
The International Journal Of Engineering And Science (IJES)

|| Volume || 3 || Issue || 12 || December - 2014 || Pages || 39-47||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 39

Implementation of Stronger S-Box for Advanced Encryption

Standard

B.Bharath kumar
1
, R.Rajesh kumar

2
,

1
 Mtech student,Mtech(vlsi&es),mallineni lakshmaiah engineering college,andhra pradesh,india

2
 assistant professor,Mtech(vlsi&es),mallineni lakshmaiah engineering college,andhra pradesh,india

---ABSTRACT---
Advanced Encryption Standard (AES) block cipher system is widely used in cryptographic applications. The

main core of AES block cipher is the substitution table or SBox. This S-box is used to provide confusion

capability for AES. In addition, to strengthen the S-Box against algebraic attacks, the affine transformation is

used. The requirements of information security within an organization have undergone several changes in the

last few decades. With the fast evolution of digital data exchange, security of information becomes much

important in data storage and transmission. The proposed paper presents a combinational logic based s-box

implementation for subBbyte transformation in advanced encryption standard (AES) algorithm in verilog code

language, this combinational logic based s-box is small area occupied and provide high throughput .this is a

two staged pipelined combinational logic based s-box.the fact that pipelining can be applied to this S-Box

implementation as compared to the typical ROM based lookup table implementation which access time is fixed

and unbreakable. In this paper, the construction procedure for implementing a 2 stage pipeline combinational

logic based S-Box is presented and illustrated in a step-by-step manner.. Finally, for the purpose of practicality,

the depth of the mathematics involved has been reduced in order to allow the reader to better understand the

internal operations within the S-Box. the simulation and synthesis is done in modelsim and Xilinx software

,output result has been included.

 KEYWORDS: sbox,encryption,sub byte

--- ----------

Date of Submission: 28 November 2014 Date of Accepted: 25 December 2014

--- ----------

I. INTRODUCTION
 Data Encryption Standard (DES) which was introduced in November 1976 when DES was no longer

secure. On 2nd January 1997, the National Institute of Standards and Technology (NIST) invited proposals for

new algorithms for the new Advanced Encryption Standard (AES). The goal was to replace the older after going

through 2 rounds of evaluation; Rijndael was selected and named the Advanced Encryption Standard algorithm

on 26
th

 November 2001. The AES is a128bit input block with a key size of 128,198,256bits .the input 128 it(16

bytes) are swapped according to the predefined tables. These bytes are placed in

4x4 matrix. the elements in the matrix are rotated to the right in a line matrix. the rotation is varied with the line

number the matrix undergo through a linear transformation which consist of the binary multiplication of each

matrix elements with polynomial foam a auxiliary matrix ,the GF(2
8
) is used in the process of multiplication for

better diffusion of bits the linear transformation is done over several times .finally the matrix are XOR with each

other and the intermediate matrix is obtained these operations are repeated several times and define turn for

128,18,and 256 AES require respectively 10,12 or14 rounds. Mainly there are four transformations they are

AddRoundKey,SubByte,ShiftRow and MixColum transformation.the add round key transformation is done by

XOR operation between the state array and the output of the round key f key expansion function. the subbyte

transformation is nonlinear byte substation of each byte in the state array a\is repeated with another one from a

look up table called s-box, shift roe transformation is done y cyclically shifting the rows in the array with

different offsets finally mix column transformation is done by mixing columns operation when the byte in the

new column are obtained by the bytes of a coloum nth state array

Previous Implementations of the S-Box : In the previous implantation of the s-box further sub byte operation

was done by using pre computed values stored in arm based lookup tables, here all the 256 values are stored in

a rom which suffers from an unbreakable delay since ROMs have a fixed access time for its read and write

operation. Furthermore this implantation is expensive in terms of hardware.

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 40

Proposed implementation of s-box: this is a more refined way of implementing the s-box is use of

combinational logic .this s-box has the advantage of having small area occupancy in addition to be capable f

being pipelined for increased performance in clock frequency. the s-box architecture is based on the

combinational logic implementation

The SubByte and InvSubByte Transformation: The SubByte transformation is done by taking the

multiplicative inverse in GF(2
8
) then by an affine transformation. For its reverse, the InvSubByte

transformation, the inverse affine transformation is obtained to the get multiplicative inverse. The steps involved

for both transformation is shown below.

SubByte: 1 Multiplicative Inversion in GF(28) 2. Affine Transformation

InvSubByte:3Inverse Affine Transformation 4 Multiplicative Inversion in GF(28)

The Affine Transformation and its inverse can be represented in matrix form and it is shown below.

The AT and AT-1 are the Affine Transformation and its inverse Affine Transformation while the vector a is the

multiplicative inverse of the input byte from the state array. Both the SubByte and the InvSubByte

transformation involve a multiplicative inversion operation. Thus, both transformations may actually share the

same multiplicative inversion module in a combined architecture. An example of such hardware architecture is

shown below. Switching between SubByte and InvSubByte is just a matter of changing the value of INV. INV

is set to 0 for SubByte while 1 is set when InvSubByte operation is desired.

II. S-BOX CONSTRUCTION METHODOLOGY
 The procedure for constructing the multiplicative inverse module for the s-box using composite field

arithmetic . it is stated that any arbitrary polynomial can be represented as bx + c, given an irreducible

polynomial of x2 + Ax + B. Thus, element in GF(28) may be represented as bx + c where b is the most

significant nibble while c is the least significant nibble. From here, the multiplicative inverse can be computed

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 41

using the equation below. [2]

From [1], the irreducible polynomial that was selected was x

2
 + x + λ. Since A = 1 and B = λ, then the equation

could be simplified to the form as shown below. [1]

The above equation indicates that there are multiply, addition, squaring and multiplication inversion in GF(24)

operations in Galois Field. Each of these operators can be transformed into individual blocks when constructing

the circuit for computing the multiplicative inverse. From this simplified equation, the multiplicative inverse

circuit GF(2
8
) can be produced as

shown in Figure 2.1

The legends for the blocks within the multiplicative inversion module from above are illustrated in the Figure

2.2 below

Isomorphic Mapping and Inverse Isomorphic Mapping: The multiplicative inverse calculation has been

done by decomposing the more complex GF(28) to lower order fields of

GF(2
2
) -> GF(2) : x

2
 + x + 1

GF((2
2
)

2
) -> GF(2

2
) : x

2
 + x + φ (2.3)

GF(((2
2
)

2
)

2
) -> GF((2

2
)

2
) : x

2
 + x + λ

where φ = {10}2 and λ = {1100}2.

Multiplicative inverse in composite fields cannot be directly applied to an element which is based on GF(2
8
) by

using isomorphic function the elements has t be mapped into composite fields represented and obtained the

multiplicative inverse .the result has to again mapped into composite fields to equivalent into gf(28) by using

inverse isomorphic function

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 42

Composite Field Arithmetic Operations : An arbitrary polynomial operation can be represented by bx+c whee

b is the upper half term and the c is the lower half term for instance arbinary number I galis field can be spit to

qhx+ql, if q = {1011}2, it can be represented as {10}2x + {11}2, where qH is {10}2 and qL = {11}2. qH and qL

can be further decomposed to{1}2x + {0}2 and {1}2x + {1}2 respectively. Then the decomposing is done by

making using f irreducible polynomial using this idea the logical equitation for the addition, squaring,

multiplication and inversion can be derived.

Addition in GF(2
4
) : Addition of 2 elements in Galois Field can be translated to simple bitwise XOR operation

between the 2 elements.

Squaring in GF(2
4
) : Let k = q2, where k and q is an element in GF(24), represented by the binary number

of {k3 k2 k1 k0}
2
 and {q3 q2 q1 q0}

2
 respectively.

The x2 term can be modulo reduced using the irreducible polynomial from (2.3), x
2
 +

x + φ. By setting x2 = x + φ and replacing it into x2. Doing so yields the new expressions

below.

The expression above is now decomposed to GF(2
2
). Decomposing kH and kL further to GF(2) would yield the

formula to compute squaring operation in GF(2
2
). Using the irreducible polynomial from (2.3) x2 + x + 1, and

setting it to x2 = x + 1, x2

is substituted and the new expression is obtained.

From equations (2.4) and (2.5), the formula for computing the squaring operation in GF(24) is acquired as

shown below.

Equation (2.6) can then be mapped to its hardware logic diagram and it is shown in

Figure 2.3 below.

Multiplication with constant, λ

Let k = qλ, where k = {k3 k2 k1 k0}2, q = {q3 q2 q1 q0}2 and λ = {1100}2 are elements of

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 43

GF(2
4
).

Modulo reduction can be performed by substituting x2 = x + φ using the irreducible

polynomial in (2.3) to yield the expression below

2.2.4. GF(2
4
) Multiplication

Let k = qw, where k = {k3 k2 k1 k0}2, q = {q3 q2 q1 q0}2 and w = {w3 w2 w1 w0}2 are elements of GF(24).

Substituting the x2 term with x2 = x + φ yields the following.

Equation (2.10) is in the form GF(2
2
). It can be observed that there exists addition and

multiplication operations in GF(22). As mentioned in Section 2.2.1, addition in GF(2
2
) is but bitwise XOR

operation. Multiplication in GF(22), on the other hand, requires decomposition to GF(2) to be implemented in

hardware. Also, it the expression would be too complex if equation (2.10) were to be broken down to GF(2).

Thus, the formula for multiplication in GF(2
2
) and constant φ will be derived instead. Figure 2.5 below shows

the hardware implementation for multiplication in GF(2
4
).

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 44

The pre-computed multiplication result of 2 elements in GF(24) is tabled below.

From Table 2.1, the results for multiplication with constant λ and squaring operation in GF(24) can also be

obtained

GF(22) Multiplication

Let k = qw, where k = {k1 k0}2, q = {q1 q0}2 and w = {w1 w0}2 are elements of GF(2
2
).

The x2 term can be substituted with x2 = x + 1 to yield the new expression below.

Figure 2.6 below illustrates its hardware implementation

The hardware implementation above differs from the (2.12) for the computation of k1.

It can be proven that the implementation above for computing k1, would result to the

Expression in (2.12), as shown below

Multiplication with constant λ

Let k = qφ, where k = {k1 k0}2, q = {q1 q0}2 and φ = {10}2 are elements of GF(22).

Substitute the x2 term with x2 = x + 1, yield the expression below

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 45

From (2.13), the formula for computing multiplication with φ can be derived and is

shown below.

The hardware implementation of multiplication with φ is shown below in Figure 2.7

Multiplicative Inversion in GF(24)

The authors of [3] has derived a formula to compute the multiplicative inverse of q

(where q is an element of GF(24)) such that q-1 ={q3-1,q2-1,q1-1,q0-1}. The inverses of the individual bits can

be computed from the equation below. [3]

III. SIMULATION RESULT:
 the above said implementation of the multiplicative inverse by using subbyte transformation in

composite field has simulated in the modelsim software here the we can observe that the encryption has done by

using the multiplicative inverse there are the fig of encryption and decryption of aes

Fig(1): encryption of the plain text by using the inverse multiplication module based s-box

Fig(2): decryption of the plain text by using the inverse multiplication module based s-box

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 46

Synthesis report:

fig: aes encryption block with device utilization summary

Fig aes decryption block with device utilization summary

Implementation Of Stronger S-Box For Advance Encryption Standard

www.theijes.com The IJES Page 47

IV. CONCLUSION:
A combinational logic based S-Box for the SubByte transformation is discussed and its internal

operations are explained. As compared to the typical ROM based lookup table, the presented

implementation is both capable of higher speeds since it can be pipelined and small in terms of area

occupancy This compact and high speed architecture allows the S-Box to be used in both area- limited

and demanding throughput AES chips for various applications, ranging from small smart cards to high

speed servers. The implementation of the stronger sbox by using inverse multiplication has done and the

output result ofsimulation has show by using model simsoftware and synthsis is doneby using silinx

softaware

REFERENCE:
[1] Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji Munetoh, “A Compact Rijndael Hardware Architecture with S-

Box Optimization.”, Springer-Verlag Berlin Heidelberg, 2001.

[2] Vincent Rijmen, “Efficient Implementation of the Rijndael S-Box.”, Katholieke Universiteit Leuven, Dept. ESAT. Belgium.

[3] Xinmiao Zhang and Keshab K. Parhi, “High-Speed VLSI Architectures for the AES Algorithm.”, IEEE Transactions on
Very Large Scale Integration(VLSI) Systems, Vol. 12, No. 9, Septemper 2004.

[4] “Advanced Encryption Standard (AES)” Federal Information Processing Standards Publication 197, 26
th

November 2001.

[5] Tim Good and Mohammed Benaissa, “Very Small FPGA Application-Specific Instruction Processor for AES.”, IEEE
Transactions on Circuits and Systems – I: Regular Papers, Vol. 53, No. 7, July 2006.

[6] The Advanced Encryption Standard

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

BIOGRAPHIES

B.Bharath kumar.completed btech in rao and naidu engineering college and pursing Mtech in Malineni

lakshmaiah engineering college,singayakonda,Andhra Pradesh,india

R.Rajesh kumar assistant professor at mallineni lakshmaiah engineering college

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

