
The International Journal Of Engineering And Science (IJES)

|| Volume || 4 || Issue || 10 || Pages || PP -01-10|| 2015 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 1

Coupling Measures for Object Oriented Software Systems- A State-of-the-

Art Review.

Calvins Otieno
1
, George Okeyo

2
 and Stephen Kimani

3

1
Computing Department, School of Computing and Information Technology, Jomo Kenyatta University Of

Agriculture and Technology, Company, Nairobi, Kenya

---ABSTRACT---

Coupling describes the interrelationship between the various functionalities in a software system. High coupling

is a considered as a characteristic of poorly designed system while Low coupling is considered as a

characteristic of a well-designed system. This paper presents a review of existing coupling measures and

classifies them on the basis of class consideration, object considerations and static and dynamic behavior

consideration.

Keywords: Coupling, Framework, Measure, Class, Object, Object Oriented.

Date of Submission: 17 September 2015 Date of Accepted: 03 October 2015

--

I. Introduction
 Coupling measures capture the degree of interaction and relationships among source code elements,

such as classes, methods, and attributes in object-oriented software systems. One of the main goals behind object

oriented analysis and design is to implement a software system where classes have low coupling among them.

These class properties facilitate comprehension activities, testing efforts, reuse, and maintenance tasks [3].

Coupling affects the extent to which the various components and subcomponents interact. If various classes,

methods and objects are highly interdependent then changes to one are likely to have significant effects on the

behavior of others. Hence loose coupling between subcomponents such as classes, methods, objects and

constructers is a desirable characteristic of an object oriented system [3]. Coupling can also be described in

terms of the extent to which the functions performed by a subsystem are related. If a subcomponent is

responsible for a number of unrelated functions then the functionality has been poorly distributed to

subcomponents. Hence low coupling is a characteristic of a well-designed subcomponent [11].

Many frameworks have been proposed to measure the coupling and cohesion to predict the fault-proneness and

maintainability of software systems [5]. However, few studies have been ON done using coupling to measure

reusability of software components because of their limitations and the difficulties to evaluate [5].

Many maintenance tasks require the developer to measure directly or indirectly several attributes and assess

properties of the software system under evolution. A variety of measures are proposed by researchers to assist

developers in getting more complete views of the software [17].Coupling is one of the properties with most

influence on maintenance as it has a direct effect on maintainability. Proposed coupling measures are used in

tasks such as impact analysis [11], assessing the fault-proneness of classes [2], fault prediction [2], re-

modularization, identifying of software components [17], design patterns [11] , assessing software quality[17],

etc. In general, one of the goals of the software designers is to keep the coupling in an OO system as low as

possible [12]. Classes of the system that are strongly coupled are most likely to be affected by changes and bugs

from other classes; these classes tend to have an increased architectural importance and thus need to be identified

[9]. Coupling measures help in such endeavors, and most of them are based on some form of dependency

analysis, based on the available source code or design information. Coupling is considered as one of most

important object oriented software attributes. Many frameworks have been proposed in the last several years to

measure class coupling in object-oriented systems. Class coupling (more specifically, functional coupling) is

defined as the degree of relatedness between members of a class [14]. In object oriented software systems, a

class should represent a single logical concept, and not to be a collection of miscellaneous features. Object

oriented analysis and design methods promote a modular design by creating high coupled classes [14]. However,

improper assignment of responsibilities in the design phase can produce low coupled classes with unrelated

members.

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 2

 The purpose of this paper is to provide state of the art review of various coupling measures, critically

evaluating each measure and providing a better way of classifying the measures on the basis of class, objects,

static and dynamic behavior. The key contribution of this paper is the classification model of coupling on the

basis of classes, objects, static and dynamic review. To contribute the knowledge we adopted a mechanism,

consisting of the following.

(i) Methods share data (public attributes),

(ii) Methods references attributes

(iii) Methods invokes other methods

(iv) Methods receive pointer to other methods

(v) Class is a type method parameter or return type

(vi) Class is a type of method local variable

(vii) Class is a type parameter of a method invoked from within another method

(viii) Class is ancestor of another class

The structure adopted for this paper is statement of the methodology adopted for the paper, review of the related

work, critique of the various measures in related work, presentation of conclusion of the state of the art.

II. Methodology
To conduct state of the art review, we selected papers for review that were done within the last 5 years

for review. The objective of selection of the papers done within the last five years was to ensure that we get the

recent state of the art paper that would provide relevant information. The paper was then to be classified as either

conference paper or journal papers. For a paper to be considered for review it had to be indexed by Google

scholar, SCI, Cite Seer, directory of open access journals.

 The related work was then grouped according to the mechanism that they address as stated in the introduction.

From the mechanism they are then classified according to class based, object based, static based and dynamic

based.

 A critique citing weaknesses and strengths of each journal coupling measure is then presented in the paper

and a conclusion drawn in the paper on the basis of observations made on the reviews.

III. Coupling Measures
 3.1 Introduction

 Coupling measurement is a focus of study for many of the software professionals from last few years. Object-

oriented programming is an efficient programming technique for programmers because of its features like

reusability, data abstraction, inheritance and method overloading [3].

 Coupling is a very important factor in object-oriented programming for software quality measurement and

used as predictors of software quality attributes such as fault proneness, impact analysis, ripple effects of

changes and changeability [5] .

 Class coupling (more specifically, functional coupling) is defined as the degree of relatedness between

members of a class [14]. In object oriented software systems, a class should represent a single logical concept,

and not to be a collection of miscellaneous features. Object oriented analysis and design methods promote a

modular design by creating lowly coupled classes [14] .

 One of the main goals behind Object Oriented analysis and design is to implement a software system where

classes have low coupling among them. These class properties facilitate comprehension activities, testing efforts,

reuse, and maintenance tasks [3].

3.2 Package Coupling Measures

 For object-oriented systems, most of the coupling framework have been defined up to class level and only a

few framework exist for measurement of coupling at the higher levels of abstraction in object-oriented

systems[20] . Other work related to packages or other higher abstraction levels has been carried out in Hongyu et

al, 2010)[20].Lee et al. proposed information-based coupling(ICP), a coupling measure for a set of classes based

on information flow through method invocations within classes. They defined coupling of a set of classes as the

sum of the couplings of the classes in the set [20]. Martin proposed various package level coupling measures

such as package coupling, He defined package coupling as the number of classes from other packages that

depend on the classes within the package and independent package coupling as the number of classes from other

packages that the classes within the package depend upon [21]. In addition, he defined abstractness as the ratio

of abstract classes to the total number of classes and instability as the ratio of package coupling to total coupling

[21]. Similarly, Tagoug proposed a coupling measure for subjects . The concept of subjects is quite similar to the

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 3

packages and he defined subject coupling based on interactions among subjects and also proposed a

decomposition quality framework for object-oriented systems on the basis of difference between cohesion and

couplings of elements of a system [21] . But, he did not consider the hierarchy of subjects while defining above

measures. Also, no justification packages in an object-oriented system have hierarchical structure and each

package can be viewed as a set of elements (classes or sub-packages) and relationships between these elements

[21].

 These relationships among elements of different packages present at the same hierarchical level give rise to

the inter-package coupling. In other words, two different packages present at the same hierarchical level are said

to be coupled if the elements of these packages are connected to each other [13]. The elements of the two

different packages are said to be connected if there exists a relationship between them and this relationship can

be of the type of inheritance relationship, aggregation relationship or simple reference relationship.

3.3 Class Coupling Measures

 Hitz and Montazeri, described Class level coupling (CLC) as coupling resulting from state dependencies

between two classes in a system during the development lifecycle [6]. According to Hitz and Montazeri, class

level coupling is important when considering maintenance and change dependencies because changes in one

class may lead to changes in other classes which use it [6]. The authors also state that CLC can occur if a method

of a class invokes a method or references an attribute of another class. For example if we, let cc be the accessing

class (client class), sc is the accessed class (server class). The factors determining the strength of CLC between

client class c and server class are [6]:

(i) Stability of sever class: sever class is stable. Interface or body of sc is unlikely to be changed (for

instance due to changing requirements). Typically, basic types provided by the programming language,

or classes imported from standard libraries are stable.

(ii) Scope of access. Determines where sc is visible within the definition of cc. Within this scope, a change

to sc may have an impact on cc. The larger the scope, the stronger the classes are coupled.

 In another research Bieman and Kang proposed two class coupling measures to evaluate the relationship

between class coupling and private reuse in the system [1]. Bieman and Kang research focuses on two

important criteria of coupling measure;

1 the interaction pattern

2 The special method.

 Bieman and Kang defined class coupling as an attribute of a class that refers to the connectivity among

components of the class[1]. The components include the instance variables, methods defined in a class and

methods that are inherited [1].

 According to Bieman and Kang, a method is said to be connected to an instance variable if the method

accesses that instance variable [1]. However, the manner in which an instance variable may be used is different.

Two methods that access one or more common instance variables are said to be directly connected, while two

methods that are connected through other directly or indirectly connected methods are indirectly connected [1].

 According to Biemen and Kang we let ndc (c) be the number of directly connected methods in a class c, nic

(c) is the number of indirectly connected methods in a class, and np (c) is the maximum possible number of

connections in a class. Then, tight class coupling (tcc) is defined as (Bieman and Kang, 2010)

tcc(c) = ndc(c) / np(c) ………(1)

and loose class coupling (lcc) is defined as:

lcc(c) = (ndc(c) + nic(c)) / np(c) …..(2)

 This framework focuses on two important criteria of coupling measure; the interaction pattern and the

special method. The strongest part in this framework is to consider the interaction between pattern methods.

 In another research Chae et al considers two characteristics of classes, which could lead to different

coupling values from the general intuition of coupling [4]. The two characteristics are: the patterns of the

interactions among the class members (e.g. counting the number of instance variables used by a method) and

special methods. According to them the nature of these methods should be reflected to properly measure the

coupledness[4] .

According to Chae et al , in order to describe these characteristics in class c, a reference graph g
r
(c) is

drawn to represent the interaction among the members of class c, and is defined to be an undirected graph

g
r
=(n,a) with [4]: The relationship for evaluating coupling in the frameworks is given as follows

 …………………(3)

 ………… (4)

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 4

 Where V(C) is a set of instance variables in the class c, M(C) is a set of methods in the class c, and R
*

(M) is

a set of instance variables directly/indirectly references by M.

 In their research Chae et al define glue methods of graph g
r
, m

g
(g

r
), as the minimum set of methods without

which its reference graph g
r
can be divided into disjoint sub-reference graphs. then, they introduce the notion of

connectivity factor as: the connectivity factor of a reference graph g
r
, f

c
(g

r
), represents the degree of the

connectivity among the members, and is defined to be the ratio of the number of the glue methods to the number

of normal methods[4].

 In their research Briand et al define four coupling properties to characterize coupling in a reasonable intuitive

and rigorous manner. The four properties are: nonnegative and normalization, null value and maximum value,

monotonicity, and merging of unconnected classes [2] . However, these properties are not sufficient to tell that a

measure that fulfills them all will be useful; it is likely that a measure that does not fulfill them all is ill-defined.

Let R
c
the set of relationships within the class c. The set of all intra-class relationships in an object-oriented

system is defined as Rc. We say that R
c
is maximal, if all possible relationships within class c are presented. We

say Rc is maximal if R
c
is maximal ∀c∈c [2] .

 A research conducted by Harrison et al defines coupling between classes (CBC) as a count of the number of

classes to which a class is coupled [15]. It counts each usage as a separate occurrence of coupling. This includes

coupling via inheritance. This approach only performs normal count and concludes that coupling exists if count

is greater than zero[15] .

A further research done by Harrison et al (considers the Number of Associations (NAS) in a class. In this

research three hypotheses related to coupling are investigated by the authors are [15]:

(i) H1: As inter-class coupling increases, the understandability of a class decreases. This hypothesis is

rejected by authors.

(ii) H2: As inter-class coupling increases, the total number of errors found in a class increases. This

hypothesis is rejected by authors.

(iii) H3: As inter-class coupling increases, the error density of a class increases. This hypothesis is

supported by authors.

To investigate these hypotheses author studied dependent variables such as

(i) Software Understandability (SU)

(ii) Number of known errors (KE)

(iii) Error per thousand non-comment source lines (KE/KNCSL)

 Also, coupling due to object as a parameter of methods and return type for a method is considered by authors

[15].

 In this research it is noted that source lines of codes framework measures the number of physical lines of

active code, that is, no blank or commented lines code[13]. Counting the source lines of code is one of the

earliest and easiest approaches to measuring complexity. In general the higher the Source lines of code in a

module the less understandable and maintainable the module is [15] .

 In another research as proposed by simon et al , they advances one major principle in software engineering;

design principle, “put together what belongs together” [16]. Three major criteria (point of views) that might lead

this grouping are functionality, data orientation, and time orientation. The grouping process, which is called the

extraction for reverse engineering, should be tool supported. One instrument for their implementation is distance

measure [16].

 In the research the work of groupings is strongly connected with the theory of similarity/dissimilarity.

Simon et al proposes that the degree of similarity in coupling measurement can be defined quantitatively if all

properties of the object are assigned the same weight (uniform) [16].

 Further research on coupling by Zhao and Xu (2009) first consider only direct interaction coupling

between two methods in a class. Their definition is then expanded to indirect interaction coupling via transitive

method invocations.

3.4 Object Coupling Measures

In a research by Hongyu et al the researchers proposes definition of coupling as the degree of direct and indirect

dependencies between parts of object oriented software design. To measure coupling in class diagrams there

research proposes the following approaches [21] :

(i) Number of children approach: -Number of children framework defines number of sub-classes

subordinated to a class in the class hierarchy. This framework measures how many sub-classes are

going to inherit the methods of the parent class. Number of children framework relates to the notion of

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 5

scope of properties. If number of children framework grows it means reuse increases. On the other

hand, as number of children framework increases, the amount of testing will also increase because more

children in a class indicate more responsibility. So, number of children framework represents the effort

required to test the class, reuse and maintain.

(ii) Coupling Between Number of Objects:-A class is coupled with another if the methods of one class use

the methods or attributes of the other class. An increase of Coupling between Number of Objects

indicates the reusability of a class will decrease. Multiple accesses to the same class are counted as one

access. Only method calls and variable references are counted.

(iii) Number of Dependencies In: -The Number of Dependencies In framework is defined as the number of

classes that depend on a given class. This framework is proposed to measure the class complexity due

to dependency relationships. The greater the number of classes that depend on a given class,the greater

the inter-class dependency and therefore the greater the design complexity of such a class. When the

dependencies are reduced the class can function more independently.

(iv) Number of Dependencies In Number of Dependencies Out:-The Number of Dependencies Out

framework is defined as the number of classes on which a given class depends. When the framework

value is minimum the class can function independently.

(v) Number of Dependencies Out Number of Association: - The Number of Association per Class

framework is defined as the total number of associations a class has with other classes or with itself.

When the number of associations are less the coupling between objects are reduced.

(vi) Direct Dependency: - The direct dependency is direct connection between services. This kind of

dependency may exist between services directly when a service calls other services or a service is called

by other services. Direct Dependency share the local data without any mediator.

 In a research Chidamber and Kemerer they transforms the definition by Wand and Weber, Chidamber and

Kemerer conclude “any evidence of a method of one object using methods or instance variables of another

object constitutes coupling [22].As a framework for coupling measurement, they define Coupling between

Objects (CBO) as proportional to the number of non-inheritance related couples with other classes. While this

idea has been widely appreciated in this literature in principle, some deficiencies have been identified, notably

that it does not scale up to higher levels of modularization [22]. Moreover, we may note that coupling is defined

as an attribute of pairs of objects, but as a framework, it is aggregated to the total number of couples that one

class has with other classes, thus implicitly assuming that all basic couples are of equal strength.

In a research by Eder et al they identify the three dimensions of coupling are derived [7].

(i) Interaction coupling: Two methods are interaction coupled if one method invokes the other, or they

communicate via sharing of data. Interaction coupling between method m implemented in class c and

method m implemented in class c contributes to interaction coupling between the class’s c and m [7].

(ii) Component coupling: Two classes C1 and C2 are component coupled, if c¢ is the type of either an attribute

of c, or an input or output parameter of a method of c, or a local variable of a method of c, or an input or

output parameter of a method invoked within a method of c.

(iii) Inheritance coupling: Two classes’ c and c¢ are inheritance coupled, if one class is an ancestor of the other.

In a research by Sherif et al, (2011) on coupling measurement, Two design frameworks are considered by

authors.

(i) Static: can only calculate design time properties of an application.

(ii) Dynamic: used to calculate actual runtime properties of an application.

From the above two design concepts, two types of coupling is considered by authors;

(i) Class level coupling (CLC): Only invocations from one method to another are considered.

(ii) Object level coupling (OLC): The invocations from one method to another and frequency of

invocations at run time is also considered.

The authors also considered that, there is correlation between the number of faults and complexity of system.

Therefore, static complexity is used to assess the quality of software. To measure dynamic complexity

framework authors used ROOM design charts, cyclomatic complexity, operation complexity is calculated from

ROOM charts [23].

Authors explained export and import object coupling with context, description, formula and impact on design

quality attributes [23] .

1. Export object coupling (EOC): Measure is a percentage of number of messages sent from object A to object B

with respect to total number of messages exchanged during the execution of some scenario [23] .

2. Import Object coupling (IOC): Measure is a percentage of the number of messages received by object A and

was sent by object B with respect to the total number of messages exchanged during the execution of some

scenario [23].

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 6

3.5 Dynamic and Static Coupling Measures

The framework described by Erik considered following points regarding coupling measurement [24].

(i) Dynamic behavior of software can be precisely inferred from run time information.

(ii) Static coupling measures may sometimes be inadequate when attempting to explain differences in

changeability for object oriented design.

The author derived three dimensions of coupling .

(i) Mapping: object or class

(ii) Direction: import or export

(iii) Strength: number of dynamic messages, distinct methods, or distinct classes.

The empirical evaluation of the proposed dynamic coupling measure consists of two parts. The first part is to

assess fundamental properties of the measure Second part evaluates whether the dynamic coupling measures can

explain the change proneness of class. Erik used the concept of role models for dynamic coupling measurement.

The role models are [24]

(i) Scenario: a specific sequence of interactions between the objects.

(ii) Role: abstract representation of the functional responsibility of each object in a given scenario.

According to the authors the Object can have many roles because it may participate in many scenarios. The role

model reflects the dynamic coupling between the roles along three orthogonal dimensions: direction, mapping

and strength [24].

(i) Direction of Coupling (Import and Export coupling): Dynamic import coupling counts the messages sent

from a role, whereas dynamic export coupling counts the messages received [24] .

(ii) Mapping: Object-level and Class-level Coupling: Object-level coupling quantifies the extent to which

messages are sent and received between the objects in the system. Dynamic, class level coupling quantifies

the extent of method dependencies between the classes implementing the methods of the caller object and

the receiver object [24].

(iii) Strength of Coupling: The strength of coupling quantifies the amount of association between the roles.

 In a research conducted by Briand et al the authors described many significant dynamic coupling

measures and highlights way in which they differ from static measures. The authors collected the measures using

UML diagrams and accounted precisely for inheritance, polymorphism and dynamic binding. According to

Briand et al classification of dynamic coupling measures [2].

(i) Entity of measurement: The entity of measurement may be a class or an object.

(ii) Granularity: The granularity can be class level or object level.

(iii) Scope: The objects and classes are to be accounted for measurement.

The authors captured situations for import and export coupling.

(i) Dynamic messages: Total number of distinct messages sent from one object to other objects and vice

versa, within the scope considered.

(ii) Distinct method invocations: Number of distinct methods invoked by each method in each object.

(iii) Distinct classes: Number of distinct classes that a method in a given object uses.

 The authors described much more regarding polymorphism and dynamic binding using the above measures

than the others and concluded that coupling is one of the factors which affect change proneness. The authors

identified six criteria of dynamic coupling measures [2] .

(i) The type of connection: What items (attribute, method or class) constitutes coupling .

(ii) The locus of impact: To decide whether to count import or export coupling .

(iii) Granularity of the measure: The level of detail at which information is gathered, i.e. what components

are to be measured and how exactly the connections are counted .

(iv) Stability of server: There are two categories of class stability defined. The first is unstable classes which

are subject to modification or development (user defined) and stable classes which are not subject o to

change (library) .

(v) Direct or indirect coupling: To decide whether to count direct or indirect coupling. For example, if a

method m1 invokes a method m2, which in turn invokes a method m3, we can say that m1 indirectly

invokes m3. Methods m1 and m3 are indirectly connected .

(vi) Inheritance: inheritance-based vs. non-inheritance-based coupling, and how to account for

polymorphism, and how to assign attributes and methods to classes .

 A varied approach for coupling measurement is proposed by Sant'Anna et al [25] .The authors proposed

a new framework Lack of Coupling in Operations(LCOO) which measures the amount of method/advice pairs

that do not access to the same instance variables [25]. It is an extension of the well-known LCOM (Lack of

Coupling in Methods) framework developed by Chidamber and Kemmerer. This framework measures the lack of

coupling of a component (class and aspect).

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 7

 A high LCOO value, according to Sant' Anna et al, indicates disparateness in the functionality provided

by the aspect. The definition of LCOO framework is almost operational [25]. It is not stated whether inherited

operations and attributes are included or not, and we have to assume that sets {I} only include attributes of j

component C1.

 Definition of this framework is based on AspectJ-like programming languages whose approach to

software development do not strictly follow object oriented software design [25] .

IV. Discussion
 Bieman and Kangs research focuses on two important criteria of coupling measure; the interaction pattern and

the special method. The strongest part in this framework is to consider the interaction between pattern methods.

However, the connectivity factor could generate misleading information leading to poor recognition of the

interaction pattern [18]. Access methods also cause problems for measures that count pairs of methods that use

common instance variables. Because access methods usually access only one instance variable, many pairs of

methods that do not reference a common instance variable can be formed using access methods [18]. Thus, the

coupling is artificially decreased. The best Solution to pattern recognition problem is to exclude access methods

from analysis. Similarly for constructor which typically reference all instance variables, pattern recognition

which artificially increases the coupling of the class, this framework is not suitable because it generates many

pairs of methods that use an instance variable in common. It is therefore better to exclude constructors from

analysis [18].

 The definition stated by Hitz and Montazeri to identify the coupling type does not consider the patterns of the

interactions among class members, but just count the number of edges in the connected graph. Such simple

counting coupling criteria without taking into account the interaction patterns among class members would lead

to a different result than expected when considering the various class patterns in program. Similarly this

framework doesn’t consider the number of sub components and method invocation which has a direct influence

on coupling in classes. The montazeri framework counts edges and doesn’t consider the objects that can be

created in software system. It’s therefore not an appropriate framework for measuring class coupling in object

oriented software systems.

 Briand et al proposes four aspects monotonicity, normalization, symmetry and non negativity. The above

stated properties are admissible on a ration scale; hence, there is no contradiction between these properties and

the definition of coupling measures on a ratio scale. However, the given properties are not an indicator that a

measure that fulfills them all will be useful; it is likely that a measure, which does not fulfill them all, is ill-

defined. However, these properties are not sufficient. The following are the gaps created by the four proposals

approach by Briand et al framework.

1. Normalization: A module can have no coupling or can have maximum coupling. And therefore it’s not always

applicable all the time that coupling in modules can be measured.

2. Monotonicity for non-coupling components: Adding intra-module relationships will increase the module

coupling. Additional internal relationships in modules cannot decrease coupling since they are supposed to be

additional evidence to encapsulate module components together.

3. Coupling modules: The coupling of a module obtained by putting together two unrelated modules is not

greater that the maximum coupling of the two original modules.

4. Non-negativity: The coupling of a module cannot be negative. Even in the worst case, when none of the

module components are related, the coupling of the module is 0.

5. Symmetry: The coupling of a module should not be sensitive to the direction of the relation between modules.

If there is a relation between module m1 and m2 then the representation of m1→m2 is equivalent to m2→m1.

 The Chae et al framework considers mostly interaction among the various class components and

represents this interaction using graphs[4] .However drawing the graph doesn’t take into consideration the

various instance variables that should be adopted when developing a system .Similarly the graph drawn cannot

clearly indicate the difference between imported and exported classes, methods .

 The Chae et al approach considers the disjoint sub reference graphs and ignores the possibility of existence

of sub components, sub objects and sub methods . In reality components and objects are not usually disjointed

but make reference to each other in well designed software systems as proposed by Chae et al .

 The framework proposed by Simon et al looks at similarity of the various classes. From the definition of

similarity it follows some important observations about classes. According to Simon et al coupling depends a lot

on the point of view, it is not an attribute by itself, it exists only between pairs of entities, and it is not defined

between two entities with respect to an incompatible total property set.

In concepts from measurement coupling theory, this measuring of distances can be described in the following

way:

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 8

1) The entities between which the distances are to be measured have to be reduced to the considered properties

to get an entity model.

2) The empirical relation system (ERS) consists of pairs of entity-models, between which the distances are to be

measured.

3) To reach at least the ordinal scale on the ERS there has to exist at least one relation between entity-model

pairs that is connected, anti-symmetric, and transitive.

The main advantages of distance-measurement are:

1) Distance with respect to a set of properties is an easy imaginable property between two entities. The classical

representation problem that is which numbers are assigned to which entities, is changed to the problem of

assigning numbers to entity pairs.

2) Detecting distance is one of the most powerful capabilities of the human perception apparatus.

3) Distance has a geometric equivalent that is the Euclidean distance.

4) There exist many statistical techniques for working with distance values, because these are often produced in

empirical science.

 Zhao and Xu first consider only direct interaction coupling between two methods. Their definition is then

expanded to indirect interaction coupling via transitive method invocations. The weaknesses are considered in

the following two scenarios [19];

a. Component coupling. There are four degrees of component coupling between classes (listed below from

strongest to weakest) [17] .

(i) Hidden: Component coupling does not manifest itself in code. For instance, if a class c contains a

cascaded method invocation such as a.m1 ().m2 (), the type of the object returned by m2 need not be

explicit in the interface or body of class c. It can be found in the interface of the class of the object

returned by method m1. That is, in order to detect occurrences of hidden coupling where class c is

involved; we also have to look at the interfaces of other classes.

(ii) Scattered: Component coupling manifests itself in the body of the class only (cases c) and d) in the

above definition). Consequently, the body of the class has to be searched in order to detect occurrences

of this type of coupling.

(iii) · Specified: Component coupling manifests itself in the interface (cases a and b). It is sufficient to

search the interface of the class for occurrences of this type of coupling.

(iv) Nil: No component coupling, this is not true since for object oriented systems coupling between

components will always exist.

b. Inheritance coupling. There are three degrees of weaknesses of coupling as regards Zhao and Xu inheritance

coupling and they are ;

(i) Inheritance modification: Inheriting class changes at least one inherited method in a manner that

violates some predefined “good practice” rules. Eder et al provide examples of such rules as “the

signature of an inherited method m may only be changed by replacing the type of a parameter of m, say

class d, with a descendent of class d,” “an inherited method must not be deleted from the class

interface,” and “if a method is overridden, the overriding method must keep the same semantics as the

overridden method.” The predefined rules applied will, to a certain extent, depend on the used design

methodology and programming language. When these rules involve the semantics of methods, they are

subjective and not easily measured automatically from a static analysis of the design or source code

documents. Modification coupling is the strongest type of inheritance coupling because information

inherited from the parent class is modified or deleted in a manner which cannot be justified in the

context of inheritance

(ii) Signature modification: Not only the implementation of at least one inherited method is changed, but

the signature of the method is also changed.

(iii) Implementation modification: The implementation of at least one inherited method is changed. This

degree of coupling is weaker than the previous type because the signature of the method is not changed.

 A high LCOO value, according to Sant' Anna et al, indicates disparateness in the functionality provided by

the aspect. The definition of LCOO metric is almost operational. It is not stated whether inherited operations and

attributes are included or not, and we have to assume that sets {I} only include attributes of component C1.

Definition of this metric is based on Aspect-like programming languages whose approach to software

development does not strictly follow object oriented software design.

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 9

V. Conclusion
In this paper a review has been conducted in the various coupling measures. As part of review we propose

classification of coupling measures as class based, object based, dynamic based and static based. A key

contribution of the state of the art review is new structure of classification of coupling measures on the basis of

class, objects, dynamic and static behavior. A mechanism structure has also been proposed to be used with the

list of items to consider proposed. A critique has been presented detailing the weaknesses of each measure and

we request for further research to address the various weaknesses as stated in this review paper.

References
[1] Biamen Keller, and Kiang, F., “Coupling as Changeability Indicator in Object-Oriented Systems”, Proceedings of

the Fifth European Conference on Software Maintenance and Reengineering (CSMR 2010), Estoril Coast

(Lisbon), Portugal, 2010.

[2] Briand, L.C., Daly, J., Porter, V., and Wuest, J., “A unified framework for coupling measurement in object-

oriented systems”, Empirical Software Engineering, 3 (1), 2008.

[3] Chae, H.S. and Bae, D.H., “A coupling measure for object-oriented classes”, Software Practice and Experience,

No. 30, 2011.

[4] Chae, H.S., Kwon, Y.R., and Bae, D.H., “Improving coupling frameworks for classes by considering dependent

instance variables”, IEEE Transactions on Software Engineering, vol. 30, no. 11, 2010.

[5] De Lucia, A., Oliveto, R., and Vorraro, L., “Using structural and semantic frameworks to improve class coupling”,

International Conference on Software Maintenance, 2008.

[6] Denys Hintz and Andrian Mozeri, “The Conceptual Coupling Metrics for Object-Oriented Systems,”ICSM '06

Proceedings of the 22nd IEEE International Conference on Software Maintenance, 2011.

[7] Eder H., Yamasaki, K., Yamada, H., and Noda, M.T., “A proposal of class coupling frameworks using sizes of

coupled parts”, Knowledge-Based Sof. Engineering, T. Welzer et al. (Eds) IOS Press, 2011

[8] Gelinas J.F, Badri M. , “A Cohesion Measure for Aspects”, in Journal of Object Technology, vol. 5, no. 7, pp. 97

– 114, September - October 2011.

[9] Henderson-Sellers, B., “Object-Oriented Frameworks Measures of Complexity”, Prentice-Hall, 2011.

[10] Jungmayr, S., “Testability Measurement and Software Dependencies”, Proceedings of the 12th International,

Workshop on Software Measurement, October 2012

[11] Larman, G., “Applying UML and Design Patterns, An introduction to object-oriented analysis and design and the

unified process”, Prentice Hall, 2010

[12] Marcus, A., and Poshyvanyk, D., “The conceptual coupling of classes”, Proc. 21th IEEE International Conference

on Software Maintenance, September 2009

[13] Patidhar et al. International Journal of Advanced Research in Computer Science and Software Engineering 3(3),

March - 2013, pp. 517-521 © 2013, Page 518

[14] Pressman, R.S., “Software Engineering, A practitioner's approach”, McGraw Hill, 2005

[15] R. Harrison, S. Counsell, R. Nithi “A Cohesion Measure for Aspects”, in Journal of Object Technology, vol. 5, no.

7, pp. 97 – 114, September - October 2011.

[16] Simon Allier, St´ephaneVaucher, Bruno Dufour, and HouariSahraoui, 2010 Working Conference on Source Code

Analysis and Manipulation,IEEE.

[17] Simon, C., Cox, G., and Etzkorn, L., “Exploring the relationship between coupling and complexity”, Journal of

Computer Science. 1 (2), 2010.

[18] Voas, J.M., “PIE: A dynamic failure-based technique”, IEEE TSE, 18(8), August 2012.

 [19] Zhao .J and Xu. B, "Measuring Aspect Cohesion", Proc.International Conference on Fundamental Approaches

toSoftware Engineering (FASE'2004), LNCS 2984, pp.54-68 , Springer-Verlag, Barcelona, Spain, March 29-

31,2009

[20] Kabaili, H., Keller, R.K., Lustman, F., and Saint-Denis, G., “Class Coupling Revisited: An Empirical Study on

Industrial Systems”, Workshop on Quantitative Approaches OO Software Engineering, 2010.

[21] Hongyu Pei Breivold, Muhammad Aufeef Chauhan and Muhammad Ali Babar, 2010 Asia Pacific Software

Engineering Conference, IEEE.

[22] A Chidamber and P Kemerer., “The conceptual coupling of classes”, Proc. 21th IEEE International Conference on

Software Maintenance, September 2011.

[23] Sherif M. Yacoub, Hany H. Ammar, and Tom Robinson “Coupling as Changeability Indicator in Object-Oriented

Systems”, Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, Estoril

Coast (Lisbon), Portugal, 2011.

[24] Erik Arisholm. Maintenance Metrics for the Object Oriented Paradigm. In Proc. 1st Int. Software Metrics Symp.,

Los Alamitos,2011

[25] Cláudio Sant’Anna, Eduardo Figueiredo, Alessandro Garcia, Carlos J. P. Lucena, “On theModularity Assessment

of Software Architectures: Do my architectural concerns count?”, 6th International Workshop on Aspect-Oriented

Software Development(AOSD•07), Vancouver, British Columbia, March , 2010.

Coupling Measures for Object Oriented Software Systems…

www.theijes.com The IJES Page 10

Calvins Otieno is a PhD student in the Department of Computing at the Jomo Kenyatta University of….. He has

a B.Sc. in Computer Technology, Masters in Software Engineering. His research interest is in the fields of

software engineering and software quality systems. He currently teaches in IT department in the same university.

Dr.George Okeyo Onyango is the current Chairman and HOD Computing at JKUAT. He has a PhD in

Computer Science from University of Ulster, MSc Information Systems from University of Nairobi and BSc

Mathematics and Computer Science from JKUAT. His research intrest are in the fields of object oriented

technologies,semantic web and pervasive computing.

Dr. Stephen Kimani is the current director School of Computing and Information Technology of the Jomo

Kenyatta University of Agriculture and Technology in Kenya. He has previously been a researcher at CSIRO

(Australia) and Sapienza University of Rome (Italy). He has the following academic qualifications: BSc in

Mathematics and Computer Science (JKUAT); MSc in Advanced Computing (University of Bristol, UK); PhD

in Computer Engineering (Sapienza University of Rome, Italy).

