
The International Journal Of Engineering And Science (IJES)

|| Volume || 5 || Issue || 2 || Pages || PP -37- 44 || 2016 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 37

A Unified Coupling Model for Coupling Measurement in Object Oriented

Software Systems.

Calvins Otieno
1
, George Okeyo

2
 and Stephen Kimani

3

1
 Computing Department, School of Computing and Information Technology,

Jomo Kenyatta University Of Agriculture and Technology, Company Nairobi, Kenya

--ABSTRACT--

Coupling is the extent to which the functions performed by a subsystem are related. Low coupling is a

characteristic of a well-designed subcomponent. The problem noted for research in this paper is lack of

standardization of measures, ambiguity in definition of measures and poor conceptual links between coupling

components. The key objective of this research paper is to propose a model for coupling measurement in object

oriented software system. A review of related work is conducted on coupling frameworks. In this research data

was collected from various software systems, analyzed using a Poisson distribution model and unified coupling

model generated. From the model an algorithm was developed for assessing coupling in software systems. In

conclusion coupling model of five components; object level coupling, static level coupling, dynamic and static

level coupling is developed an algorithm proposed to support coupling measurement in object oriented software

systems. In the unified model developed a coupling value of 0.049 and below indicates low coupling while a

coupling value of 0.05 to 0.1 indicates high coupling in the software system.

Keywords: Coupling, Model, Framework, Object Oriented Measurement, Measure.

--

Date of Submission: 29 September 2015 Date of Accepted: 01 March 2016

--

I. Introduction
Coupling measures capture the degree of interaction and relationships among source code elements,

such as classes, methods, and attributes in object-oriented software systems. One of the main goals behind object

oriented analysis and design is to implement a software system where classes have low coupling among them.

Many frameworks have been proposed to measure the coupling and cohesion to predict the fault-proneness and

maintainability of software systems [5]. However, few studies have been done using coupling to measure

reusability of software components.[5].

Coupling measures are used in tasks such as impact analysis [11], assessing the fault-proneness of classes [2],

fault prediction [2], re-modularization, identifying of software components [17], design patterns [11] , assessing

software quality[17], etc.

In general, one of the goals of the software designers is to keep the coupling in an object oriented design system

as low as possible [12].Classes of the system that are strongly coupled are most likely to be affected by changes

and bugs from other classes; these classes tend to have an increased architectural importance and thus need to be

identified [9]. Coupling measures help in such endeavors, and most of them are based on some form of

dependency analysis, based on the available source code or design information.

Coupling is considered as one of most important object oriented software attributes. Many frameworks have

been proposed in the last several years to measure class coupling in object-oriented systems. Class coupling

(more specifically, functional coupling) is defined as the degree of relatedness between members of a class [14].

In object oriented software systems, a class should represent a single logical concept, and not to be a collection

of miscellaneous features.

Coupling is a more complex software attribute in object oriented systems but our understanding about coupling

measurement factors is poor [8]. There is no standardization for expressing coupling measures; many measures

are not operationally defined i.e. there is some ambiguity in their definitions [8]. As a result, it is difficult to

understand how different measures relate to one other and what their potential use is. All above aspects

ultimately shapes the need of detailed study of coupling measurement in object-oriented systems

Briand et al in their research notes that there is little understanding of the motivation and empirical hypotheses

behind many of these new measures [2]. It is often difficult to determine how such measures relate to one

another and for which application they can be used. As a consequence, it is very difficult for practitioners and

researchers to obtain a clear picture of the state-of-the-art in order to select or define measures for object-

oriented systems [2].

A Unified Coupling Model for Coupling Measurement…

www.theijes.com The IJES Page 38

 The fact that there also exists little empirical validation of existing object-oriented coupling measures means

the usefulness of most measures is not supported by strong industry results to validate their accuracy [8].

 A vast majority of coupling frameworks abound in the literature relies on structural information, which

captures relations, such as method calls or attributes usages. However, these structural frameworks lack the

ability to identify conceptual links, which, for example, specify implicit relationships encoded in identifiers and

objects in source code.

 This paper proposes a unified model that helps in coupling measurement. The model developed in this paper

provides weights and evaluation function to determine coupling levels in software system. We believe the model

would be effective in measurement since it looks into class coupling level, dynamic coupling level, static

coupling level and object coupling level. The proposed model has classification criteria that would help

reviewers and assessors know whether software is highly coupled or loosely coupled. To enhance the

applicability of the model we have developed and proposed an algorithm to outline a

 The remainder of this paper is organized as follows review of related work is conducted and critique of the

previous model and measures provided, a developed unified model is presented, an evaluation of the model is

conducted and results of the evaluation presented, a discussion of the results and model presented and a

conclusion of the model and the paper together with request for further research proposed.

II. Related Work.
 In a research by Hitz and Montazeri they described Class Level Coupling (CLC) as coupling resulting from

state dependencies between two classes in a system during the development lifecycle [6]. According to their

research, Class Level Coupling is important when considering maintenance and change dependencies because

changes in one class may lead to changes in other classes which use it [6]. The authors also state that CLC can

occur if a method of a class invokes a method or references an attribute of another class. For example if we, let

cc be the accessing class (client class), sc be the accessed class (server class). The factors determining the

strength of CLC between client class c and server class are [6]:

(i) Stability of sever class: sever class is stable. Interface or body of sc is unlikely to be changed (for

instance due to changing requirements). Typically, basic types provided by the programming language,

or classes imported from standard libraries are stable.

(ii) Scope of access. Determines where sc is visible within the definition of cc. Within this scope, a change

to sc may have an impact on cc. The larger the scope, the stronger the classes are coupled.

 In a research conducted by Bieman and Kang [1] they proposed two class coupling measures to evaluate the

relationship between class coupling and private reuse in the system [1]. Bieman and Kang research focuses on

two important criteria of coupling measure;

1 the interaction pattern

2 The special method.

 According to Biemen and Kang[1] we let ndc (c) be the number of directly connected methods in a class c, nic

(c) is the number of indirectly connected methods in a class, and np (c) is the maximum possible number of

connections in a class. Then, tight class coupling (tcc) is defined as [1]

tcc(c) = ndc(c) / np(c)

and loose class coupling (lcc) is defined as:

lcc(c) = (ndc(c) + nic(c)) / np(c)

 This framework focuses on two important criteria of coupling measure; the interaction pattern and the special

method. The strongest part in this framework is to consider the interaction between pattern methods. However,

the connectivity factor could generate misleading information leading to poor recognition of the interaction

pattern [18].

 In another research Chae et al [4] considers two characteristics of classes, which could lead to different

coupling values from the general intuition of coupling [4] . The two characteristics are: the patterns of the

interactions among the class members (e.g. counting the number of instance variables used by a method) and

special methods.

According to Chae et al [4], in order to describe these characteristics in class c, a reference graph g
r
(c) is

drawn to represent the interaction among the members of class c, and is defined to be an undirected graph

g
r
=(n,a) with[4]: The relationship for evaluating coupling in the frameworks is given as follows

A Unified Coupling Model for Coupling Measurement…

www.theijes.com The IJES Page 39

 Where V(C) is a set of instance variables in the class c, M(C) is a set of methods in the class c, and R
*

(M) is

a set of instance variables directly/indirectly references by M.

In their research Chae et al [4] define glue methods of graph g
r
, m

g
(g

r
), as the minimum set of methods without

which its reference graph g
r
can be divided into disjoint sub-reference graphs.

 Briand et al define four coupling properties to characterize coupling in a reasonable intuitive and rigorous

manner [2]. The four properties are: nonnegative and normalization, null value and maximum value,

monotonicity, and merging of unconnected classes [2]. However, these properties are not sufficient to tell that a

measure that fulfills them all will be useful; it is likely that a measure that does not fulfill them all is ill-defined.

Let R
c
the set of relationships within the class c. The set of all intra-class relationships in an object-oriented

system is defined as Rc. We say that R
c
is maximal, if all possible relationships within class c are presented. We

say Rc is maximal if R
c
is maximal ∀c∈c [2].

 In the very first research conducted by Briand et al in 2005, it was noted that we must have a consensus

on the terminology and formal definition of measure expression in software engineering before we are really able

to propose and apply a framework. On the other hand, it is stated implicitly that we have to validate the

frameworks that we are going to use for assessing or quantifying the attributes of software [2].Briand et al added

some criteria to compare various approaches in order to be in the same perspective [2]. The five criteria of the

framework to address these varieties are: types of connection (what makes a class coupled), domain of the

measures, direct and indirect connections, inheritance, and access methods and constructors [2] .

 A research conducted by Harrison et al defines coupling between classes (CBC) as a count of the number of

classes to which a class is coupled [15]. It counts each usage as a separate occurrence of coupling. This includes

coupling via inheritance. This approach only performs normal count and concludes that coupling exists if count

is greater than zero [15] .

 A further research done by Harrison et al considers the Number of Associations (NAS) in a class. In this

research three hypotheses related to coupling are investigated by the authors are [15]:

(i) H1: As inter-class coupling increases, the understandability of a class decreases. This hypothesis is

rejected by authors.

(ii) H2: As inter-class coupling increases, the total number of errors found in a class increases. This

hypothesis is rejected by authors.

(iii) H3: As inter-class coupling increases, the error density of a class increases. This hypothesis is

supported by authors.

To investigate these hypotheses author studied dependent variables such as

(i) Software Understandability (SU)

(ii) Number of known errors (KE)

(iii) Error per thousand non-comment source lines (KE/KNCSL)

 Coupling due to object as a parameter of methods and return type for a method is considered by authors [15].

 In this research it is noted that source lines of codes framework measures the number of physical lines of

active code, which is, no blank or commented lines code [13]. Counting the source lines of code is one of the

earliest and easiest approaches to measuring complexity. In general the higher the Source lines of code in a

module the less understandable and maintainable the module is [15].

 Further research on coupling by Zhao and Xu [19] first consider only direct interaction coupling

between two methods in a class. Their definition is then expanded to indirect interaction coupling via transitive

method invocations. The weaknesses are considered in the following two scenarios [19];

III. Unified Coupling Model
 To generate unified coupling model total of 15 soft wares were studied and analyzed. The data from the soft

wares were analyzed in a Poisson model and parametric table below containing beta values generated. The beta

values formed the input to the model as shown in table 1 below.. Poisson model was used to analyses the count

data produced in the research. The classes for each software under study was modified and the results recorded

in a table. The values were then fed into a Poisson mat lab distribution model and the values generated in the

table as shown below

A Unified Coupling Model for Coupling Measurement…

www.theijes.com The IJES Page 40

Table 1 Parametric Estimates

 Table 1 represents Parameter estimates for all the intercept components in the study together with the β value

and various Wald chi square values as shown in the table. The β values represent the values for construction for

the poison model to be used to build the predictive framework in this research. From the table in can be noted

that the overall β=1.090, CLC β=0.64, OLC β=-10112, SLC β=1.070, DLC β=0.045, CLC*OLC

β=0.156,CLC*SLC β=-0.235

From the table 4 the β can therefore be used to form the poison formula given by

 …………..(1)

On substituting the values we have

 …………….(2)

Eliminating the logs to generate the natural logs represented by we have the overall class unified formula

represented as

 …………….(3)

 The equation 3 above represents the proposed model for this research. The model enables us to evaluate the

value for unified coupling in software systems. To construct the model we used the parametric estimates value as

shown in table 1.

 This formula was generated to assess levels of coupling in software systems. The formula involved

determining the exponential of class level coupling, object level coupling, static level coupling, dynamic level

coupling and combination of CLC and OLC, CLC and SLC. The formula determines their combined effects in

coupling in software systems. The various betas exponential values were generated as a result figures obtained

from the parametric estimates table.

A Unified Coupling Model for Coupling Measurement…

www.theijes.com The IJES Page 41

 To evaluate the various components we proposed the following approaches to help us determine the static

coupling values, dynamic coupling values, object coupling values and class coupling values

3.1 Class Level Coupling

 The algorithm to be adopted will have components as follows

o Ci : is an instance of a class

o Cj : is the set of classes invoking the methods or inheriting methods of other classes

o Mi: the number of methods invoked

o Mh:the number of methods inherited

o Ma:the number of methods referencing attributes of another class

o Mp:the number of methods having parameter of the type of another class

o {}:representation of set of all elements considered in the algorithm

 ….(4)

3.2 Object Level Coupling

 With regard to object coupling the following models are proposed to be used;-

oi: is an instance of a class (an object)

O: is the set of objects collaborating during the execution of a specific scenario

|Z| : The number of elements in set Z

{} : A representation of a set of elements

Then we can say that

OLC of O is the count of the number of messages sent from oi to oj during the execution of a specific scenario x.

 ………. (5)

3.3 Dynamic Level Coupling

 To effectively evaluate dynamic coupling level, the following ratio components proposals are made

1. Dynamic Afferent Coupling (DCa): It defines the ratio of number of classes accessing the methods of

a class at runtime to the total number of classes. Then we can say that

 ……………… (6)

 Where Cam is the number of classes accessing methods and Ct is total number of classes

2.Dynamic Key Class (DKC): It defines the ratio of sum of calls sent out from the class and calls

received by the class at runtime turned on the total number of static calls sent and received by all the

classes.

 ……………… (7)

Where ST is total static calls in the class

3. Percentage Active Classes (PAC): It defines the ratio of number of classes sending or receiving at

least one method calls from/to another class at runtime to the total number of classes.

 ………………(8)

Where SRM is the sum of receiving and sending classes and TTC total number of classes in the program

Representing the three compounds as contribution to the overall DCL we can say that

 ………(9)

A Unified Coupling Model for Coupling Measurement…

www.theijes.com The IJES Page 42

3.4 Static Level Coupling

In this static level of coupling a proposition is made that coupled interactions only happen within the modules of

OOP program but not everywhere in the modules. The ration of static level coupling is therefore

 ……………………. (10)

Where Im is is the set of all interacting modules in the class under study

 Tm is the set of total modules existing within the class under study.

 TTC is total number of classes to be studied.

3.5 Algorithm for Coupling Measurement

Fig.1 Unified Algorithm

IV. Unified Model Assessment.
 The unified model developed in this papers was subjceted to evaluation of four software programs developed

and coupling values of individual components obtained and recorded in a table 2 as shown below

Table 2:Component Values

Software CLC OLC DLC SLC

OTIS 0.1111 0.261 0.243 0.400

FMA 0.125 0.629 0.292 0.455

BSA 0.167 0.794 0.458 0.7

T4S 0.167 0.618 0.567 0.533

 In the evaluation process the above values were subjected to evaluation model function and table3 as shown

below was created. The table indicated the values of coupling as low or high.

Table 3: Evaluation Table

APP UCC COUPLING LEVEL

OTIS 0.000103 Low

FMA 0.001329 Low

BSA 0.02159 Low

T4S 0.0715 High

A Unified Coupling Model for Coupling Measurement…

www.theijes.com The IJES Page 43

From table 3 in the evaluation table the software OTIS, fma, bsa were found to be lowly coupled while T4S was

found to be highly coupled during assessment .The coupling classification was done on the basis of high for

those that are 0.05 to 0.1 and lowly coupled for those that were found to be 0.049 and below.

V. Discussion
 From table1 it was noted that a change in a class affects both import coupling and export coupling with

significant values. It is important to note that even though an object oriented module typically exports nothing,

you might choose to export a named constructor or management routine. This routine typically acts a bit like a

class method but is meant to be called as a normal routine.

 Classes form a hierarchy of parent classes and children classes and Child is a subclass of, derived class of,

inherits from, extends the parent, super class and therefore much importing will have to occur within the various

classes in the computer program. Similarly it is important to note that class variables hold state that is

shared in common among all objects of class and Class methods act on attributes of the whole class through class

variables therefore Class methods can’t access instance variables and they will only use instance variables and

methods here in within the current class they are operating in.

 It is also noted that with regards to method invocation a low value was recorded. The underlying principle is

that when call is made to the generic method function three things are done:

(i) The list of available methods is obtained

(ii) The methods are arranged in order from most specific to least specific

(iii) the most specific method is called

 The determination of which method is most specific is made based on the classes of the arguments to the

methods (and on the class structure that they induce – ie. who do they inherit from). Method of super class may

be overridden in subclass. When a method of super class is applied to object of subclass, methods of subclass are

used in computing result, instead of methods of super class. For example instance method of subclass may hide

(or shadow) method of super class.

 For measuring the class coupling, we only use those public methods which are neither constructor nor

destructor for a class. Constructor and methods only serve the purpose of initialization of class attributes and

they are not supposed to perform any kind of functionality for consumer environment. Similarly to constructor

methods and operator over loader methods will also be ignored because such methods read or write to all

attributes of class and consequently act like an initializing method. Inclusion of operator overloading may

mislead value of class coupling.

 Destructor methods are used When an object is no longer needed it has to be deleted. Whenever an object is

deleted its destructor member function is called. Destructors in object oriented programing are normally used

when overloading or inheritance not allowed. In using destructors the access modifiers or parameters not to be

specified consequently the order of call to destructor in a derived class is from the most derived to the least

derived. Destructor methods are not only called during object destruction, but also when the object instance is no

longer eligible for access

 A class that is composed of related methods will result in coupling as its methods will use the same set of

attributes in their implementation. A class that has single public method will turn out be the most coupled,

because all of its attributes will be used by the one public method. Bieman and Kang have also called such class

as the most coupled class [1] .

 Following the description some of the possible approaches for finding functionality groups of public methods

are:

(i) Methods working on a particular member attribute of class may form group of related functionality.

(ii) Methods using a particulars external resource such as file, database table and memory may form a

group of related functionality.

(iii) Methods using same private, protected and public method may also form group of related functionality.

 Unified coupling model borrows the concept of generalization in object oriented software systems.

A Unified Coupling Model for Coupling Measurement…

www.theijes.com The IJES Page 44

 In object oriented modeling there are three types important relationships among the classes, namely

dependency, inheritance and association relationships. Dependency represents the using relationships among the

classes; inheritance relationship connects generalized classes to their specialized classes; and association

relationship shows the structural relationship among the objects. This therefore results in stronger bonds between

various coupled classes which provides higher probability of the values for export and import coupling as

observed in this research work as shown in table 3

VI. Conclusion
 In this paper a model for measuring coupling in object oriented software systems has been developed. The

model was constructed from data analyzed in various software systems. The paper has demonstrated how to

evaluate individual components of the model using varied formulas. As presented in the algorithm software

systems with values less than or equal to 0.049 represents low coupling while values between 0.05 to 0.01

represents high coupling in software systems. An algorithm to assess the overall coupling has been presented. In

this paper we request further research on determining effect of coupling in overall software maintenance and

debugging.

References
[1] Biamen Keller, and Kiang, F., “Coupling as Changeability Indicator in Object-Oriented Systems”, Proceedings of the Fifth

European Conference on Software Maintenance and Reengineering (CSMR 2010), Estoril Coast (Lisbon), Portugal, 2010.

[2] Briand, L.C., Daly, J., Porter, V., and Wuest, J., “A unified framework for coupling measurement in object-oriented systems”,

Empirical Software Engineering, 3 (1), 2008.

[3] Chae, H.S. and Bae, D.H., “A coupling measure for object-oriented classes”, Software Practice and Experience, No. 30, 2011.

[4] Chae, H.S., Kwon, Y.R., and Bae, D.H., “Improving coupling frameworks for classes by considering dependent instance

variables”, IEEE Transactions on Software Engineering, vol. 30, no. 11, 2010.

[5] De Lucia, A., Oliveto, R., and Vorraro, L., “Using structural and semantic frameworks to improve class coupling”, International

Conference on Software Maintenance, 2008.

[6] Denys Hintz and Andrian Mozeri, “The Conceptual Coupling Metrics for Object-Oriented Systems,”ICSM '06 Proceedings of

the 22nd IEEE International Conference on Software Maintenance, 2011.

[7] Eder H., Yamasaki, K., Yamada, H., and Noda, M.T., “A proposal of class coupling frameworks using sizes of coupled parts”,

Knowledge-Based Sof. Engineering, T. Welzer et al. (Eds) IOS Press, 2011

[8] Gelinas J.F, Badri M. , “A Cohesion Measure for Aspects”, in Journal of Object Technology, vol. 5, no. 7, pp. 97 – 114,

September - October 2011.

[9] Henderson-Sellers, B., “Object-Oriented Frameworks Measures of Complexity”, Prentice-Hall, 2011.

[10] Jungmayr, S., “Testability Measurement and Software Dependencies”, Proceedings of the 12th International, Workshop on

Software Measurement, October 2012

[11] Larman, G., “Applying UML and Design Patterns, An introduction to object-oriented analysis and design and the unified

process”, Prentice Hall, 2010

[12] Marcus, A., and Poshyvanyk, D., “The conceptual coupling of classes”, Proc. 21th IEEE International Conference on Software

Maintenance, September 2009

[13] Patidhar et al. International Journal of Advanced Research in Computer Science and Software Engineering 3(3), March - 2013,

pp. 517-521 © 2013, Page 518

[14] Pressman, R.S., “Software Engineering, A practitioner's approach”, McGraw Hill, 2005

[15] R. Harrison, S. Counsell, R. Nithi “A Cohesion Measure for Aspects”, in Journal of Object Technology, vol. 5, no. 7, pp. 97 –

114, September - October 2011.

[16] Simon Allier, St´ephaneVaucher, Bruno Dufour, and HouariSahraoui, 2010 Working Conference on Source Code Analysis and

Manipulation,IEEE.

[17] Simon, C., Cox, G., and Etzkorn, L., “Exploring the relationship between coupling and complexity”, Journal of Computer

Science. 1 (2), 2010.

[18] Voas, J.M., “PIE: A dynamic failure-based technique”, IEEE TSE, 18(8), August 2012.

[19] Zhao .J and Xu. B, "Measuring Aspect Cohesion", Proc.International Conference on Fundamental Approaches toSoftware

Engineering (FASE'2004), LNCS 2984, pp.54-68 , Springer-Verlag, Barcelona, Spain, March 29-31,2009

Calvins Otieno is a PhD student in the department of computing in Jomo Kenyatta University. He has a first degree in Computer

technology, Masters in Software Engineering and. His research interest is in the fields of software engineering and software quality systems.

He currently teaches in IT department in the same university.

Dr.George Okeyo Onyango is the current Chairman and HOD Computing. He has a PhD in Computer science from university of Ulcer,

MSc Information Systems and BSc Mathematics and Computer Science from JKUAT.

Dr. Stephen Kimani is the current director School of Computing and Information Technology of the Jomo Kenyatta University of

Agriculture and Technology in Kenya. He has previously been a researcher at CSIRO (Australia) and Sapienza University of Rome (Italy).

He has the following academic qualifications: BSc in Mathematics and Computer Science (JKUAT); MSc in Advanced Computing

(University of Bristol, UK); PhD in Computer Engineering (Sapienza University of Rome, Italy).

