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---------------------------------------------------ABSTRACT------------------------------------------------------- 
This research work mainly focuses on the application of principles of George Box and Gwilym Jenkins to 

estimate the appropriate models that can be used for forecasting retail prices of imported and local rice in 

Nigeria. The Dickey Fuller test was carried out to confirm if the series is stationary or non stationary. From the 

results obtained, conclusion was made that, series for both rice are non stationary, this will lead us to 

differencing of the data in estimating the Autoregressive Integrated Moving-Average (ARIMA) models. Usually, 

first order differencing is always recommended in order to obtain the appropriate ARIMA model. An attempt 

was made in identifying the respective models with the aids of AutocorrelationFunction (ACF) and Partial 

Autocorrelation Function (PACF) plots, possible ARIMA models were estimated based on the description of the 

ACF and PACF plot. The model with the least Mean Square Error (MSE) value is chosen as the best model for 

both imported and local rice which is ARIMA (2,1,1).Models estimations for imported and local rice have the 

same number of parameters, this shows that prices of both rice exhibits similar pattern. 
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I. INTRODUCTION 
Rice is a major staple food for about 2.6 billion people in the world (Spore, 2005 and De Datta, 1981) 

and it is the fastest growing commodity in Nigeria’s food basket. The production of rice rose from 2.5 million 

tonnes in 1990 to about 4 million tonnes in 2008, representing about 37 percent rise in domestic production 

(FOSTAT (2010), FAO (2007)). However, despite the numerous government policies and programmes on rice 

and rise in domestic production, the demand and consumption of this commodity exceeds the local production 

resulting in rice importation. In the past three decades, rice has become one of the Nigeria’s most important 

foods Alam (1991), Mijindadi and Njoku (1985), Singh et al. (1997). The Nigerian rice sector has seen some 

remarkable developments over the last quarter-century. Both rice production and consumption in Nigeria have 

vastly increased during the aforementioned period. Notwithstanding, the production increase was insufficient to 

match the consumption increase with rice imports making up the shortfall. With rice now being a structural 

component of the Nigerian diet and rice imports making up an important share of Nigerian agricultural imports, 

there is considerable political interest in increasing the consumption of local rice. This has made rice a highly 

political commodity in Nigeria. However, past policies have not been successful in securing the market share for 

local rice, Adeniyi (1978).  

   

The present study tries to address this information gap through a survey of imported and local rice 

retailers. Amongst the stakeholders consulted, it is generally agreed that one of the major constraints that affect 

the development of Nigerian rice sector is the inability of the local rice to match the quality of imports. 

Consumers are the ultimate and foremost deciders when it comes to select between different types of goods. The 

quality differential between local and imported rice thereby seems an important consideration in the decision 

making process. Price is of course also an important determinant, but it is only one factor among a wider range 

of attributes that characterize the product. Indeed, imported rice consumption in Nigeria is still increasing 

rapidly in spite of a heavy custom duty implying a higher price on the market compared to local rice Akinsola 

(1985).In order to know the pattern in which the retail prices of imported and local rice are being sold in 

Nigeria, some techniques of time series analysis were employed. The analysis of time series data is based on the 

assumption that the successive values in the data file represent consecutive measurement taken at equally spaced 

time intervals.  
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For the purpose of this research work, data on monthly retail prices for imported and local rice in 

Nigeria were collected over a period of six years which made up of seventy-two (72) months.This research 

paper is mainly concerned with the application of time series techniques (Box Jenkins methodology) to estimate 

the appropriate models that can be used for forecasting retail prices of imported and local rice in Nigeria based 

on the past observations.  

II. METHODOLOGY 

In time series analysis, the Box–Jenkins methodology, named after the statisticians George Box and 

Gwilym Jenkins, applies Autoregressive Moving Average (ARMA) or Autoregressive Integrated Moving 

Average ARIMA models to find the best fit of a time series to past values of this time series, in order to make 

forecasts. Box-Jenkins represents a powerful methodology that addresses trend and seasonality well, see George 

et al. (1994). ARIMA models have a strong theoretical foundation and can closely approximate any stationary 

process. The process consists of model identification by using autocorrelation functions, evaluation by assessing 

the fit of the possible models and forecasting using the best model, see Chatfield (1984), Brockwell and Richard 

(1987),  Hurvich and Tsai (1989). 

 

The original method used an iterative three stage modeling approach, they are defined below: 

1. Model identification and model selection: making sure that the variables are stationary, identifying 

seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the ACF and 

PACF of the dependent time series to decide which (if any) autoregressive or moving average component 

should be used in the model. 

 

2. Parameter estimation: using computation algorithms to arrive at coefficients which best fit the selected 

ARIMA model. The most common methods is Maximum likelihood estimation or non-linear least-squares 

estimation. 

 

3.  Model checking: by testing whether the estimated model conforms to the specifications of a stationary 

univariate process. In particular, the residuals should be independent of each other and constant in mean and 

variance over time. (Plotting the mean and variance of residuals over time and performing a “Ljung-Box 

test” or plotting autocorrelation and partial autocorrelation of the residuals are helpful to identify 

misspecification.) If the estimation is inadequate, we have to return to step one. 

 

The first step in developing a Box–Jenkins model is to determine if the time series is stationary and if 

there is any significant seasonality that needs to be modeled. Stationarity can be detected from an 

autocorrelation plot. Specifically, non-stationarity is often indicated by an autocorrelation plot with very slow 

decay, see Delurgio (1998), and George et al. (1994). Also seasonality (periodicity) can usually be assessed 

from an autocorrelation plot. Box and Jenkins recommend the differencing approach to achieve stationarity. At 

the model identification stage, the goal is to detect seasonality, if it exists, and to identify the order for the 

seasonal autoregressive and seasonal moving average terms. For many series, the period is known and a single 

seasonality term is sufficient. For example, for monthly data one would typically include either a seasonal AR 

12 term or a seasonal MA 12 term. For Box–Jenkins models, one does not explicitly remove seasonality before 

fitting the model. Instead, one includes the order of the seasonal terms in the model specification to the ARIMA 

estimation software. However, it may be helpful to apply a seasonal difference to the data and regenerate the 

autocorrelation and partial autocorrelation plots. This may help in the model identification of the non-seasonal 

component of the model, see Harris and Robert (2003). 

 

Once stationarity and seasonality have been addressed, the next step is to identify the order p and q of 

the autoregressive and moving average terms. The primary tools for doing this are the autocorrelation plot and 

the partial autocorrelation plot. The sample autocorrelation plot and the sample partial autocorrelation plot are 

compared to the theoretical behavior of these plots when the order is known, see Delurgio (1998), and George et 

al. (1994).The followings are the guidelines for choosing order p and q:   

 

1. The ACF has spikes at lags 1, 2,…, r and cuts off after lag r and also the PACF dies down; use q=r and p=0.

        

2. The ACF dies down and the PACF has spikes at lags 1, 2,..., r and cuts off after lag r; use  

q=0 and p=r.          

3. The ACF has spikes at lag 1, 2,…, r and cuts off after lag r and also the PACF has spikes at lag 1, 

2,…, s and cuts off after lag s; use q=r and p=s.  
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4. The ACF contains small autocorrelations at all lags and the PACF contains small autocorrelations at all lags; 

use q=0 and p=0.     

5. The ACF dies down and the PACF dies down; use p=1 and q=1.  

 

Estimating the parameters for the Box–Jenkins models is a quite complicated non-linear estimation 

problem. For this reason, the parameter estimation should be left to a high quality software program that fits 

Box–Jenkins models. The main approaches to fitting Box–Jenkins models are non-linear least squares and 

maximum likelihood estimation (MLE). The MLE is generally the preferred technique, see George et al. (1994).  

Model diagnostics for Box–Jenkins models is similar to model validation for non-linear least squares fitting. 

That is, the error term At is assumed to follow the assumptions for a stationary univariate process. The residuals 

should be white noise drawings from a fixed distribution with a constant mean and variance. If the Box–Jenkins 

model is a good model for the data, the residuals should satisfy these assumptions. If these assumptions are not 

satisfied, one needs to fit a more appropriate model. That is, go back to the model identification step and try to 

develop a better model. One way to assess if the residuals from the Box–Jenkins model follow the assumptions 

is to generate statistical graphics (autocorrelation plots) of the residuals, see George et al. (1994) andHarris and 

Robert (2003).  

 

Empirical Illustration Using Imported and Local Rice Data     

To analyze the data for imported rice, the plot that displayed the features (pattern) in which the retail 

prices of imported rice occurs in Nigeria is shown below, the prices are expressed in naira (#) per one kilogram.  

 

 
Figure 1:Time plot for the retail price of imported rice 

 

From the time plot, we could easily observe that, the retail prices of imported rice rises gradually from 

January, 2001 and then dropped in the month of October of the same year. We also observe a sudden rise in the 

month of December, 2005 and there was a sudden drop in the month of April, 2006.  The plot also notified the 

presence of upward trend in the series. Therefore, differencing will be necessary so as to obtain stationarity.   

 

Test for Autocorrelation 

In order to check if the errors are autoregressive in nature, the Durbin Watson test for autocorrelation 

was performed. The hypothesis is stated as: H0: no serial correlation   vs    H1: there is serial correlation. 

 

Table 1:  Regression table 

Source |       SS           df          MS                Number of obs =      72 

-------------+------------------------------            F(  1,    70) =  865.82 

 Model |  28771.8523     1   28771.8523            Prob > F      =  0.0000 

 Residual | 2326.14773    70  33.2306818            R-squared     =  0.9252 

-------------+------------------------------            Adj R-squared =  0.9241 

       Total |   31098          71         438             Root MSE      =  5.7646 

------------------------------------------------------------------------------  

       month |      Coef.    Std. Err.      t     P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    imported |   .8214094   .0279155    29.42   0.000     .7657337    .8770851 

       _cons |  -40.87836   2.716032   -15.05   0.000    -46.29532   -35.46141 

 

Durbin-Watson d-statistic (2,    72) =  0.9515258 

Decision: dcal (0.9515) is less than dtab (1.57), since d is substantially less than 2, we reject HO and conclude that 

there is an evidence of positive autocorrelation. 
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Test for stationarity 

The Dickey Fuller test is used to check for stationarity in series for retail prices of imported rice. The 

hypothesis statement is stated below; 

 

 
 

Decision Rule: If the test statistics Z(t) is less than the critical value (usually 10% CV), we reject Ho 

and conclude that the series is stationary. 

 

  Table 2  Dickey-Fuller  Test 

 

Test          1% Critical       5% Critical      10% Critical 

Statistic            Value                Value                 Value 

 

   Z(t)  -1.352                 -3.551              -2.913                  -2.592 

 

Decision: Since -1.352  > -2.592, we do not reject the hypothesis and we then conclude that there is a unit root 

in the series.       

 

In order to fit the appropriate models, one does not explicitly remove seasonality and trend before 

fitting the model. Instead, one includes the order of the seasonal terms in the model specification to the ARIMA 

estimation software. Box and Jenkins recommend the differencing approach to achieve stationarity. The first 

order differencing (d=1) will be preferred when fitting the ARIMA models. 
 

Estimation of ARIMA Models        

Before we can estimate ARIMA models, we first identify the order of the models with the aids of 

autocorrelation function (ACF) and partial autocorrelation functions (PACF). The ACF and PACF plots are 

displayed below;  

 
 

 
Figure 2   Autocorrelation function plot 

 

 
Figure 3   Partial Autocorrelation function plot 
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 From figure 2, we observe that the autocorrelation function plot exhibit exponential decay. This 

indicates that the order of Autoregressive model can be identified by using the Partial Autocorrelation function 

plot. From figure 3, the PACF has significant spikes at lag 1 and lag 2, this suggests fitting of AR (2) and 

alternative model of MA (1). Also, from the time plot (figure 1), we noticed an upward trend in the series, this 

call for fitting of mixed model with differencing of order one, ARIMA (2,1,1)  

 

Table 3 Estimation of AR (2) Model 

Number of obs      =        72  Log likelihood = -128.3527                       

------------------------------------------------------------------------------  
month        |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 

imported    |   .1145121   .0278579     4.11   0.000     .0599116    .1691126 

_cons          |   54.79285   23.61363   0.75   0.451    48.48901    66.07472 
-------------+---------------------------------------------------------------- 

 AR:         L1|   .8620397   .0849272    10.15   0.000     .6955854    1.028494 

               L2 |   .1366306   .0851152        1.61   0.108      -.0301921    .3034534 

-------------+----------------------------------------------------------------    

The fitted autoregressive model of order 2 is given as:   

 

𝑋 𝑡 = 54.7929 +  0.8620𝑋𝑡−1 + 0.1366𝑋𝑡−2  

 

Table 4:  Estimation of MA (1) model 

                Number of obs      =        72 Log likelihood = -220.8093                       
------------------------------------------------------------------------------ 

month       |      Coef.     Std. Err.         z      P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 

imported   |   .7857546   .0312593    25.14   0.000     .7244874    .8470218 

_cons         |  47.31309   3.396736   -10.98   0.000    43.97057     63.65561 
-------------+----------------------------------------------------------------   

MA  L1        |   .3692167   .1038579     3.56   0.000      .165659    .5727745 

-------------+---------------------------------------------------------------- 

The fitted MA (1) model can be estimated as: 

 

𝑋 𝑡 = 47.3131   +  0.3692𝑎𝑡−1  

 

TABLE 5:  Estimation of ARMA (2,1) model 

Number of obs      =        72      Log likelihood =  -158.2870                       
------------------------------------------------------------------------------ 

month       |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
imported   |   .2931712   .0461779     6.35   0.000     .2026641    .3836783 

_cons         |   59.543362   22.18396   0.43  0.667     33.9364    73.02312 

-------------+----------------------------------------------------------------                  
 AR:       L1 |   .6109667   .2496642     2.45   0.014     .1216338      1.1003 

             L2 |   .3834428   .2452636     1.56   0.118    -.0972649    .8641506 

 MA:     L1 |  -.1130025   .2568081    -0.44   0.660     -.616337    .3903321 
-------------+----------------------------------------------------------------    
The fitted ARMA (2,1) model can be given as:  

 

𝑋 𝑡 =   59.5434 + 0 .6110𝑋𝑡−1 +  0.3834𝑋𝑡−2 − 0.1130025𝑎𝑡−1  

 

Table 6:  Estimation of ARIMA (2,1,1) model 
Number of obs      =        71  Log likelihood = -225.4229                       

D.imported |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 

_cons           |   .8786367   .4729777     1.86   0.063    -.0483826   1.805656 

-------------+---------------------------------------------------------------- 
AR:           L1|  -1.474065   .1839555    -8.01   0.000    -1.834611      -1.113518 

                L2|  -.5787382   .0902008    -6.42   0.000    -.7555285    -.401948 

MA:         L1|   1.032651   .2629669     3.93   0.000     .5172454    1.548057 
-------------+---------------------------------------------------------------- 
 

The fitted ARIMA (2,1,1) model can be estimated as: 
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𝑋 𝑡 =  0.8786 − 1.4741𝑋𝑡−1 − 0.5787𝑋𝑡−2 +  1.0327𝑎𝑡−1  

In order to choose the best model, the Mean Square Error (MSE) Criterion for model selection is 

adopted. The preferred model is the one with the minimum MSE value. This can be simply expressed as:MSE = 

SSE/DF Where SSE is the sum of square errors and DF means the degree of freedom. DF can be expressed as: 

n-p.  Where n is the number of observations and p is the number of parameters in the model. The comparison of 

the results is displayed in the table below:  
 

Table 7:  Comparison of the Estimated Models 

Model MSE 

AR (2) 65.62 

MA (1) 264.7 

ARMA (2,1) 43.11 

ARIMA (2,1,1) 36.01 

 

From the table above, we observe that, ARIMA (2,1,1) has the least MSE value, this model is chosen as the 

best. 
 

Analysis for the Prices of Local Rice 

 
 

Figure 4: Time plot for the retail price of local rice 

 

From the time plot, we can easily observe that, the retail prices of local rice rises and drops with a 

gradual process from the first month. The plot also notified the presence of upward trend in the series.  

 

4.7 TEST FOR AUTOCORRELATION 

 Table 8: Regression table on Local Rice 

     Source  |       SS       df       MS                Number of obs =      72 

-------------+------------------------------            F(  1,    70) =  473.96 

       Model  |  27096.1233     1  27096.1233            Prob > F      =  0.0000 

    Residual |  4001.87668    70  57.1696669           R-squared     =  0.8713 

-------------+------------------------------            Adj R-squared =  0.8695 

          Total |       31098      71         438            Root MSE      =  7.5611 

------------------------------------------------------------------------------  

       month |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          local |   1.102371   .0506357    21.77   0.000     1.001381    1.203361 

         _cons|  -41.12178   3.675101   -11.19   0.000    -48.45154   -33.79202 

------------------------------------------------------------------------------    

Durbin-Watson d-statistic (2,    72) =  0.7265975    

Decision: Since d (0.7266) is less than the critical value (dL,α= 1.57), we reject Ho and conclude that the error 

terms are autoregressive in nature. 
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Test for Stationarity 

 Table 9      Dickey-Fuller Test 

                  Test         1% Critical       5% Critical      10% Critical    

 Statistic           Value             Value             Value 

------------------------------------------------------------------------------  

 Z(t)             -1.622            -3.551            -2.913            -2.592      

 

Decision: Since -1. 622 > -2.592, we do not reject the hypothesis and we then conclude that there is a unit root 

in the series.  

 

Estimation of ARIMA Models for Local Rice        
The plots for the calculated ACF and PACF values are displayed below for the purpose of model identification. 

   

 
 

Figure 5:  Autocorrelation function 

 
Figure 6:  Partial Autocorrelation function 

  

The ACF plot in figure 4.8.1, exhibits exponential decay. The order of Autoregressive model can be identified 

by the plot Partial Autocorrelation function. Both figures suggest fitting of AR (2), MA (1) and  

 

ARIMA (2,1). 

Table 10:  Estimation of AR (2) model 

Number of obs      =        72  Log likelihood = -132.2155                       

------------------------------------------------------------------------------  

month        |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

local           |   .1736396   .0414548     4.19   0.000     .0923896    .2548895 

_cons          |   48.132846   14.42854     0.56   0.573    20.14657    56.41226 

-------------+---------------------------------------------------------------- 

AR          L1 |   .8220907   .1351067     6.08   0.000     .5572865    1.086895 

              L2 |    .174355     .1406584     1.24   0.215    -.1013303    .4500403 

-------------+---------------------------------------------------------------- 

The fitted AR (2) model is given as: 
 

𝑋 𝑡 = 48.1328 + 0 .8221𝑋𝑡−1 + 0.1744𝑋𝑡−2  
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TABLE 11:  Estimation of MA (1) model 

Number of obs      =        72  Log likelihood = -236.8481                       

------------------------------------------------------------------------------  

month        |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

local           |   1.023605   .0655703    15.61   0.000     .8950894     1.15212 

_cons         |  35.33241    4.900818      -7.21   0.000      25.72698     48.75634 

-------------+---------------------------------------------------------------- 

MA        L1 |   .4193208   .1013462     4.14   0.000     .2206858    .6179558 

-------------+-------------------------------------------------------------- 

The fitted MA (1) model can be estimated as: 

 

𝑋 𝑡 =  35.3324 +    0.4193𝑎𝑡−1 

 

TABLE 12:  Estimation of ARMA (2,1) model  

Number of obs      =        72  Log likelihood =  -172.428                       

month        |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

local           |   .4189884   .0593169     7.06   0.000     .3027294    .5352473 

_cons        |   38.02211   295.0786     0.23   0.818      21.3214    84.3656 

-------------+---------------------------------------------------------------- 

AR         L1 |   .4357787   .5478283     0.80   0.426    -.6379451    1.509502 

              L2 |   .5599945   .5496435     1.02   0.308    -.5172868    1.637276 

MA         L1 |   .2019025   .5906723     0.34   0.732    -.9557939    1.359599 

-------------+---------------------------------------------------------------- 

         sigma |   2.866552   .3713929     7.72   0.000     2.138635    3.594468 

 

The fitted ARMA (2,1) model can be estimated as: 

 

𝑋 𝑡 = 38.0221 + 0.4358 𝑋𝑡−1 + 0.5560𝑋𝑡−2 + 0.2019𝑎𝑡−1  
 

TABLE 13:   Estimation of ARIMA (2,1,1) model  

Number of obs      =        71  Log likelihood = -219.3419                       

------------------------------------------------------------------------------  

D.local      |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

_cons        |   .6161748   .5599209     1.10   0.271    -.4812499      1.7136 

-------------+---------------------------------------------------------------- 

AR         L1|  -1.361776   .3555533    -3.83   0.000    -2.058648   -.6649046 

              L2|  -.3706954   .2269425    -1.63   0.102    -.8154945    .0741037 

MA        L1|   .9471462   .3566943     2.66   0.008     .2480382    1.646254 
 

𝑋 𝑡 =   0.6162 − 1.3618𝑋𝑡−1 −   0.3707𝑋𝑡−2 +   0.9471𝑎𝑡−1  

From Table (14) below, we observe that, ARIMA (2,1,1) has the least MSE value. Therefore, this 

model is chosen as the best for forecasting retail prices of imported rice in Nigeria. 
 

Table 14:Comparison Of The Estimated Models 

Model MSE 

AR (2) 70.0 

MA (1) 148.5 

ARMA (2,1) 44.18 

ARIMA (2,1,1) 35.14 

 

III. CONCLUSION 
Based on the outcome of the results of the analysis, conclusion can be made, since the aim of this work 

is to know the pattern of feature that is/are present in the retail prices of rice in Nigeria and also to estimate the 
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best model for the commodities.  From the analysis of local rice, we observed from the time plot, the presence 

of upward trend before fitting the suggested models, with the use of MSE as the criterion for model selection. 

We then concluded that ARIMA (2,1,1)  
 

𝑋 𝑡 =   0.8786 − 1.4741𝑋𝑡−1 − 0.5787𝑋𝑡−2 +  1.0327𝑎𝑡−1 

 

is the best model that can be used for forecasting retail prices of local rice in Nigeria.  

Also, from the analysis of imported rice, we also observed from the time plot, the presence of upward trend but 

not as obvious as that of imported rice. Choosing the minimum value of MSE, conclusion is made that, ARIMA 

(2,1,1) 

 

𝑋 𝑡 =    0.6162 − 1.3618𝑋𝑡−1 −   0.3707𝑋𝑡−2 +   0.9471𝑎𝑡−1    

is the best model that can be used for forecasting retail prices of imported rice in Nigeria. 

In general, our finding shows that more of imported rice is consumed than the local rice in Nigeria, the reason is 

that, the upward trend in imported rice is higher compared to that of local rice.   
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