
The International Journal Of Engineering And Science (IJES) 

||Volume||2 ||Issue|| 3 ||Pages|| 56-59 ||2013||  

ISSN: 2319 – 1813 ISBN: 2319 – 1805   

www.theijes.com                                                The IJES                                                                    Page 56 

 

 Implementation of Unrestricted Grammar in To the Recursively 

Enumerable Language Using Turing Machine  

1,
Jainendra Singh, 

2,
 Dr. S.K. Saxena 

1,
Department of Computer Science, Maharaja Surajmal Institute 

2,
Department of Computer Engineering, Delhi Technological University 

 

 

-------------------------------------------------------Abstract------------------------------------------------------- 

This paper presents the implementation of the unrestricted grammar in to recursively enumerable language for 

JFLAP platform. Automata play a major role in compiler design and parsing. The class of formal languages that 

work for the most complex problems belongs to the set of Recursively Enumerable Language (REL).RELs are 

accepted by the type of automata as Turing Machine. Turing Machines are the most powerful computational 

machines and are the theoretical basis for modern computers. Turing Machine works for all classes of 

languages including regular language, CFL as well as Recursive Enumerable Languages. Unrestricted 

grammar are much more powerful than restricted forms like the regular and context free grammars. In facts, 

unrestricted grammars corresponds to the largest family of languages so we can hope to recognize by 

mechanical means; that is unrestricted grammars generates exactly the family of recursively enumerable 

languages. Turing Machine is used to implementation of unrestricted grammar & RELs for JFLAP platform. 

JFLAP is most successful and widely used tool for visualizing and simulating all types of automata. 
 

Keywords -  Automata, Compiler, CFG, JFLAP, PDA, REL, Unrestricted Grammar 

--------------------------------------------------------------------------------------------------------------------------------------- 

 Date Of Submission:01,March, 2013                                                         Date Of Publication:15 March2013 

-------------------------------------------------------------------------------------------------------------------------------------- 
 

I. INTRODUCTION 
An automation is mathematical model for a finite state machine (FSM). A FSM is a machine that has a 

set of input symbols and transitions and jumps through a series of states according to a transition function. 

Automata play a major role in compiler design and parsing. Turing Machines are the most powerful 

computational machines. They possess an infinite memory in the form of a tape, and a head which can read and 

change the tape, and move in either direction along the tape or remain stationary. Turing Machines are 

equivalent to algorithms and are the theoretical basis for modern computers.  JFLAP is software for 

experimenting with formal languages topics including nondeterministic finite automata, nondeterministic 

pushdown automata, multi-tape Turing machines, several types of grammars, parsing, and L-systems. JFLAP is 

extremely useful in  constructing Turing Machine with multiple inputs. Complex Turing Machines can also be 

built by using other Turing Machines as components or building blocks for the same.    

 

II. OVERVIEW OF JFLAP 
JFLAP (Java Formal Languages and Automata Package) is instructional software for experimenting 

with automata and grammars, but goes further in allowing one to experiment  with proofs and applications 

related to these topics.JFLAP’s main feature is the ability to experiment with theoretical  machines and 

grammars. With JFLAP one can build  and run user-defined input on finite automata, pushdown automata, multi-

tape Turing machines, regular grammars, context-free grammars (CFG), unrestricted grammars, and L-systems. 

After constructing the automaton or grammar, one can trace through a single input string or receive automatic 

feedback on multiple inputs.JFLAP’s second feature is the ability to construct in steps the proof of the 

transformation of one form to another form.For example, after constructing a nondeterministic finite automata 

(NFA), one can step through its conversion to a deterministic finite automata (DFA), then to a minimal state 

DFA, and then to regular grammar. As another example, one can build a CFG and construct in steps the 

equivalent nondeterministic PDA. JFLAP’s third feature is the experimentation with applications of theoretical 

material. One example is experimenting with parsing by constructing the SLR(1) parse table in steps, and then 

stepping through the parsing of input strings and the construction of the equivalent parse tree. The construction 

of the parse table includes building a special DFA that models the parsing process, thus seeing a use for a DFA. 

 
 



 Implementation Of Unrestricted Grammar In To The Recursively… 

www.theijes.com                                                The IJES                                                                    Page 57 

Another application is building an L-system grammar of a plant, and rendering it to watch a simulation of the 

plant 

growing. 

III. TURING MACHINE IN JFLAP 

A Turing machine is an automation whose temporary  storage is tape. This tape is divided into cells, 

each of which is capable of holding one symbol. Associated with the tape is read-write head that can travel right 

or left on the tape  and that can read and write a single symbol on each move. Turing Machines are the most 

powerful computational machines. The Turing Machine (TM) is the solution for the halting problem and all 

other problems that exist in the domain of computer science. Turing Machines provide an abstract model to all 

problems. It can work with Recursively Enumerable Language and Unrestricted Grammar. 
 

3.1 Turing Machine 

A Turing Machine M is defined by 

                  M = (Q, Σ, Γ, δ, qs, □, F)    

where  

Q is the set of internal states {qi | i is a nonnegative integer}  

Σ  is the input alphabet  

Γ  is the finite set of symbols in the tape alphabet 

δ  is the transition function  

S  is Q * Γ
n
 → subset of Q * Γ

n
 * {L, S, R}

n
 

□  is the blank symbol. 

qs  (is member of Q) is the initial state  

F  (is a subset of Q) is the set of final states  

3.2.  Recursively Enumerable Language 

A language L is said to be recursively enumerable if there exists a Turing Machine that accepts it. It 

implies that there exists a Turing Machine M, such that, for every w € L 

           q0w ├
*
M x1qf x2 

with qf  a final state. The definition says nothing about what happens for w not in L; it may be that machine halts 

in a nonfinal state or that it never halts and goes into an infinite loop.Regular languages form a proper subset of 

Context Free Languages. So PDA are more powerful than finite automata. But CFLs are limited in scope 

because many of the simple language like a
n
b

n
c

n
 are not context free. So to incorporate the set of all languages 

that are not accepted by PDAs and hence that are not context free, more powerful language families has been 

formed. This creates the class of Recursively Enumerable Languages (REL). 

 

3.3.  Unrestricted Grammars 

A grammar G = (V,T,S,P) is called unrestricted if all the productions are of form 

                   u → v, 

where u is in (V U T)
+
 and v is in (V U T)

*
. 

 

In an unrestricted grammar, essentially no conditions are imposed on the productions. Any number of variables 

and terminals can be on left or right, and these can occur in any order. There is only one restriction: λ is not 

allowed as the left side of a production.  Unrestricted grammars are much more powerful than restricted forms 

like the regular and context free grammars.In fact, unrestricted grammars correspond to the largest family of 

languages so we can hope to recognize by mechanical means; that is, unrestricted grammars generate exactly the 

family of recursively enumerable languages 

 

IV. IMPLEMENTATION 
Any language generated by an unrestricted grammar is recursively enumerable. For every recursively 

enumerable language L, there exists an unrestricted grammar G, such that L = L(G). Language L is said to be 

recursively enumerable if there exists a Turing Machine that accepts it. 

  

We take unrestricted grammar, which is shown in figure 1.The various strings are applied to this unrestricted 

grammar (which is also shown in figure 2). 

 



 Implementation Of Unrestricted Grammar In To The Recursively… 

www.theijes.com                                                The IJES                                                                    Page 58 

 
 

Figure 1: Unrestricted Grammar (with parse tree abc) 

 
 

 
 

Figure 2: Accepted String by Unrestricted Grammar 
 

This grammar drives the language L= a
n
b

n
c

n
, n > 0. The language a

n
b

n
c

n
 is a recursively enumerable language 

which cannot be implemented using a FA as well as a PDA. The standard Turing machine TM for the language 

a
n
b

n
c

n
 is given in figure 3. The various strings are applied to the Turing Machine with multiple run. A few results 

are shown in figure 4. 

 

 
 

Figure 3: Turing Machine for a
n
b

n
c

n 

 

 
 

Figure:4 Multiple Run by Turing Machine 
 

Any Turing machine can be converted REL into an unrestricted grammar. JFLAP defines an unrestricted 

grammar as a grammar that is similar to a context-free grammar (CFG), except that the left side of a production 

may contain any nonempty string of terminals and variables, rather than just a single variable. In an unrestricted 



 Implementation Of Unrestricted Grammar In To The Recursively… 

www.theijes.com                                                The IJES                                                                    Page 59 

grammar, the left side of a production is matched, which may be multiple symbols, and replaced by the 

corresponding right hand side.    There are 3 major steps that the algorithm follows in order to convert the 

Turing machine to an unrestricted grammar. The first step is applying the basic rules from the start variable. It 

allows the grammar to generate an encoded version of any string q0w with an arbitrary number of leading and 

trailing blanks. The second step is applying generating the production for each transition of Turing machine. The 

last step is applying additional rules to our productions if we enter one of final states of TM, so we can derive 

terminals. 

V. CONCLUSION 
Turing Machines are the most powerful computational machines. The Turing Machines provide an 

abstract model to all the problems. This paper describes the working of a Turing Machine for Recursively 

Enumerable  Languages and Unrestricted Grammar for JFLAP platform. The Turing Machines differ from all 

other automata as it can work with Recursively Enumerable Languages and Unrestricted Grammar. Any 

language generated by an unrestricted grammar is recursively enumerable.  The language a
n
b

n
c

n
 is a recursively 

enumerable language which cannot be implemented  using a Finite Automata or a PDA but can done using a 

Turing Machine. This requires more storage than for Context Free Languages and hence the Turing Machine 

with the infinite tapes, extendable in both directions are used for this. 

 

VI. FUTURE WORK 

[1] Developing a Universal Turing Machine for recursively   

[2] enumerable languages 

[3] Implement the concept of universality by including more  

[4] symbols in the input alphabet as well as the tape alphabet  

 

VII. ACKNOWLEDGEMENTS 
We thank  Dr. Susan Rodger of Duke University for the work on Formal Language and Automata for 

JFLAP platform. We also thanks Peter Linz of  University of California for the meritorious work on the REL and 

Unrestricted Grammar.  

REFERENCES 
[1] Susan H.Rodger, Eric Wiebe, Kyung Min Lee, Chris Morgan, Kareem Omar and Jonathan Su, “Increasing 

engagment in automata theory with JFLAP”, ACM Transactions,, 2009, 403-407. 

[2] Eric Gramond and Susan H. Rodger, “Using JFLAP to interact with theorems in automata theory”,ACM 

Poratl Proc. In SIGCSE,1999,336-340. 

[3] Peter Linz, An Introduction to Formal Languages and Automata (3
rd 

Edition, Narosa Publishing 

House,2003) 

[4] J.Hopcroft, R.Motwani and J.Ullmann, Introduction to Automata Theory, Language and Computation(3
rd  

Edition, Addison-Wesley, 2006) 

[5] [Online]http://www.jfalp.org/tutorials 

[6] Susan H.Rodger and Thomas W.Finley, JFLAP :An Interactive Formal Languages and Automata Package, 

ISBN 0763738344, Jones & Bartlett Publishers, 2006 

[7] Susan H. Rodger, Jinghui Lim, and Stephen Reading, “Increasing Interaction and Support in the Formal 

Languages and Automata Theory Course”, The 12th Annual Conference on Innovation and Technology in 

Computer Science Education (ITiCSE 2007), 2007 58-62. 

[8] Sumitha C.H and Krupa Ophelia Geddam, “Implementation of Context Free Languages in Turing 

Machines”,IEEE conf. on second International conference on Machine Learning and Computing,2010 

 

 

 

http://www.jfalp.org/tutorials

