
The International Journal Of Engineering And Science (IJES)

||Volume|| 2 ||Issue|| 10 ||Pages|| 17-22 ||2013||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 17

Identifying Distributed Dos Attacks in Multitier Web Applications

Thatikonda.Namratha
Department of Computer Science and Engineering, KITS, Warangal.

Andhra Pradesh, India.

Sunkari Venkatramulu
Associate Professor

Department of Computer Science and Engineering, KITS, Warangal.

Andhra Pradesh, India.

---ABSTRACT--

World-wide-web services as well as applications have become an inextricable component of daily

living, enabling communication as well as the management of sensitive information from wherever. To allow for

this boost in application and info complexity, web solutions have moved to your multi-tiered design and style

wherein the web server runs the application form front-end logic and info are outsourced to your database or

even file server. In this particular paper, we present an IDS system that product the behavior associated with

user across the front-end web server as well as the back-end repository. By keeping track of both World Wide

Web and pursuing database asks for, we can ferret out attacks in which independent IDS would not be capable

of identify. On top of that, we quantify the restrictions of virtually any multitier IDS regarding training

consultations and features coverage.

Keywords - Intrusion Detection, Web Applications.

Date of Submission: 10
th

, October, 2013 Date of Acceptance: 30
th

, October, 2013

I. INTRODUCTION
Intrusion detection plays one of the key roles in computer system security techniques. An intrusion

detection system (IDS) is a device or software application that monitors network or system activities for

malicious activities or policy violations and produces alerts. Web delivered services and applications have

increased in both popularity and complexity over the past few years. Daily tasks, such as banking, travel, and

social networking, are all done via the web[10]. Such services typically employ a web server front end that runs

the application user interface logic, as well as a back-end server that consists of a database or file server. Due to

their ubiquitous use for personal and/or corporate data, web services have always been the target of attacks.

These attacks have recently become more diverse, as attention has shifted from attacking the front end to

exploiting vulnerabilities of the web applications in order to corrupt the back-end database system. A plethora of

Intrusion Detection Systems (IDSs) currently examine network packets individually within both the web server

and the database system. However, there is very little work being performed on multitier Anomaly Detection[1]

(AD) systems that generate models of network behavior for both web and database network interactions. In such

multitier architectures, the back-end database server is often protected behind a firewall while the web servers are

remotely accessible over the Internet. Unfortunately, though they are protected from direct remote attacks, the

back-end systems are susceptible to attacks that use web requests as a means to exploit the back end.

To protect multitier web services, Intrusion detection systems have been widely used to detect known

attacks by matching misused traffic patterns or signatures. A class of IDS that leverages machine learning can

also detect unknown attacks by identifying abnormal network traffic that deviates from the so-called “normal”

behavior previously profiled during the IDS training phase. Individually, the web IDS and the database IDS can

detect abnormal network traffic sent to either of them. However, we found that these IDSs cannot detect cases

wherein normal traffic is used to attack the web server and the database server. For example, if an attacker with

non admin privileges can log in to a web server using normal-user access credentials, he/she can find a way to

issue a privileged database query by exploiting vulnerabilities in the web server[10].

Identifying Distributed Dos Attacks in Multitier Web Applications

www.theijes.com The IJES Page 18

Neither the web IDS nor the database IDS would detect this type of attack since the web IDS would

merely see typical user login traffic and the database IDS would see only the normal traffic of a privileged user.

This type of attack can be readily detected if the database IDS can identify that a privileged request from the web

server is not associated with user-privileged access. Unfortunately, within the current multithreaded web server

architecture, it is not feasible to detect or profile such causal mapping between web server traffic and DB server

traffic since traffic cannot be clearly attributed to user sessions.

II. PREVIOUS WORK
Researchers also proposed dynamic techniques against SQLIAs that do not rely on tainting[8]. These

techniques include Intrusion Detection Systems (IDSs) and automated penetration testing tools[3]. Scott and

Sharp propose Security Gateway[5], which uses developer-provided rules to filter Web traffic, identify attacks,

and apply preventive transformations to potentially malicious inputs. The success of this approach depends on

the ability of developers to write accurate and meaningful filtering rules. Similarly, Valeur et al. developed an

IDS that uses machine learning to distinguish legitimate and malicious queries. Their approach, like most

learning-based techniques, is limited by the quality of the IDS training set. Machine learning was also used in

WAVES, an automated penetration testing tool that probes Web sites for vulnerability to SQLIAs. Like all

testing tools, WAVES cannot provide any guarantees of completeness. SQLrand appends a random token to

SQL keywords and operators in the application code. A proxy server then checks to make sure that all keywords

and operators contain this token before sending the query to the database. Because the SQL keywords and

operators injected by an attacker would not contain this token, they would be easily recognized as attacks. The

drawbacks of this approach are that the secret token could be guessed, thus making the approach ineffective, and

that the approach requires the deployment of a special proxy server.

Model-based approaches against SQLIAs include AMNESIA, SQL-Check, and SQLGuard[7].

AMNESIA, previously developed by two of the authors, combines static analysis and runtime monitoring to

detect SQLIAs. The approach uses static analysis to build models of the different types of queries that an

application can generate and dynamic analysis to intercept and check the query strings generated at runtime

against the model. Queries that do not match the model are identified as SQLIAs. A problem with this approach

is that it is dependent on the precision and efficiency of its underlying static analysis, which may not scale to

large applications. Our new technique takes a purely dynamic approach to preventing SQLIAs, thereby

eliminating scalability and precision problems. SQLCheck identifies SQLIAs by using an augmented grammar

and distinguishing untrusted inputs from the rest of the strings by means of a marking mechanism. The main

weakness of this approach is that it requires the manual intervention of the developer to identify and annotate

untrusted sources of input, which introduces incompleteness problems and may lead to false negatives. Our use

of positive tainting eliminates this problem while providing similar guarantees in terms of effectiveness.

SQLGuard is an approach similar to SQLCheck. The main difference is that SQLGuard builds its models

on the fly by requiring developers to call a special function and to pass to the function the query string before

user input is added.

Other approaches against SQLIAs rely purely on static analysis. These approaches scan the application

and leverage information flow analysis or heuristics to detect code that could be vulnerable to SQLIAs. Because

of the inherently imprecise nature of the static analysis that they use, these techniques can generate false

positives. Moreover, since they rely on declassification rules to transform untrusted input into safe input, they

can also generate false negatives. Wassermann and Su propose a technique that combines static analysis and

automated reasoning to detect whether an application can generate queries that contain tautologies. This

technique is limited, by definition, in the types of SQLIAs that it can detect. Finally, researchers have

investigated ways to statically eliminate vulnerabilities from the code of a Web application. Defensive coding

best practices have been proposed as a possible approach, but they have limited effectiveness because they rely

almost exclusively on the ability and training of developers. Moreover, there are many well-known ways to

evade some defensive-coding practices, including “pseudo remedies” such as stored procedures and prepared

statements. Researchers have also developed special libraries that can be used to safely create SQL queries.

These approaches, although highly effective, require developers to learn new APIs, can be very expensive to

apply on legacy code, and sometimes limit the expressiveness of SQL.

 Dynamic taint analysis (also known as dynamic information flow analysis) consists, intuitively, in

marking and tracking certain data in a program at run-time. This type of dynamic analysis is becoming

increasingly popular. In the context of application security, dynamic-tainting[8] approaches have been

Identifying Distributed Dos Attacks in Multitier Web Applications

www.theijes.com The IJES Page 19

successfully used to prevent a wide range of attacks, including buffer overruns, format string attacks, SQL and

command injections, and cross-site scripting. More recently, researchers have started to investigate the use of

tainting based approaches in domains other than security, such as program understanding, software testing, and

debugging.

Unfortunately, most existing techniques and tools for dynamic taint analysis are defined in an ad-hoc

manner, to target a specific problem or a small class of problems. It would be difficult to extend or adapt such

techniques and tools so that they can be used in other contexts. In particular, most existing approaches are

focused on data-flow based tainting only, and do not consider tainting due to the control flow within an

application[6], which limits their general applicability. Also, most existing techniques support either a single

taint marking or a small, fixed number of markings, which is problematic in applications such as debugging.

Finally, almost no existing technique handles the propagation of taint markings in a truly conservative way,

which may be appropriate for the specific applications considered, but is problematic in general. Because

developing support for dynamic taint analysis is not only time consuming, but also fairly complex, this lack of

flexibility and generality of existing tools and techniques is especially limiting for this type of dynamic analysis.

To address these limitations and foster experimentation with dynamic tainting[8] techniques, in this

paper we present a framework for dynamic taint analysis. We designed the framework to be general and flexible,

so that it allows for implementing different kinds of techniques based on dynamic taint analysis with little effort.

Users can leverage the framework to quickly develop prototypes for their techniques, experiment with them, and

investigate trade-offs of different alternatives. For a simple example, the framework could be used to investigate

the cost effectiveness of considering different types of taint propagation for an application.

Intuitively, dynamic tainting tracks the information flow within a program by (1) associating one or

more markings with some data values in the program and (2) propagating these markings as data values flow

through the program during execution. Consider, for instance, the simple example. Imagine that we tainted the

variables a at line 2 and b at line 3 with taint markings ta and tb, respectively. In such a case, we would expect, at

the end of the execution, that the taint markings associated with variables x, y, and z would consist of sets {ta},

{tb}, and {ta, tb}, respectively. Taint marking ta, initially associated with a, would be associated with w

because a’s value is used to compute w. analogously, marking ta would be associated with y because the value of

w, which is now tainted with ta, is used to compute y. The propagation of taint markings for the remaining

variables is analogous.

III. PROPOSED WORK

3.1 Deterministic and Non Deterministic Mapping

The deterministic is the most common and perfectly matched pattern. That is to say that web request rm

appears in all traffic with the SQL queries set Qn. For any session in the testing phase with the request rm, the

absence of a query set Qn matching the request indicates a possible intrusion. On the other hand, if Qn is present

in the session traffic without the corresponding rm, this may also be the sign of an intrusion. In static websites,

this type of mapping comprises the majority of cases since the same results should be returned for each time a

user visits the same link. In special cases, the SQL query set may be the empty set. This implies that the web

request neither causes nor generates any database queries. For example, when a web request for retrieving an

image GIF file from the same webserver is made, a mapping relationship does not exist because only the web

requests are observed. During the testing phase, we keep these web requests together in the set EQS. In some

cases, the webserver may periodically submit queries to the database server in order to conduct some scheduled

tasks, such as cron jobs for archiving or backup. This is not driven by any web request, similar to the reverse

case of the Empty Query Set mapping pattern. These queries cannot match up with any web requests, and we

keep these unmatched queries in a set NMR. During the testing phase, any query within set NMR is considered

legitimate. The size of NMR depends on webserver logic, but it is typically small. The same web request may

result in different SQL query sets based on input parameters or the status of the webpage at the time the web

request is received. In fact, these different SQL query sets do not appear randomly, and there exists a candidate

pool of query sets. Each time that the same type of web request arrives, it always matches up with one of the

query sets in the pool. Therefore, it is difficult to identify traffic that matches this pattern.

3.2 Modelling for Static Websites

In the case of a static website, the nondeterministic mapping does not exist as there are no available

input variables or states for static content. We can easily classify the traffic collected by sensors[9] into three

Identifying Distributed Dos Attacks in Multitier Web Applications

www.theijes.com The IJES Page 20

patterns in order to build the mapping model. As the traffic is already separated by session, we begin by iterating

all of the sessions from 1 to N. For each REQ, we maintain a set ARm to record the IDs of sessions in which rm

appears. The same holds for the database queries; we have a set AQs for each SQL to record all the session IDs.

To produce the training model, we leverage the fact that the same mapping pattern appears many times across

different sessions. For each ARm, we search for the AQs that equals the ARm. After we confirm all deterministic

mappings, we remove these matched requests and queries from REQ and SQL, respectively. Since multiple

requests are often sent to the webserver within a short period of time by a single user operation, they can be

mapped together to the same AQs. Some web requests that could appear separately are still present as a unit.

For example, the read request always precedes the post request on the same webpage. During the training phase,

we treat them as a single instance of web requests bundled together unless we observe a case when either of them

appears separately. Our next step is to decide the other two mapping patterns by assembling a white list for static

file requests, including JPG, GIF, CSS, etc. HTTP requests for static files are placed in the EQS set. The

remaining requests are placed in REQ; if we cannot find any matched queries for them, they will also be placed

in the EQS set. In addition, all remaining queries in SQL will be considered as No Matched Request cases and

placed into NMR.

3.3 Modelling of Dynamic Patterns

In contrast to static webpage, dynamic webpage allow users to generate the same web query with

different parameters. Additionally, dynamic pages often use POST rather than GET methods to commit user

inputs. Based on the web server’s application logic, different inputs would cause different database queries. For

example, to post a comment to a blog article, the web server would first query the database to see the existing

comments. If the user’s comment differs from previous comments, then the web server would automatically

generate a set of new queries to insert the new post into the back-end database. Otherwise, the web server would

reject the input in order to prevent duplicated comments from being posted i.e., no corresponding SQL query

would be issued. In such cases, even assigning the same parameter values would cause different set of queries,

depending on the previous state of the website. Likewise, this nondeterministic mapping case happens even after

we normalize all parameter values to extract the structures of the web requests and queries. Since the mapping

can appear differently in different cases, it becomes difficult to identify all of the one-to-many mapping patterns

for each web request. Moreover, when different operations occasionally overlap at their possible query set, it

becomes even harder for us to extract the one-to-many mapping for each operation by comparing matched

requests and queries across the sessions.

3.3.1 SQL Tautologies Attacks

Tautology-based attacks are among the simplest and best known types of Attacks. The general goal of a

tautology based attack is to inject SQL tokens that cause the query’s conditional statement to always evaluate to

true. Although the results of this type of attack are application specific, the most common uses are bypassing

authentication pages and extracting data. In this type of injection, an attacker exploits a vulnerable input field

that is used in the query’s WHERE conditional. This conditional logic is evaluated as the database scans each

row in the table. If the conditional represents a tautology, the database matches and returns all of the rows in the

table as opposed to matching only one row, as it would normally do in the absence of injection.

3.3.2 SQL Union Queries

Although tautology-based attacks can be successful, for instance, in bypassing authentication pages,

they do not give attackers much flexibility in retrieving specific information from a database. Union queries are a

more sophisticated type of SQL Attacks that can be used by an attacker to achieve this goal, in that they cause

otherwise legitimate queries to return additional data. In this type of SQLIA, attackers inject a statement of the

form “UNION < injected query > .” By suitably defining < injected query > , attackers can retrieve information

from a specified table. The outcome of this attack is that the database returns a data set that is the union of the

results of the original query with the results of the injected query.

3.3.3 SQL Piggybacked Queries

Similar to union queries, this kind of attack appends additional queries to the original query string. If

the attack is successful, the database receives and executes a query string that contains multiple distinct queries.

The first query is generally the original legitimate query, whereas subsequent queries are the injected malicious

queries. This type of attack can be especially harmful because attackers can use it to inject virtually any type of

SQL command. In our example, an attacker could inject the text “0; drop table users” into the pin input field.

Identifying Distributed Dos Attacks in Multitier Web Applications

www.theijes.com The IJES Page 21

3.3.4 SQL Malformed Queries

Union queries and piggybacked queries let attackers perform specific queries or execute specific

commands on a database, but require some prior knowledge of the database schema, which is often unknown.

Malformed queries allow for overcoming this problem by taking advantage of overly descriptive error messages

that are generated by the database when a malformed query is rejected. When these messages are directly

returned to the user of the Web application[2], instead of being logged for debugging by developers, attackers

can make use of the debugging information to identify vulnerable parameters and infer the schema of the

underlying database. Attackers exploit this situation by injecting SQL tokens or garbage input that causes the

query to contain syntax errors, type mismatches, or logical errors.

IV. RESULTS

The concept of this paper is implemented and different results are shown below, The proposed paper is

implemented in Java technology on a Pentium-IV PC with minimum 20 GB hard-disk and 1GB RAM. The

propose paper’s concepts shows efficient results and has been efficiently tested on different Datasets.

 Fig. 1 Graphs shows number of fetches at different instances

 Fig. 1 Graph shows intrusion detection at different instances

Fig. 3 Graph shows intrusion detection using enhanced technique

V. CONCLUSION
We presented an intrusion detection system that builds models of normal behavior for multitier web

applications from both front-end web (HTTP) requests and back-end database (SQL) queries.By using this we

can able to find the Distributed Denial of Service attacks(DDOS). Unlike previous approaches that correlated or

summarized alerts generated by independent IDSs, System forms container-based IDS with multiple input

streams to produce alerts. We have shown that such correlation of input streams provides a better

characterization of the system for anomaly detection because the intrusion sensor has a more precise normality

Identifying Distributed Dos Attacks in Multitier Web Applications

www.theijes.com The IJES Page 22

model that detects a wider range of threats. We achieved this by isolating the flow of information from each web

server session with a lightweight virtualization[4]. Furthermore, we quantified the detection accuracy of our

approach when we attempted to model static and dynamic web requests with the back-end file system and

database queries. For static websites, we built a well-correlated model, which our experiments proved to be

effective at detecting different types of attacks. Moreover, we showed that this held true for dynamic requests

where both retrieval of information and updates to the back-end database occur using the web server front end.

REFERENCES
[1] D. Bates, A. Barth, and C. Jackson, “Regular Expressions Considered Harmful in Client-Side XSS

Filters,” Proc. 19th Int’l Conf. World Wide Web, 2010.

[2] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: An Approach for the Anomaly-Based

Detection of State Violations in Web Applications,” Proc. Int’l Symp. Recent Advances in Intrusion

Detection (RAID ’07), 2007.

[3] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward Automated Detection of Logic

Vulnerabilities in Web Applications,” Proc. USENIX Security Symp., 2010.

[4] Y. Huang, A. Stavrou, A.K. Ghosh, and S. Jajodia, “Efficiently Tracking Application Interactions

Using Lightweight Virtualization,” Proc. First ACM Workshop Virtual Machine Security, 2008.

[5] B. Parno, J.M. McCune, D. Wendlandt, D.G. Andersen, and A. Perrig, “CLAMP: Practical Prevention

of Large-Scale Data Leaks,” Proc. IEEE Symp. Security and Privacy, 2009.

[6] S. Potter and J. Nieh, “Apiary: Easy-to-Use Desktop Application Fault Containment on Commodity

Operating Systems,” Proc. USENIX Ann. Technical Conf., 2010.

[7] Y. Shin, L. Williams, and T. Xie, “SQLUnitgen: Test Case Generation for SQL Injection Detection,”

technical report, Dept. of Computer Science, North Carolina State Univ., 2006.

[8] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kru¨ gel, and G. Vigna, “Cross Site Scripting

Prevention with Dynamic Data Tainting and Static Analysis,” Proc. Network and Distributed System

Security Symp. (NDSS ’07), 2007.

[9] A. Stavrou, G. Cretu-Ciocarlie, M. Locasto, and S. Stolfo, “Keep Your Friends Close: The Necessity

for Updating an Anomaly Sensor with Legitimate Environment Changes,” Proc. Second ACM

Workshop Security and Artificial Intelligence, 2009.

[10] G. Vigna, F. Valeur, D. Balzarotti, W.K. Robertson, C. Kruegel, and E. Kirda, “Reducing Errors in the

Anomaly-Based Detection of Web-Based Attacks through the Combined Analysis of Web Requests and

SQL Queries,” J. Computer Security, vol. 17, no. 3, pp. 305-329, 2009.

Authors Profile:

 Namratha Thatikonda
Obtained her Bachelor’s degree in Information Technology from SR Engineering College,

Warangal, A.P.India. Pursuing her Master’s degree in Software Engineering from KITS,

Warangal, AP, India.

 Sunkari venkatramulu
Obtained his Bachelor’s degree in Computer Science and Engineering from Kakatiya

University, India.Then he obtained his Master’s degree in Computer Science from JNTU and

pursuing his PhD from Kakatiya University, Warangal. He is also life member of ISTE. He is

currently an Associate Professor at the Faculty of Computer Science and Engineering,

Kakatiya Institute of Technology & Science (KITS), Kakatiya University Warangal. His

specializations include network security, Websecurity, Intrusion detection system.

