
The International Journal Of Engineering And Science (IJES)

||Volume||2 ||Issue|| 5 ||Pages|| 16-24||2013||
ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805

www.theijes.com The IJES Page 16

Various Scheduling Algorithms for Resource Allocation In

Cloud Computing

Swarupa Irugurala

1
, Dr.K.Shahu Chatrapati

2

1Computer Science and Engineering, JNTUH, Kukatpally, Hyderabad, India

---Abstract---
To provide services to customers SaaS providers utilize resources of internal data centers or rent resources

from a public Infrastructure as a Service (IaaS) provider. In-house hosting can increase administration and

maintenance costs whereas renting from an IaaS provider can impact the service quality due to its variable
performance. To overcome these limitations, we propose innovative admission control and scheduling

algorithms for SaaS providers to effectively utilize public Cloud resources to maximize profit by minimizing cost

and improving customer satisfaction level. Furthermore, we conduct an extensive evaluation study to analyze

which solution suits best in which scenario to maximize SaaS provider’s profit. Simulation results show that our

proposed algorithms provide substantial improvement over reference ones across all ranges of variation in QoS

parameters.

Keywords: resource control, cloud computing, scheduling algorithm

Date Of Submission: 18 April 2013 Date Of Publication: 13,May.2013

I. INTRODUCTION

 Cloud computing has emerged as a new paradigm for delivery of applications, platforms, or computing

resources (processing power/bandwidth/storage) to customers in a “pay-as-you-go-model”. The Cloud model is

cost-effective because customers pay for their actual usage without upfront costs, and scalable because it can be

used more or less depending on the customers‟ needs. Due to its advantages, Cloud has been increasingly

adopted in many areas, such as banking, e-commerce, retail industry, and academy. Considering the best known

Cloud service providers, such as Sale-force.com [3], Microsoft , and Amazon , Cloud services can be

categorized as: application (Software as a Service – SaaS), platform (Platform as a Service – PaaS) and

hardware resource (Infrastructure as a Service – IaaS).In this paper, we focus on the SaaS layer, which allows
customers to access applications over the Internet without software related cost and effort (such as software

licensing and upgrade).

 The general objective of SaaS providers is to minimize cost and maximize customer satisfaction level

(CSL). The cost includes the infrastructure cost, administration operation cost and penalty cost caused by SLA

violations. CSL depends on to what degree SLA is satisfied. In general, SaaS providers utilize internal resources

of its data centres or rent resources from a specific IaaS provider. For example, Saleforce.com hosts resources

but Animoto rents resources from Amazon EC2. In-house hosting can generate administration and maintenance

cost while renting resources from a single IaaS provider can impact the service quality offered to SaaS

customers due to the variable performance .To overcome the above limitations, multiple IaaS providers and

admission control are considered in this paper.

 The rest of this paper is organized as follows. In Section 2, we present system and mathematical

models. As part of the system model, we design two layers of SLAs, one between users and SaaS providers and

another between SaaS and IaaS providers[9]. In Section 3, we propose three admission control and scheduling

algorithms. In Section 4, we show the effectiveness of the proposed algorithms in meeting SLA objectives and

the algorithms‟ capacity in meeting SLAs with users even in the presence of SLA violations from IaaS

providers[6]. Simulation results show that proposed algorithms improve the profit compared to reference

algorithms by varying all range of QoS parameters. Finally, in Section 5, we conclude the paper by summarizing

the comparison results and future work.

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 17

II. SYSTEM MODEL
 In this section, we introduce a model of SaaS provider, which consists of actors and „admission control

and scheduling‟ system. The actors are users, SaaS providers, and IaaS providers. The system consists of

application layer and platform layer functions. Users request the software from a SaaS provider by submitting
their QoS requirements. The platform layer uses admission control to interpret and analyse the user‟s QoS

parameters and decides whether to accept or reject the request based on the capability, availability and price of

VMs[6]. Then, the scheduling component is responsible for allocating resources based on admission control

decision. Furthermore, in this section we design two SLA layers with both users and resource providers, which

are SLA(U) and SLA(R) respectively.

2.1. Actors

 The participating actors involved in the process are discussed below along with their objectives and

constraints.

2.2 .User

On users‟ side, a request for application is sent to a SaaS provider‟s application layer with QoS constraints,

such as, deadline, budget and penalty rate. Then, the platform layer utilizes the „admission control and

scheduling‟ algorithms to admit or reject this request. If the request can be accepted, a formal agreement (SLA)

is signed between both parties to guarantee the QoS requirements such as response time.

2.3. SaaS provider

 A SaaS provider rents resources from IaaS providers and leases software as services to users. SaaS

providers aim at minimizing their operational cost by using resources from IaaS providers, and improving
Customer Satisfaction Level (CSL) by satisfying SLAs, which are used to guarantee QoS requirements of

accepted users[10].

2.4. IaaS provider

 An IaaS provider offers VMs to SaaS providers and is responsible for dispatching VM images to run

on their physical resources. The platform layer of SaaS provider uses VM images to create instances. It is

important to establish SLA with a resource provider – SLA(R), because it enforces the resource provider to

guarantee service quality.

2.2 Profit model

 In this section we describe mathematical equations used in our work. Let at a given time instant t, I be
the number of initiated VMs, and J be the total number of IaaS providers. Let IaaS provider j provide Nj types of

VM, where each VM type l has Pjl price. The prices/GB charged for data transfer-in and -out by the IaaS

provider j are inPri and outPri j respectively. Let (iniTijl) be the time taken for initiating VM i of type lLet a new

user submit a service request at submission time subT new to the SaaS provider. The new user offers a maximum

price Bnew (Budget) to SaaS provider with deadline DLnew and Penalty Rate βnew. Let inDSnew and outDSnew be the

data-in and –out required to process the user requests.Let Costnew
ijl be the total cost incurred to the SaaS provider

by processing the user request on VM i of type l and resource provider j. Then, the profit Prof new
ij gained by the

SaaS provider is defined as

The total cost incurred to SaaS provider for accepting the new request consists of request‟s processing cost

(PCnew
ijl), data transfer cost (DTCnew

jl), VM initiation cost (ICnew
ijl), and penalty delay cost (PDCnew

ijl T) (to

compensate for miss deadline). Thus, the total cost is given by processing the request on VM i of type l on IaaS

provider j.

Costnew
ijl = PCnew

ijl
 + DTCnew

jl + ICnew
ijl + PDCnew

ij ; ∀ i ∈ I, j ∈ J , l ∈ Nj (2)

The processing cost (PCnew
ijl) for serving the request is dependent on the new request‟s processing

time (procTijl
new) an hourly price of VMil (type l) offered by IaaS provider j. Thus, PCnew

ij is given by:

Prof new

ijl= Bnew - Costnew
ijl; ∀ i ∈ I, j ∈ J , l ∈ N j (1)

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 18

PCnew
ijl = procTijl

new × P jl, ∀ i ∈ I, j ∈ J , l ∈ N

(3)

Data transfer cost as described in Eq. (4) includes cost for both data-in and data-out.

DTCnew
jl = inDSnew × inPri jl + outDSnew × outPri jl; ∀ j ∈ J , l ∈ N j (4)

The initiation cost (ICnew
ij) of VM i (type l) is dependent on the type of VM initiated in the data center of IaaS

provider j

ICnew
ijl = = iniTij × P jl, ∀ i ∈ I, j ∈ J , l ∈ N j (5)

In Eq. (7), penalty delay cost (PDCnew
ij) is how much the service provider has to give discount to users for

SLA(U) violation. It is dependent on the penalty rate (βnew) and penalty delay time (PDTnew
ij) period. We model

the SLA violation penalty as linear function which is similar to other related works .

PDCnew
ijl = βnew × PDTnew

ijl; ∀ i ∈ I, j ∈ J , l ∈ N j (6)

To process any new request, SaaS provider either can allocate a new VM or schedule the request on an

already initiated VM. If service provider schedules the new request on an already initiated VMi , the new request

has to wait until VM I becomes available. The time for which the new request has to wait until it start

processing on VM i is ₃ K=1 procT k , where k ijl K is the number of request yet to be processed before the new

request. Thus, PDTljl
new is given by:

PDTnew
ijl = t + procTk + procTnew - DLnew, if new VM is not initiated (7)

DTTnew
ijl is the data transfer time which is the summation of time taken to upload the input (inDTnew

ill)

and download the output data (outDTnew
ijl) from the VMil on IaaS provider j. The data transfer time is given

by:

DTTnew
ijl = inDTnew

ijl + outDTnew
ijl ; ∀ i ∈ I, j ∈ J , l ∈ N j (8)

Thus, the response time (Tijl
new) for the new request to be processed on VMil of IaaS provider j is

calculated

Eq (9) and consists of VM initiation time (iniTijl
new), request‟s service processing time (procTijl

new), data

transfer time (DTTnew
ijl), and penalty delay time (PDTnew

ijl).

Tijl
new = procTijl

new + iniTijl + DTTnew
ijl (9)

The investment return (ret
new

ij) to accept new user request per hour on a particular VMil in IaaS provider j is

ncalculated based on the profit (prof new
ijl) and time (Tijl

new):

retnew
ijl = prof new

ijl / (Tijl
new); ∀ i ∈ I, j ∈ J , l ∈ Nj (10)

III. ALGORITHMS AND STRATEGIES
 In this section, we present four strategies to analyze whether a new request can be accepted or not

based on the QoS requirements and resource capability[11]. Then, we propose three algorithms utilizing these

strategies to allocate resources. In each algorithm, the admission control uses different strategies to decide which

user requests to accept in order to cause minimal performance impact, avoiding SLA penalties that decrease

SaaS provider‟s profit[9]. The scheduling part of the algorithms determines where and which type of VM will

be used by incorporating the heterogeneity of IaaS providers in terms of their price, service initiation time, and

data transfer time.

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 19

3.1. Strategies

In this section, we describe four strategies for request acceptance: a) initiate new VM, b) queue up the new

user request at the end of scheduling queue of a VM, c) insert (prioritize) the new user request at the proper

position before the accepted user requests and, d) delay the new user request to wait all accepted users to finish.

3.1.1. Initiate new VM strategy

 “Initiate new VM strategy”, which first checks for each type of VMs in each resource provider in order
to determine whether the deadline of new request is long enough comparing to the estimated finish time. The

estimated finish time depends on the estimated start time, request processing time, and VM initiation time.If the

new request can be completed within the deadline, the investment return is calculated (Eq. (10)). If there is value

added according to the investment return, and then all related information (such as resource provider ID, VM

ID, start time and estimated finish time) are stored into the potential schedule list.

3.1.2. Wait strategy

 It verifies each VM in each resource provider if the flexible time of the new request is enough to wait

all accepted requests in vmil to complete.

3.1.3. Insert strategy
 “Insert strategy”, which first checks verifies if any accepted request uk according to latest start time in

vmil can wait the new request to finish. If the flexible time of accepted request (f Tijl
k
) is enough to wait for a

new user request to complete then the new request is inserted before request k.

3.1.4. Penalty delay strategy

 Fig. 5 describes the flow chart of “penalty delay strategy”, which first checks if the new user request‟s

budget is enough to wait for all accepted user requests in vmi to complete after its deadline. Eq. (1) is used to

check whether budget is enough to compensate the penalty delay loss, and then the investment return is

calculated and the remaining steps are the same as those in initiate new VM strategy. This strategy is presented

as function canPenaltyDelay() in algorithms.

3.2. Proposed algorithms
 service provider can maximize the profit by reducing the infrastructure cost, which depends on the

number and type of initiated VMs in IaaS providers‟ data centre. Therefore, our algorithms are designed in a

way to minimize the number of VMs by maximizing the utilization of already initiated VMs. In this section,

based on above strategies we propose three algorithms, which are ProfminVM, ProfRS, and ProfPD: In

admission control phase, the algorithm analyses if the new request can be accepted either by queuing it up in an

already initiated VM or by initiating a new VM[12]. Hence, firstly, it checks if the new request can be queued

up by waiting for all accepted requests on any initiated VM – using Wait Strategy . If this request cannot wait in

any initiated VM, then the algorithm checks if it can be accepted by initiating a new VM provided by any IaaS

provider – using Initiate New VM Strategy . If a SaaS provider does not make any profit by utilizing already

initiated VMs nor by initiating a new VM to accept the request, then the algorithm rejects the request .

Otherwise, the algorithm gets the maximum investment return from all of the possible solutions . The decision
also depends on the minimum expected investment return (expInvRetnew

ijl) of the SaaS provider. If the

investment return ret
new

ijl is more than the SaaS provider‟s expInvRet
new

ijl, the algorithm accepts the new request

otherwise it rejects the request .

 The scheduling phase is the actual resource allocation and scheduling based on the admission control

result; if the algorithm accepts the new request, the algorithm first finds out in which IaaS provider rp j and

which VM vmi a SaaS provider can gain the maximum investment return by extracting information from

PotentialScheduleList . If the maximum investment return is gained by initiating a new VM , then the algorithm

initiates a new VM in the referred resource provider (rp j), and schedule the request to it. Finally, the algorithm

schedules the new request on the referred VM (vmi) . The time complexity of this algorithm is O (R J + R),

where R indicates the total number of requests and J indicates the number of resource providers.

Algorithm 1. Pseudo-code for ProfminVM

algorithm. Input: New user‟s request parameters

(unew), expInvRetnew
ij

Output: Boolean

Functions:

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 20

admissionControl() {

1. If (there is any initiated VM) {

2.

For each vmi in each resource provider

rp j {

3. If (! canWait(unew, vmi)) {

4. continue;

5. }

6. }

7. }

8. Else If (! canInitiateNew(unew, rp j))

9.

Return

reject

10.

If (PotentialScheduleList is

empty)

11.

Return

reject

12. Else {

13. Get the maxnew[retnew
ij

, SDij] in
new

PotentialScheduleList

14. If (max(retij) ₃ expInvRetij)

15. Return accept

16. Else

17. Return reject

18. }

19.

}

schedule() {

20. Get the [retnew
max, SDmax] in maxRet(PotentialScheduleList)

21. If (SDmax is initiateNewVM)

22. initiateNewVM in rp j

23. Schedule the unew in VMmax in rpmax according to SDmax.
}

3.2.1. Maximizing the profit by rescheduling (ProfRS)

 In ProfminVM algorithm, a new user request does not get priority over any accepted request. This

inflexibility affects the profit of a SaaS provider since many urgent and high budget requests will be rejected.

Thus, ProfRS algorithm reschedules the accepted requests to accommodate an urgent and high budget request.

The advantage of this algorithm is that a SaaS provider accepts more users utilizing initiated VMs to earn more

profit.Algorithm 2 describes ProfRS algorithm. In the admission control phase, the algorithm analyses if the

new request can be accepted by waiting in an already initiated VM, inserting into an initiated VM, or initiating a

new VM. Hence, firstly it verify if new request can wait all accepted requests in any already initiated VM –

invoking Wait Strategy (Step 3). If the request cannot wait, then it checks if the new request can be inserted

before any accepted request in an already initiated VM – using Insert Strategy (Step 4). Otherwise the algorithm
checks if it can be accepted by initiating a new VM provided by any IaaS provider – using Initiate New VM

Strategy (Step 5). If a SaaS provider does not make sufficient profit by any strategy, the algorithm rejects this

user request (Steps 10, 11). Otherwise the algorithm gets the maximum return from all analysis results (Step 15).
The remaining steps are the same as those in ProfminVM algorithm. The time complexity of this algorithms is O

(R J + R2), where R indicates total number of requests, J indicates total number of IaaS providers.

Algorithm 2. Pseudo-code for ProfRS algorithm.

Input: New user‟s request parameters (unew), expInvRetnew
ij

Output: Boolean

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 21

Functions:

admissionCont

rol {

1. If (there is any initiated VM) {

2. For each vmi in each resource provider rp j {

3. If (! canWait(unew, vmi)) {

4. If (! canInsert(unew, vmi)) {

5. If (! canInitiateNew(unew, rp j)) {

6. continue;

7. }

8. }

9. }

10. Else If (! canInitiateNew(unew, rp j))

11. Return reject

12. If (PotentialScheduleList is empty)

13. Return reject

14. Else {

15. Get the max[retnew
ij, SDij] in PotentialScheduleList

16. If (max(retnew
ij) ₃ expInvRetnew

ij)

17. Return accept

18. Else

19. Return reject

20. }

}

}

}

schedule() {

21. Get the [retnew
max, SDmax] in maxRet(PotentialScheduleList)

22. If (SDmax is initiateNewVM)

23. initiateNewVM in rp j

24. Schedule the unew in VMmax in rpmax according to SDmax.

}

3.2.2. Maximizing the profit by exploiting penalty delay (ProfPD)

 To further optimize the profit, we design the algorithm ProfPD by considering delaying the new
requests to accept more requests.Algorithm 3 describes ProfPD algorithm. In the admission control phase, we

analyse if the new user request can be processed by queuing it up at the end of an already initiated VM, by

inserting it into an initiated VM, or by initiating a new VM. Hence, firstly the algorithm check if the new request

can wait all accepted requests to complete in any initiated VM – invoking Wait Strategy (Step 3). If the request

cannot wait, then it checks if the new request can be inserted before any accepted request in any already initiated

VM – using Insert Strategy (Step 4). Otherwise the algorithm checks if the new request can be accepted by

initiating a new VM provided by any resource provider – using Initiate New VM Strategy (Step 5) or by

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 22

delaying the new request with penalty compensation – using Penalty Delay Strategy (Step 7). If a SaaS provider

does not make sufficient profit by any strategy, the algorithm rejects the new request (Step 14). Otherwise, the

request is accepted and scheduled based on the entry in PotentialScheduleList which gives the maximum return

(Step 23). The rest of the steps are the same as those in ProfminVM. The time complexity of this algorithms is O

(R J + R2), where R indicates total number of requests, J indicates total number of IaaS providers.

Algorithm 3. Pseudo-code for ProfPD algorithm.

Input: New user‟s request parameters (unew), expInvRetnew
ij

Output: Boolean

Functions:

admissionCont

rol() {

1. If (there is any initiated VM) {

2. For each vmi in each resource provider rp j {

3. If (! canWait(unew, vmi)) {

4. If (! canInsert(unew, vmi)) {

5. If (! canInitiateNew(unew, rp j))

6. continue;

7. If (! canPenaltyDelay(unew, rp j))

8. continue;

9. }

10. }

11. }

12. }

13. Else If (! canInitiateNew(unew, rp j))

14. Return reject

15. If (PotentialScheduleList is empty)

16. Return reject

17. Else { Get the max[retnew
ij, SDij] in PotentialScheduleList

18. If (max(retnew
ij) ₃ expInvRetnew

ij)

19. Return accept

20. Else

21. Return reject

22. }

}

schedule() {

23. Get the [retnew
max, SDmax] in maxRet(PotentialScheduleList)

24. If (SDmax is initiateNewVM)

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 23

25. initiateNewVM in rp j

26. Schedule the unew in V Mmax

}

IV. PERFORMANCE EVALUATION
 In this section, we first explain the reference algorithms and then describe our experiment

methodology, followed by performance evaluation results, which includes comparison with reference algorithms

and among our proposed algorithms.As existing algorithms in the literature are designed to support scenarios

different to those considered in our work, we are comparing proposed algorithms to reference algorithms

exhibiting lower and up bounds: MinResTime and StaticGreedy.

• The MinResTime algorithm selects the IaaS provider where new request can be processed with the

earliest response time to avoid deadline violation and profit loss, therefore it minimizes the response time

for users. Thus, it is used to know how fast user requests can be served[8].

• The StaticGreedy algorithm assumes that all user requests are known at the beginning of the

scheduling process. In this

algorithm, we select the most profitable schedule obtained by sorting all the requests either based on Budget or

Deadline, and then using ProfPD algorithm. Thus, the profit obtained from StaticGreedy algorithm acts as an
upper bound of the maximum profit that can be generated[13]. It is clear that assumption taken in StaticGreedy

algorithm is not possible in reality as all the future requests are not known.

4.1. Experimental methodology

We use CloudSim as a Cloud environment simulator and implement our algorithms within this

environment. We observe the performance of the proposed algorithms from both users‟ and SaaS providers‟

perspectives.

 Table 1. resource provider characteristics.

4.1.1 User’s side
• In common economic models, budget is generated by random numbers [1]. Therefore, we follow the same

random model for budget, and vary it from “very small” (mean = 0.1$) to “very large” (mean = 1$). We
choose budget factor up to 1, because the trend of results does not show any change after 1.

• Five different types of request arrival rate are used by varying the mean from 1000 to 5000 users per

second.

We consider five resource providers – IaaS providers, which are Amazon EC2 , GoGrid , Microsoft Azure ,

RackSpace and IBM . To simulate the effect of using different VM types, MIPS ratings are used. Thus, a MIPS

value of an equivalent processor is assigned to the request processing capability of each VM type. The price

schema of VMs follows the price schema of GoGrid , Amazon EC2 , RackSpace , Microsoft Azure , and IBM .

The detail resource characteristics which are used for modelling IaaS providers are shown in Table 1. The three

different types of average VM initiation time are used in the experiment, and the mean initiation time varies

from 30 seconds to 15 minutes (standard deviation = (1/2) × mean). The mean of initiation time is calculated by

conducting real experiments of 60 samples on GoGrid and Amazon EC2 done for four days (2 week days and 2

weekend days).

4.2. Performance results

 In this section, we first compare our proposed algorithms with reference algorithms by varying number

of users. Then, the impact of QoS parameters on the performance metrics is evaluated. Finally, robustness

analysis of our algorithm is presented. All of the results present the average obtained by 5 experiment runs. In

each experiment we vary one parameter, and others are given constant mean value.

 The constant mean, which are used during experiment, are as follows: arrival rate = 5000 requests/sec,

deadline = 2 ∗ estprocT, budget = 1$, request length is 4 × 106 MI, and penalty rate factor (r) = 10.

Various Scheduling Algorithms For…

www.theijes.com The IJES Page 24

V. CONCLUSIONS AND FUTURE DIRECTIONS
 We presented scheduling algorithms for effcient resource allocation to maximize profit and cus-tomer

level satisfaction for SaaS providers. Through simulation, we showed that the algorithms work well in a number

of scenarios. Simulation results show that in average the ProfPD algorithm gives the maximum profit (in
average save about 40% VM cost) among all proposed algorithms by varying all types of QoS parameters[14].

If a user request needs fast response time, ProfRS and ProfminVM could be chosen depending on the scenario.

In this work, we have assumed that the estimated service time is accurate since existing performance estimation

tech-niques (e.g. analytical modelling , empirical, and historical data can be used to predict service times on

various types of VMs. However, still some error can exist in this estimated service time [4] due to variable

VMs‟ performance in Cloud. The impact of error could be minimized by two strategies: first, considering the

penalty compensation clause in SLAs with IaaS provider and enforce SLA violation; second, adding some slack

time during scheduling for preventing risk.

 In the future we will increase the robustness of our algorithms by handling such errors dynamically. In
addition, due to this performance degradation error, we will consider SLA negotiation in Cloud computing

environments to improve the robustness[13]. We will also add different type of services and other pricing

strategies such as spot pricing to increase the profit of service provider. Moreover, to investigate the knowledge-

based admission control and scheduling for maximizing a SaaS provider‟s profit is one of our future directions

for improving our algorithms‟ time complexity.

VI. ACKNOWLEDGEMENTS

 Research on market driven r esource allocation and admission control has started as early as 1981.

Most if the market-based resource allocation methods are either non-pricing-based or designed for fixed number
of resources. such as FirstPrice [4] and FirstProfit. In cloud , IaaS providers focusing on maximize profit and

many works proposed marked based scheduling approaches.

REFERENCES
[1] D.N. Jaideep, M.V. Varma, Learning Based Opportunistic Admission Control Algorithms For Map Reduce As A Service In:

Proceedings Of The 3rd India Software Engineering Conference (ISEC 2010), Mysore, India, 2010.

[2] O.F. Rana, M. Warnier, T.B. Quillinan, F. Brazier, D. Cojocarasu, Managing Violations In Service Level Agreements, In:

Proceedings Of The 5th Internationalworkshop On Grid Economics And Business Models (Gencon 2008), Gran Canaria, Spain,

2008.

[3] Y. Yemini, Selfish Optimization In Computer Networks Processing, In: Proceedings Of The 20th IEEE Conference On Decision

And Control Including The Symposium On Adaptive Processes, San Diego, USA, 1981.

[4] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud Computing Emerging IT Platforms: Vision, Hype, And Reality

For Delivering Computing As 5th Utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616, Elsevier Science, Amsterdam,

The Netherlands.

[5] D. Parkhill, The Challenge Of The Computer Utility, Addison–Wesley, USA, 1966.

[6] M. Bichler, T. Setzer, Admission Control For Media On Demand Services. Service Oriented Computing And Application, In:

Proceedings Of IEEE Internationalconference On Service Oriented Computing And Applications (SOCA 2007), Newport Beach,

California, USA, 2007]

[7] K. Coleman, J. Norris, G. Candea, A. Fox, Oncall: Defeating Spikes With A Free-Market Application Cluster, In: Proceedings

Of The 1st International Conference On Autonomic Computing, New York, USA, 2004.

[8] R. Buyya, R. Ranjan, R.N. Calheiros, Intercloud: Utility-Oriented Federation Of Cloud Computing Environments For Scaling Of

Application Services, In: Proceedings Of The 10th International Conference On Algorithms And Architectures For Parallel

Processing (ICA3PP 2010), Busan, South Korea, 2010. [9] D.A. Menasce, V.A.F. Almeida, R. Fonseca, M.A. Mendes, A

Methodology For Workload Characterization Of E-Commerce Sites, In: Proceedings Of The 1999 ACM Conference On

Electronic Commerce (EC 1999), Denver, CO, USA, 1999. [10] K. Xiong, H. Perros, SLA-Based Resource Allocation In Cluster

Computing Systems, In:

[9] Proceedings Of 17th IEEE International Symposium On Parallel And Distributed Processing (IPDPS 2008), Alaska, USA, 2008.

[10] S.K. Garg, R. Buyya, H.J. Siegel, Time And Cost Trade-Off Management For Scheduling Parallel Applications On Utility Grids,

Future Gener. Comput.Syst. 26 (8) (2009) 1344–1355.

[11] M. Islam, P. Sadayappan, D.K. Panda, Towards Provision Of Quality Of Service Guarantees In Job Scheduling, In: Proceedings

Of The 6th IEEE International Conference On Cluster Computing (Cluster 2004), San Diego, USA, 2004.

[12] S. Kumar, K. Dutta, V. Mookeriee, Maximizing Business Value By Optimal Assignment Of Jobs To Resources In Grid

Computing, European J. Oper.Res. 194 (3) (2009).

[13] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema, A Performance Analysis Of EC2 Cloud Computing

Services For Scientific Computing, In:

[14] Proceedings Of 1st International Conference On Cloud Computing (Cloudcomp), Munich, Germany, 2009.

