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----------------------------------------------------ABSTRACT------------------------------------------------------ 

With the emergence on the deep Internet, searching Internet databases throughout domains including 

vehicles, real estate property, etc. has changed into a routine job. One on the problems in this context can be 

ranking the results of a new user dilemma. Earlier techniques for addressing this challenge have used 

frequencies regarding database valuations, query records, and end user profiles. A standard twine throughout a 

large number of techniques can be that ranking is finished inside a user- and/or query-independent manner. 

This particular document offers a new fresh query- and user-dependent strategy with regard to ranking dilemma 

leads to Internet data source. Most of existing and new ranking model, determined supporting thoughts 

regarding end user and dilemma similarity, for you to gain a new ranking perform for the offered end user 

dilemma. This particular perform can be bought from the sparse workload composed of regarding a number of 

this kind of ranking features made with regard to various user-query frames. The particular model will depend 

on the particular intuition that equivalent end users screen equivalent ranking inclinations over the outcomes of 

equivalent requests 
 

Keywords— Ranking, Web Database, Query and User Similarity 

----------------------------------------------------------------------------------------------------------------------------- ----------- 

Date of Submission: 10, October, 2013                                                        Date of Acceptance: 30, October 2013 

------------------------------------------------------------------------------------------------------------------------------------------------------ 

 

I. INTRODUCTION 
The emergence of the deep Web has led to the proliferation of a large number of Web databases for a variety of 

applications e.g., airline reservations, vehicle search, real estate scouting. These databases are typically searched by 

formulating query conditions on their schema attributes. When the number of results returned is large, it is time-consuming 

to browse and choose the most useful answer(s) for further investigation. Currently, Web databases simplify this task by 

displaying query results sorted on the values of a single attribute e.g., Price, Mileage, etc. However, most Web users would 

prefer an ordering derived using multiple attribute values, which would be closer to their expectation. The current sorting-

based mechanisms used by Web databases do not perform such ranking. While some extensions to SQL allow manual 

specification of attribute weights, this approach is cumbersome for most Web users. Automated ranking of database results 

has been studied in the context of relational databases, and although a number of techniques perform query-dependent 

ranking, they do not differentiate between users and hence, provide a single ranking order for a given query across all users. 

In contrast, techniques for building extensive user profiles as well as requiring users to order data tuples, proposed for user-

dependent ranking, do not distinguish between queries and provide a single ranking order for any query given by the same 

user. Recommendation i.e., collaborative and content filtering as well as information retrieval systems use the notions of 

user- and object/item-similarity for recommending objects to users. Although our work is inspired by this idea, there are 

differences that prevent its direct applicability to database ranking.  

 
In this paper, we propose a user- and query-dependent approach for ranking the results of Web database queries. 

For a query Qj given by a user Ui, a relevant ranking function (Fxy) is identified from a workload of ranking functions 

(inferred for a number of user-query pairs), to rank Qj ’s results. The choice of an appropriate function is based on a novel 

similarity-based ranking model proposed in the paper. The intuition behind our approach is for the results of a given query, 

similar users display comparable ranking preferences, and a user displays analogous ranking preferences over results of 

similar queries. We decompose the notion of similarity into: query similarity, and user similarity. While the former is 

estimated using either of the proposed metrics query-condition or query-result, the latter is calculated by comparing 

individual ranking functions over a set of common queries between users. Although each model can be applied 

independently, we also propose a unified model to determine an improved ranking order. The ranking function used in our 

framework is a linear weighted-sum function comprising of: attribute-weights denoting the significance of individual 

attributes and value weights representing the importance of attribute values.  
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II. PREVIOUS WORK 
Data integration is the problem of combining information from multiple heterogeneous databases. One step of 

data integration is relating the primitive objects that appear in the different databases specifically, determining which sets of 

identifiers refer to the same real-world entities. A number of recent research papers have addressed this problem by 

exploiting similarities in the textual names used for objects in different databases. (For example one might suspect that two 

objects from different databases named “USAMA FAYYAD” and “Usama M. Fayyad” ” respectively might refer to the 

same person.) Integration techniques based on textual similarity are especially useful for databases found on the Web or 

obtained by extracting information from text, where descriptive names generally exist but global object identifiers are rare. 

Previous publications in using textual similarity for data integration have considered a number of related tasks. Although the 

terminology is not completely standardized, in this paper we define entity-name matching as the task of taking two lists of 

entity names from two different sources and determining which pairs of names are co-referent (i.e., refer to the same real-

world entity). We define entity-name clustering as the task of taking a single list of entity names and assigning entity names 

to clusters such that all names in a cluster are co-referent. Matching is important in attempting to join information across of 

pair of relations from different databases, and clustering is important in removing duplicates from a relation that has been 

drawn from the union of many different information sources. Previous work in this area includes work in distance functions 

for matching and scalable matching and clustering algorithms. Work in record linkage is similar but does not rely as heavily 

on textual similarities. [1] 

 

Important business decisions; therefore, accuracy of such analysis is crucial. However, data received at the data 

warehouse from external sources usually contains errors: spelling mistakes, inconsistent conventions, etc. Hence, significant 

amount of time and money are spent on data cleaning, the task of detecting and correcting errors in data. The problem of 

detecting and eliminating duplicated data is one of the major problems in the broad area of data cleaning and data quality. [2] 
 

Many times, the same logical real world entity may have multiple representations in the data warehouse. For 

example, when Lisa purchases products from SuperMart twice, she might be entered as two different customers due to data 

entry errors. Such duplicated information can significantly increase direct mailing costs because several customers like Lisa 

may be sent multiple catalogs. Moreover, such duplicates can cause incorrect results in analysis queries (say, the number of 

SuperMart customers in Seattle), and erroneous data mining models to be built. We refer to this problem of detecting and 

eliminating multiple distinct records representing the same real world entity as the fuzzy duplicate elimination problem, 

which is sometimes also called merge/purge, dedup, record linkage problems. This problem is different from the standard 

duplicate elimination problem, say for answering “select distinct” queries, in relational database systems which considers 

two tuples to be duplicates if they match exactly on all attributes. However, data cleaning deals with fuzzy duplicate 

elimination, which is our focus in this paper. Henceforth, we use duplicate elimination to mean fuzzy duplicate elimination. 

[2] 
 

Duplicate elimination is hard because it is caused by several types of errors like typographical errors, and 

equivalence errors different (non-unique and nonstandard) representations of the same logical value. For instance, a user 

may enter “WA, United States” or “Wash., USA” for “WA, United States of America.” Equivalence errors in product tables 

(“winxp pro” for “windows XP Professional”) are different from those encountered in bibliographic tables (“VLDB” for 

“very large databases”), etc. Also, it is important to detect and clean equivalence errors because an equivalence error may 

result in several duplicate tuples. The class of equivalence errors can be addressed by building sets of rules. For instance, 

most commercial address cleaning software packages (e.g., Trillium) use rules to detect errors in names and addresses. In 

this paper, we focus on domain independent duplicate elimination techniques. Domain-specific information when available 

complements these techniques. Previous domain in dependent methods for duplicate elimination rely on textual similarity 

functions (e.g., edit distance or cosine metric) predicting that two tuples whose textual similarity is greater than a pre-

specified similarity threshold are duplicates. However, using these functions to detect duplicates due to equivalence errors 

(say, “US” and “United States”) requires that the threshold be dropped low enough, resulting in a large number of false 

positives pairs of tuples incorrectly detected to be duplicates. For instance, tuple pairs with values “USSR” and “United 

States” in the country attribute are also likely to be declared duplicates if we were to detect “US” and “United States” as 

duplicates using textual similarity. In this paper, we exploit dimensional hierarchies typically associated with dimensional 

tables in data warehouses to develop an efficient, scalable, duplicate elimination algorithm called Delphi, which significantly 

reduces the number of false positives without missing out on detecting duplicates. We rely on hierarchies to detect an 

important class of equivalence errors in each relation, and to significantly reduce the number of false positives. [2] 

 
The critical ingredient of a fuzzy match operation is the similarity function used for comparing tuples. In typical 

application domains, the similarity function must definitely handle string valued attributes and possibly even numeric 

attributes. In this paper, we focus only on string-valued attributes, where defining similarity and performing fuzzy matching 

is more challenging. Given the similarity function and an input tuple, the goal of the fuzzy match operation is to return the 

reference tuple a tuple in the reference relation which is closest to the input tuple. An extension is to return the closest K 

reference tuples enabling users, if necessary, to choose one among them as the target, rather than the closest. A further 

extension is to only output K or fewer tuples whose similarity to the input tuple exceeds a user-specified minimum similarity 

threshold. This formulation is essentially that of the nearest neighbor problem, but there the domain is typically a Euclidean 

(or other normed) space with well-behaved similarity functions. In our case, the data are not represented in “geometric” 

spaces, and it is hard to map them into one because the similarity function is relatively complex. [4] 
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Previous approaches addressing the fuzzy match operation either adopt proprietary domain-specific functions (e.g., 

Trillium’s reference matching operation for the address domain) or use the string edit distance function for measuring 

similarity between tuples. A limitation of the edit distance is illustrated by the following example. The edit distance function 

would consider the input tuple I3 to be closest to R2, even though we know that the intended target is R1. Edit distance fails 

because it considers transforming ‘corporation’ to ‘company’ more expensive than transforming ‘boeing’ to ‘bon.’ However, 

we know that ‘boeing’ and ‘98004’ are more informative tokens than ‘corporation’ and so replacing ‘corporation’ with 

‘company’ should be considered cheaper than replacing ‘boeing’ with ‘bon’ and ‘98004’ with ‘98014.’ In yet another 

example, note that the edit distance considers I4 closer to R3 than to its target R1. This is because it fails to capture the 

notion of a token or take into account the common error of token transposition. [4] 

 
One of the major impediments to integrating data from multiple sources, whether by warehousing, virtual 

integration or web services, is resolving references at the instance level. Data sources have different ways of referring to the 

same real-world entity. Variations in representation arise for multiple reasons: misspellings, use of abbreviations, different 

naming conventions, naming variations over time, and the presence of several values for particular attributes. To join data 

from multiple sources, and therefore, to do any kind of analysis, we must detect when different references refer to the same 

real-world entity. This problem is known as reference reconciliation. Reference reconciliation has received significant 

attention in the literature, and its variations have been referred to as record linkage, merge/purge, de-duplication, hardening 

soft databases, reference matching, object identification and identity uncertainty. Most of the previous work considered 

techniques for reconciling references to a single class. Furthermore, typically the data contained many attributes with each 

instance. However, in practice, many data integration tasks need to tackle complex information spaces where instances of 

multiple classes and rich relationships between the instances exist, classes may have only few attributes, and references 

typically have unknown attribute values. The main motivation for our work comes from the application of Personal 

Information Management (PIM), and specifically, supporting higher-level browsing of information on one's desktop. The 

need for better search tools for the desktop was highlighted by systems like SIS and the Google Desktop search tool. 

However, these systems provide only keyword search to the desktop's contents. The vision of the Personal Memex and 

recent systems such as Haystack and Semex emphasize the ability to browse personal information by associations, 

representing important semantic relationships between objects. To support such browsing, a PIM system examines data from 

a variety of sources on the desktop (e.g., mails, contacts, ¯les, spreadsheets) to extract instances of multiple classes: Per- son, 

Message, Article, Conference, etc. In addition, the system extracts associations between the instances, such as senderOf, 

earlyVersionOf, authorOf, and publishedIn, which then provide the basis for browsing. However, since the data sources are 

heterogeneous and span several years, a real-world object is typically referred to in several different ways. Reconciliation of 

the above classes of references guarantees that they mesh together seamlessly, and so the PIM system can provide palatable 

browsing and searching experiences. [5] 
 

III. PROPOSED SYSTEM 
 

A. Query Condition Similarity 
In this model, the similarity between two queries is determined by comparing the attribute values in the query 

conditions. Consider an example queries. Intuitively, “Honda” and “Toyota” are vehicles with similar characteristics i.e., 

they have similar prices, mileage ranges, and so on. In contrast, “Honda” is a very different from “Lexus”. Similarly, 

“Dallas” and “Atlanta”, both being large metropolitan cities, are more similar to each other than “Basin”, a small town. From 

the above analysis, Q1 appears more similar to Q2 than Q5. In order to validate this intuitive similarity, we examine the 

relationship between the different values for each attribute in the query conditions. For this, we assume independence of 

schema attributes, since, availability of appropriate knowledge of functional dependencies and/or attribute correlations is not 

assumed.   
 

B. Query Result Similarity 
In this model, similarity between a pair of queries is evaluated as the similarity between the tuples in the respective 

query results. The intuition behind this model is that if two queries are similar, the results are likely to exhibit greater 

similarity. We observe that there exists certain similarity between the results of Q1 and Q2 for attributes such as ‘price’ and 

‘mileage’ and even ‘color’ to a certain extent. In contrast, the results of Q5 are substantially different; thus, allowing us to 

infer that Q1 is more similar to Q2 than Q5. Formally, we define query-result similarity below. Given two queries Q and Q’, 

let N and N’ be their query results. The query-result similarity between Q and Q’ is then computed as the similarity between 

the result sets N and N’. 

 

C. Query Independent User Similarity 
This model follows the simplest paradigm and estimates the similarity between a pair of users based on all the 

queries common to them. This model determines the similarity between U1 and U2 using the ranking functions of Q2 and 

Q7. From the queries, let the query-similarity model indicate that Q2 is most similar to Q1 whereas Q7 is least similar to Q1, 

and let us consider the user-similarity results. This model will pick U3 as the most similar user to U1. However, if only Q2 

which is most similar to Q1 is used, U2 is more similar to U1. Based on our premise that similar users display similar 

ranking preferences over the results of similar queries, it is reasonable to assume that employing F21 to rank Q1’s results 

would lead to a better ranking order from U1’s viewpoint than the one obtained using F31.  
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D. Cluster Based User Similarity 
In order to meaningfully restrict the number of queries that are similar to each other, one alternative is to cluster 

queries in the workload based on query similarity. This can be done using a simple K-means clustering method. Given an 

existing workload of m queries (Q1, Q2, .... Qm), each query (Qj) is represented as a m-dimensional vector of the form 

<sj1, ...., sjm> where sjp represents the query-condition similarity score between the queries Qj and Qp. Using K-means, we 

cluster m queries into K clusters based on a pre-defined K and number of iterations. Assuming the similarities specified in 

(Q2 and Q7 are most and least similar to Q1 respectively), for a value of K = 2, the simple K-means algorithm will generate 

two clusters C1 containing Q1 and Q2 along with other similar queries, and C2 containing Q7 in addition to other queries 

not similar to Q1. We then estimate the similarity between U1 and every other user only for the cluster C1 since it contains 

queries most similar to the input query. Using the scenario, U2 would be chosen as the most similar user and F21 would be 

used to rank the corresponding query results. 

 

E. Top-K User Similarity 
Instead of finding a reasonable K for clustering, we propose a refinement, termed top-K user similarity. We 

propose three measures to determine top-K queries that are most similar to an input query, and estimates the similarity 

between the user (U1) and every other user. Given an input query Q1 by U1, only the top-K most similar queries to Q1 are 

selected. However, the model does not check the presence of ranking functions in the workload for these K queries. For 

instance, based on assumption and using K = 3, Q2, Q3 and Q4 are the three queries most similar to Q1, and hence, would be 

selected by this model. In the case of workload, similarity between U1 and U2 as well as between U1 and U3 will be 

estimated using Q2. However, in the case of another workload, similar to the problem in the clustering alternative, there is 

no query common between U1 and U2 as well as U3. Consequently, similarity cannot be established and hence, no ranking 

is possible.. 

 

IV. RESULTS 
The concept of this paper is implemented and different results are shown below, The proposed paper is 

implemented in Java technology on a Pentium-IV PC with minimum 20 GB hard-disk and 1GB RAM. The propose paper’s 

concepts shows efficient results and has been efficiently tested on different Datasets.    

 

 
Fig. 1 Speaman Coefficient Comparison  

 

 
Fig. 1  User Clustering and Enhanced Clustering Comparision 
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Fig. 3 User Clustering and Enhanced Clustering Comparision  

 

V. CONCLUSIONS 
In this paper, we proposed a user and query dependent solution for ranking query results for Web databases. We 

formally defined the similarity models user, query and combined and presented experimental results over two Web databases 

to corroborate our analysis. We demonstrated the practicality of our implementation for real-life databases. Further, we 

discussed the problem of establishing a workload, and presented a learning method for inferring individual ranking functions. 

Our work brings forth several additional challenges. In the context of Web databases, an important challenge is the design 

and maintenance of an appropriate workload that satisfies properties of similarity-based ranking. Determining techniques for 

inferring ranking functions over Web databases is an interesting challenge as well. Another interesting problem would be to 

combine the notion of user similarity proposed in our work with existing user profiles to analyze if ranking quality can be 

improved further. Accommodating range queries, usage of functional dependencies and attribute correlations needs to be 

examined. Applicability of this model for other domains and applications also needs to be explored.  
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