items of set Nj into the current solution is performed only if the value of such new solution does 

not represent the maximum which can be obtained by inserting the jth item. Otherwise, the best solution so far 

is changed, but the current solution is not updated, so that unnecessary backtrackings on the items in Nj are 

avoided. 

(c) A particular forward procedure, based on dominance criteria, is performed whenever, before a backtracking 

move on the ith item, the residual capacity   does not allow insertion into the current solution of any item 

following the ith. The procedure is based on the following consideration; 
The current solution could be improved only if the ith item is replaced by an item having greater profit and a 

weight small enough to allow its insertion, or by at least two items having global weight not greater than Wi + 

 . 

 By this approach it is generally possible to eliminate most of the unnecessary nodes generated at the lowest 

levels of the decision – tree. 

(d)  The upper bounds associated with the nodes of the decision-tree are computed through a parametric   

technique based on the    storing of information related to the current solution. Supposing the current solution 

has been built by inserting all the items from the jth to the rth: then, when performing a backtracking on one of 

these items (say the ith, j ≤ i < r), if no insertion occurred for the items preceding the jth, it is possible to insert 

at least items i + 1, …, r  into the new current solution. To this end, we store in    ,     and    the quantities r+1, 
   

 
     and     

 
   , respectively, for i = j, …,r, and in r  the value r – 1 (used for subsequent updating). 

Below is the detailed description of the algorithm. 

 

 THE ALGORITHM 

    Input: n, C, (Pj), (Wj); 
     Output: Z; (Xj); 

     begin 

              1. [Initialize] 

   Z: = 0; 

                   : = 0 

                  : = C 

                Pn + 1: = 0; 

                Wn + 1: = + ∞; 

                for k: = 1 to n  do   
 ∶ = 0; 

                compute the upper bound U = U2 in the optimal solution value; 

                  : = 0; 

                 : = 0 

                  : = 0; 

                r  ∶ = n;   

              for k: = n to 1 step – 1 do  compute mk = min {Wi: i > k}; 

               j: = 1; 

           2. [build a new current solution] 

              while Wj  >    do 

             if    ≥    + [   Pj + 1/ Wj + 1 ] then go to 5 else j: = j+1; 
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             find r = min {i :    +    
 
     

 >   }; 

             P1: =    +    
   
    

; 

               W1: =    +    
   
    

 

               j + ∑r k−=1r  j wk ; 

             If r ≤ n  then U:= max ([    − W1) 
      

      
],   Pr − ( Pr − ( Wr − (    − W

1)  
     

     
 ]), 

              else U: = 0; 

             if   ≥   + P1 + U then go to 5; 

             if U = 0, then go to 4; 

      3.  [save the current solution] 

              : =   – W1; 

              ≥   + P1 

           for k: = j to r – 1 do   
  ∶ = 1 

               : = W1; 

             : =  1; 

             : = r;  

         for  k: = j + 1 to r – 1 do 

begin 

          ∶=  k - 1 – Wk - 1; 

        k ∶=  k-1 – Pk-1; 

        k : = r; 

end 

        for k: = r  to  r   do 

  begin 

          k ∶= 0; 

        k ∶ = 0; 

      k ∶= k; 

end 

     r  ∶ = r − 1; 
     j: = r + 1; 

     if    ≥ mj-1 then go to 2; 

     if    ≥    + P1 then go to 5; 

      P1 ∶ = 0 

4. [Update the best solution so far] 

    Z  ≥     + P1 ; 

   for k: = 1 to j – 1 do Xk: =   k 

   for  k: = j to r - 1 do Xk: = 1 

   for k: = r to n do Xk: = 0; 

   if  Z = U then return; 

5. [Backtracking] 

   find i = max {k < j:   k = 1}; 
   if  no such i then return; 

    : =   + Wj; 

      =   – Pi; 

     1 ∶= 0; 

   j: = i + 1; 

   if    − Wi  ≥ mi then go to 2; 

    j: = i; 

    h: = i; 

6. [try to replace item i with item h] 

    h: = h + 1; 

    if    ≥    +   
  

  
 ]; 

    then go to 5; 

    if  Wh = Wi then go to 6 

    if Wh > Wi  then 

begin 
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      if  Wh >    or    ≥   + Ph  then go to 6; 

       : =   + Ph; 

      For  k: = 1 to  n do  Xk: =   k; 
       Xh  = 1; 

     if Z = U then return; 

     i: = h; 

     go to 6 

end 

   else 

begin 

     if   − Wh < mh  then go to 6; 

       ∶=   − Wh; 
       : =   + Ph; 

       k ≔ 1; 

      j : = h + 1; 

        h ∶= Wh; 

         h ∶= Ph; 

        h ∶= h + 1; 

       For  k: = h + 1 to r  do 
 Begin 

        k ∶= 0; 

        k ∶= 0; 

         k ∶= 0; 

end 

      r  ∶ = h; 

    go to 2 

   end 

end 

               For the purpose of the research, the researchers employed the branch-and-bound algorithm of the 

Horowitz – Sahni in solving the  model.  

 

IV. DATA MODELING 
                 The researchers modeled the garbage site development problem as a 0 – 1 knapsack problem. The 

computational study of branch-and-bound algorithm was considered and applied to solve 0 – 1 knapsack 

problem, where n ⊂ N such that    
 
    ≤ b. Each item (i), has a profit or cost Ci and a weight Wi. The problem 

is to select a subset of the items whose total weight does not exceed the knapsack capacity b, and whose total 

profit is a maximum. 

               Introducing the binary decision variable    with    = 1 if the item i is selected, and    = 0, if 
otherwise, the integer linear programming model is given as: 

                        Maximize,    Z =      
 
    

                         Subject to      
 
    ≤ b 

                                               {0, 1  , i   Z+. 

The researchers may assume that Wi < b for i   Z+ to ensure that each item (i) is considered fits into the 

knapsack, 

and that     
 
    > b to avoid trivial solutions. 

                    The choice of a knapsack model is a real life problem in the waste management industry. The aim 

is to optimize the land capacity allocated for waste disposal in the metropolis so that the metropolis gets the best 

usage of land at a minimal cost. In comparison to the knapsack problem model, the holding capacity of the bag 

is the resource limit, given here as the town budget (W). The items to be considered are the different sites that 

can be developed (Si), the weight of any item is the cost of developing the site (Wi) and the value of the item is 

the capacity of the site (Ci). Hence the model of the garbage disposal site development is given by: 

                        Maximize,    Z =      
 
    

                         Subject to      
 
    ≤ W 

                                               {0, 1  , i   Z+. 

 

V. DATA COLLECTION AND ANALYSIS 

                 The Sekondi-Takoradi Metropolitan Assembly (STMA) has a budget of fifty thousand Ghana cedis    

(GH¢50,000.00) for the development of new rubbish disposal areas. Seven sites were available with their 
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projected  capacities and development costs as given in the table 5.1 below. 

   

Table 5.1: List of the capacity (tons/week) and the cost (1000/unit) for each site 

 

 

 

 
             The problem here is to select land in such a way that the optimal capacity would be achieved 

without over shooting the amount allocated for the land development. Using the above model, 

                        Maximize,    Z =      
 
    

                         Subject to      
 
    ≤ W 

                                               {0, 1  , i   Z+. 
 

Where; C = Total capacity; Ci = Capacity of each site or item; Si = Number of sites developed; 

Wi = Cost of developing a site and W = Total amount available for development (resource limit), then the 

model becomes: 
                       Maximize, C = 70S1 + 20S2 + 39S3 + 37S4 + 7S5 + 5S6 + 10S7 

                       Subject to: 31S1 +10S2 + 20S3 + 19S4 + 4S5 + 3S6 + 6S7   50. 

             To carry out the computation of the above model, we apply the branch-and-bound algorithm of The 

Horowitz – Sahni. As can be seen from Table 5.1, the items are seven, (thus, n = 7), consisting of Site A, Site B, 

Site C, Site D, Site E, Site F, and Site G. The weights of each item are Wa = 31, Wb = 10, Wc = 20, Wd = 19, We 

= 4, Wf = 3, and  Wg = 6. The values of each item are Va = 70, Vb = 20, Vc =39, Vd = 37, Ve = 7, Vf =5, and Vg 

= 10. The maximum available fund W = 50. Let      feasible solutions and Z be the value of the feasible 

solution. 

                 A walk through the branch-and-bound algorithm of The Horowitz – Sahni with the above model 

gives the following computational iterative values for the various optimal solutions as shown in Table 5.2. A 
FORTRAN 90 code for the implementation of this is given in Appendix 1. 

 

Table 5.2: Optimal Solutions for the various iterative stages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
Summary 

              The results of the above analysis or table revealed that the optimum capacity of the site is 105 000 

tones per week at the minimum cost of GH¢50,000.00. This would be achieved if the authorities select the 

following sites, A, B, F and G. The selection of sites A and D is infeasible since the total cost, GH¢51,000.00 is 
greater than the assembly’s total budget of GH¢50,000.00 for the project.  

 

 

 

SITE (i) A  B  C  D E  F G 

CAPACITY (C) 70  20  39  37 7  5 10 

COST (Wi) 31  10  20  19 4  3 6 

Iteration (j) Feasible solution(  )  
Value of the feasible solution(z), 

( thousands tones per week )  

Cost (thousands),    
GH¢ 

0  (0,0,0,0,0,0,0)  0  0 

1  (1,0,0,0,0,0,0)  70  31 

2  (1,1,0,0,0,0,0)  90  41 

3  (1,1,0,0,0,0,0)  90  41 

4  (1,1,0,0,0,0,0)  90  41 

5  (1,1,0,0,1,0,0)  97  45 

6  (1,1,0,0,1,1,0)  102  48 

7  (1,1,0,0,1,1,0)  102  48 

8  (1,1,0,0,1,0,0)  97  45 

9  (1,1,0,0,1,0,0)  97  45 

10  (1,1,0,0,0,0,0)  90  41 

11  (1,1,0,0,0,1,0)  95  44 

12  (1,1,0,0,0,1,1)  105  50 

13  (1,1,0,0,0,0,0)  90  41 

14  (1,0,0,0,0,0,0)  70  31 

15  (1,0,0,0,0,0,0)  70  31 

16  (1,0,0,1,0,0,0)  Infeasible  51 

17  (1,0,0,1,0,0,0)  Infeasible  51 

18  (1,0,0,1,0,0,0)  Infeasible  51 

19  (1,0,0,1,0,0,0)  Infeasible  51 

20  (1,0,0,0,0,0,0)  70  31 
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Conclusions 

             The researchers modeled the garbage site development of Sekondi Takoradi Metropolis problem as a 0-

1 knapsack problem. The branch-and-bound algorithm of The Horowitz – Sahni was applied to solve the town’s 

site development problem. It was observed that the solution that gave maximum achievable value was 

(1, 1, 0, 0, 0, 1, 1). This means that the company should spend a total cost of fifty thousand 

Ghana cedis (GH¢50,000) to obtain an optimal site development of one hundred and five 

thousand (105,000) tones per week, consisting of selecting Site A, Site B, Site F, and Site G. 

 

Recommendations 

           The use of computer application in computation gives a systematic and transparent solution as 

compared with an arbitrary method. Using the more scientific Knapsack problem model for the 

site development of the town’s refuse disposal management gives a better result. Management 

may benefit from the proposed approach for site development for refuse disposal to guarantee 

optimal refuse disposal capacity in tones per week. We therefore recommend that the Knapsack 

problem model should be adopted by the metropolitan and district assemblies for refuse disposal 

management. We also recommend that future study may be conducted to cover the entire country. 
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APPENDIX_1 

 

SUBROUTINE MT1(N,P,W,C,Z,X,JDIM,JCK,XX,MIN,PSIGN,WSIGN,ZSIGN) C THIS SUBROUTINE 

SOLVES THE 0-1 SINGLE KNAPSACK PROBLEM 
C MAXIMIZE Z = P(1)*X(1) + ... + P(N)*X(N) 

 

C SUBJECT TO: W(1)*X(1) + ... + W(N)*X(N) .LE. C , C X(J) = 0 OR 1 FOR J=1,...,N. 

C THE INPUT PROBLEM MUST SATISFY THE CONDITIONS C 1) 2 .LE. N .LE. JDIM - 1 ; 

C 2) P(J), W(J), C POSITIVE INTEGERS; 

  

C 3) MAX (W(J)) .LE. C ; 

 

C 4) W(1) + ... + W(N) .GT. C ; 

 

C 5) P(J)/W(J) .GE. P(J+1)/W(J+1) FOR J=1,...,N-1. C MEANING OF THE INPUT PARAMETERS: 
C N = NUMBER OF ITEMS; 

 

C P(J) = PROFIT OF ITEM J (J=1,...,N); 

 

C W(J) = WEIGHT OF ITEM J (J=1,...,N); C C = CAPACITY OF THE KNAPSACK; 
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C JDIM = DIMENSION OF THE 8 ARRAYS; 

 

C JCK = 1 IF CHECK ON THE INPUT DATA IS DESIRED, C = 0 OTHERWISE. 

C MEANING OF THE OUTPUT PARAMETERS: 

 

C Z = VALUE OF THE OPTIMAL SOLUTION IF Z .GT. 0 , 

 
C = ERROR IN THE INPUT DATA (WHEN JCK=1) IF Z .LT. 0 : CONDI- C  TION - Z IS 

VIOLATED; 

C X(J) = 1 IF ITEM J IS IN THE OPTIMAL SOLUTION, C = 0 OR OTHERWISE. 

C ARRAYS XX, MIN, PSIGN, WSIGN AND ZSIGN ARE DUMMY. 

 

C ALL THE PARAMETERS ARE INTEGER. ON RETURN OF MT1 ALL THE INPUT C PARAMETERS 

ARE UNCHANGED. 

INTEGER P(JDIM),W(JDIM),X(JDIM),C,Z 

 

INTEGER XX(JDIM),MIN(JDIM),PSIGN(JDIM),WSIGN(JDIM),ZSIGN(JDIM) INTEGER 

CH,CHS,DIFF,PROFIT,R,T 
  

Z = 0 

 

IF ( JCK .EQ. 1 ) CALL CHMT1(N,P,W,C,Z,JDIM) IF ( Z .LT. 0 ) RETURN 

C INITIALIZE. 

 

CH = C 

 

IP = 0 CHS = CH 

DO 10 LL=1,N 

 

IF ( W(LL) .GT. CHS ) GO TO 20 IP = IP + P(LL) 
CHS = CHS - W(LL) 10 CONTINUE 

20 LL = LL - 1 

 

IF ( CHS .EQ. 0 ) GO TO 50 P(N+1) = 0 

W(N+1) = CH + 1 

 

LIM = IP + CHS*P(LL+2)/W(LL+2) A = W(LL+1) - CHS 

B = IP + P(LL+1) 

 

LIM1 = B - A*FLOAT(P(LL))/FLOAT(W(LL)) IF ( LIM1 .GT. LIM ) LIM = LIM1 

MINK = CH + 1 MIN(N) = MINK 
  

DO 30 J=2,N KK = N + 2 - J 

IF ( W(KK) .LT. MINK ) MINK = W(KK) MIN(KK-1) = MINK 

30 CONTINUE 

 

DO 40 J=1,N 

 

XX(J) = 0 

 

40 CONTINUE 

 
Z = 0 

 

PROFIT = 0 LOLD = N II = 1 

GO TO 170 50 Z = IP 

DO 60 J=1,LL 

 

X(J) = 1 
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60 CONTINUE NN = LL + 1 DO 70 J=NN,N 

X(J) = 0 

 

70 CONTINUE RETURN 

C TRY TO INSERT THE II-TH ITEM INTO THE CURRENT SOLUTION. 

  

80 IF ( W(II) .LE. CH ) GO TO 90 II1 = II + 1 
IF ( Z .GE. CH*P(II1)/W(II1) + PROFIT ) GO TO 280 II = II1 

GO TO 80 

 

C BUILD A NEW CURRENT SOLUTION. 90 IP = PSIGN(II) 

CHS = CH - WSIGN(II) IN = ZSIGN(II) 

DO 100 LL=IN,N 

 

IF ( W(LL) .GT. CHS ) GO TO 160 IP = IP + P(LL) 

CHS = CHS - W(LL) 100 CONTINUE 

LL = N 

 
110 IF ( Z .GE. IP + PROFIT ) GO TO 280 Z = IP + PROFIT 

NN = II - 1 

 

DO 120 J=1,NN X(J) = XX(J) 

120 CONTINUE 

 

DO 130 J=II,LL 

 

X(J) = 1 

  

130 CONTINUE 

 
IF ( LL .EQ. N ) GO TO 150 NN = LL + 1 

DO 140 J=NN,N 

 

X(J) = 0 

 

140 CONTINUE 

 

150 IF ( Z .NE. LIM ) GO TO 280 RETURN 

160 IU = CHS*P(LL)/W(LL) LL = LL - 1 

IF ( IU .EQ. 0 ) GO TO 110 

 
IF ( Z .GE. PROFIT + IP + IU ) GO TO 280 C SAVE THE CURRENT SOLUTION. 

170 WSIGN(II) = CH - CHS PSIGN(II) = IP ZSIGN(II) = LL + 1 XX(II) = 1 

NN = LL - 1 

 

IF ( NN .LT. II) GO TO 190 DO 180 J=II,NN 

WSIGN(J+1) = WSIGN(J) - W(J) PSIGN(J+1) = PSIGN(J) - P(J) ZSIGN(J+1) = LL + 1 

  

XX(J+1) = 1 

 

180 CONTINUE 

 
190 J1 = LL + 1 

 

DO 200 J=J1,LOLD 

 

WSIGN(J) = 0 

 

PSIGN(J) = 0 ZSIGN(J) = J 200 CONTINUE 



Modeling Site Development For Garbage Disposal As A 0-1 Knapsack Problem. .. 

DOI:10.9790/1813-1003014667                                      www.theijes.com                                                  Page 66 

LOLD = LL CH = CHS 

PROFIT = PROFIT + IP 

 

IF ( LL - (N - 2) ) 240, 220, 210 210 II = N 

GO TO 250 

 

220 IF ( CH .LT. W(N) ) GO TO 230 CH = CH - W(N) 
PROFIT = PROFIT + P(N) XX(N) = 1 

230 II = N - 1 

 

GO TO 250 

 

240 II = LL + 2 

 

IF ( CH .GE. MIN(II-1) ) GO TO 80 

 

C SAVE THE CURRENT OPTIMAL SOLUTION. 

  
250 IF ( Z .GE. PROFIT ) GO TO 270 Z = PROFIT 

DO 260 J=1,N X(J) = XX(J) 260 CONTINUE 

IF ( Z .EQ. LIM ) RETURN 

 

270 IF ( XX(N) .EQ. 0 ) GO TO 280 XX(N) = 0 

CH = CH + W(N) PROFIT = PROFIT - P(N) 

C BACKTRACK. 

 

280 NN = II - 1 

 

IF ( NN .EQ. 0 ) RETURN DO 290 J=1,NN 

KK = II - J 
 

IF ( XX(KK) .EQ. 1 ) GO TO 300 290 CONTINUE 

RETURN 300 R = CH 

CH = CH + W(KK) PROFIT = PROFIT - P(KK) XX(KK) = 0 

IF ( R .LT. MIN(KK) ) GO TO 310 

  

II = KK + 1 GO TO 80 

310 NN = KK + 1 II = KK 

C TRY TO SUBSTITUTE THE NN-TH ITEM FOR THE KK-TH. 320 IF ( Z .GE. PROFIT + 

CH*P(NN)/W(NN) ) GO TO 280 

DIFF = W(NN) - W(KK) IF ( DIFF ) 370, 330, 340 
330 NN = NN + 1 

 

GO TO 320 

 

340 IF ( DIFF .GT. R ) GO TO 330 

 

IF ( Z .GE. PROFIT + P(NN) ) GO TO 330 Z = PROFIT + P(NN) 

DO 350 J=1,KK X(J) = XX(J) 

350 CONTINUE JJ = KK + 1 DO 360 J=JJ,N 

X(J) = 0 

 
360 CONTINUE 

 

X(NN) = 1 

 

IF ( Z .EQ. LIM ) RETURN R = R - DIFF 

  

KK = NN NN = NN + 1 GO TO 320 
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370 T = R - DIFF 

 

IF ( T .LT. MIN(NN) ) GO TO 330 

 

IF ( Z .GE. PROFIT + P(NN) + T*P(NN+1)/W(NN+1)) GO TO 280 CH = CH - W(NN) 

PROFIT = PROFIT + P(NN) XX(NN) = 1 

II = NN + 1 WSIGN(NN) = W(NN) PSIGN(NN) = P(NN) ZSIGN(NN) = II 
N1 = NN + 1 

 

DO 380 J=N1,LOLD 

 

WSIGN(J) = 0 

 

PSIGN(J) = 0 ZSIGN(J) = J 380 CONTINUE 

LOLD = NN GO TO 80 END 

SUBROUTINE CHMT1(N,P,W,C,Z,JDIM) 

  

C 
 

C CHECK THE INPUT DATA. C 

INTEGER P(JDIM),W(JDIM),C,Z 

 

IF ( N .GE. 2 .AND. N .LE. JDIM - 1 ) GO TO 10 Z = - 1 

RETURN 

 

10 IF ( C .GT. 0 ) GO TO 30 

 

20 Z = - 2 RETURN 

30 JSW = 0 

 
RR = FLOAT(P(1))/FLOAT(W(1)) DO 50 J=1,N 

R = RR 

 

IF ( P(J) .LE. 0 ) GO TO 20 

 

IF ( W(J) .LE. 0 ) GO TO 20 JSW = JSW + W(J) 

IF ( W(J) .LE. C ) GO TO 40 Z = - 3 

RETURN 

 

40 RR = FLOAT(P(J))/FLOAT(W(J)) IF ( RR .LE. R ) GO TO 50 

Z = - 5 
  

RETURN 50 CONTINUE 

IF ( JSW .GT. C ) RETURN Z = - 4 

RETURN END 


