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----------------------------------------------------------Abstract--------------------------------------------------------------- 

The load balancing between resources in order to get effective utilization when many jobs are running with 

varying characteristics. The system speed is reduced when the work load is not properly balanced and idle 

processors are not involve for tasks execution, due to single processor may execute limit number of tasks. Thus 

the tasks steal from master processor to idle processors. Here work stealing is efficient approach to the 

distributed dynamic load balancing for the load among different processors. But Our  proposal  is priority 

based deque in place of  the  non-priority  deque  of  work -stealing. Work stealing will increase the speedup of 

Parallel applications without affecting the schedulability of the other jobs scheduled by EDF-HSB. 
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I. Introduction 
The system speed is increased when the work load is properly balanced and idle processors are involve 

for tasks execution, due to single processor may execute limit number of tasks. Thus the tasks steal from master 

processor to idle processors. Here work stealing is efficient approach to the distributed dynamic load balancing 

for the load among different processors. Work stealing double-ended queues (deques) as a stack, push and 

pop t a s ks  from the bottom, but idle processor deques  stealing tas ks from the top. Let us consider as an 

example for the task d istribut ion.  

1 1 1 1 1 1

1 1 1 1 1 1

P1 P2 P3 Pn Pn-1 P1

T1 T2 T3 Tn Tn-1 T1

 

Fig 1: Tasks read and write by the processors. 
 

T1, T2, T3 tasks are present for utilization and if any task T4 to Tn, insert task at the end of the queue. First step 

is T1 read and write by the processor P1, and T2 task is read and write T4 task when present in the queue. 

Simultaneously T3 task read and T5 task write by the processor. Accordingly the tasks are assigned to the 

different processors. If any task is not found, the process is going on without involvement of tasks T4 to Tn. 

Growing importance of parallel task models in real-time applications poses new challenges to real-time 

scheduling. Task-based parallelis m enforced through compilers still lacks the ability to handle highly complex 

source code. The usefulness of existing real-t ime scheduling approaches is limited by their restrictive parallel 

task models. In contrast, the more general parallel task model addressed in our wo rk allows jobs to generate an 

arbitrary number of parallel threads at different stages of their computations. 
 

II. Work Stealing 
One of the simplest, yet best-performing, dynamic load-balancing algorithms for shared-memory 

architectures. Uses a "breadth-first theft, depth-first work" scheduling policy with minimal overhead and good 

data locality. The challenge is to impose a priority-based (2) scheduling policy that positively increases the 

speedup of parallel applications without jeopardizing the schedulability of the system. The global d istributed 

shared memory enables the tasks to be executed on any process in any processor during the computation. Work 

stealing is performed by storing Distributed task queue in the global distributed shared Memory (11). Work  
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stealing (3) is a scheme of dynamic load balancing (12). Each process follows a double-ended queue 

tasks. Tasks are executed from the deque, if any work is not found steal task from the processor’s deque. The 

process that initiates the steal operation is called as “thief”. The processor targeted by the steal is called 

“victim”. The thief is reacting for initial load balance requests. The thief must select its victim first while 

performing the steal operation. Ones thief is selected the thief is fetch the informat ion from the selected victim. 

Work is not assigned to the victim then the thief is selecting another victim randomly or priority based approach. 

This is global d istributed shared memory (7) (GDSM) termination detection. The process must actively detect 

the all processes until work is available. This process is used to determine time period for computation.Work 

stealing scheduling algorithm collects data and distributed to different processes until tasks are available to seal. 

Hence it completes job in (t1/ (P+Tp)) expected time. Work stealing improves execution time and efficiency. 

System has large number of processors but many idle processors are stealing from busy processors. It tries to 

balance the loads on processors with additional stealing. The involvement of processors gradually develops in 

stealing. Finally conclude that the processors execution time. 
 

Decreases and increase the efficiently (13) distribute for execute the tasks by using work stealing scheduling 

algorithms. 
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Fig 2: Master tasks distribution to slaves 

 

Master having queue and it is used for control the all slaves in way of parallelis m (4). The master main 

task is data distribution among different slave devices on the bases of functional, operational and performance 

specifications. Master takes decision regarding task distribution upon the work stealing information about task 

execution. Finally the master monitors the work load of the slaves and redistributes task whenever load 

imbalance is detected. The master is responsible for both scheduling and distribution of tasks, the allow slaves to 

complete data redundantly. This mechanism also makes the model toleralable to the failure of slaves.  

 

 
Fig 3: Flow chart for work stealing  

 

2.1   Work Stealing Algorithm (DLBS) 

Dynamic load balancing in d istributed shared memory. 

If Mpq the master processor queue 

Spq be the slave processor task queue 

Vsq be the victim slave task queue and 

Tsq be the thief slave task queue 

For slaves fromji=1 to n 

Initialize all the tasks to Mq 
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Collect load status of slaves Spq 

Tasks Distribute  from Mpq to Spq 

End for 

Select thief Tj and victim Vj 

Fetch work from victim’s queue Vsq. 

If work Wj found 

Transfer tasks from Vsq to Tsq 

Steal and execute work Wj. 

Search for new task 

Else 

Steal Failed 

Terminate steal operation 

End If 

End While 
 

This scheduling approach for parallel real time execution of tasks and this type coexist with complex 

applications. This combines a mult iprocessor residual capacity reclaiming scheme with a priority based work-

stealing policy which, while ensuring isolation among tasks, allows a tasks to be executed in more than one 

processor at a given time.State based scheduling with tree schedules: analysis  and evaluation dynamic 

scheduling of parallel computations by work stealing has gained good and desired responses. Work stealing has 

proven to be effective in reducing the complexity of parallel programming, especially for irregular and dynamic 

co0mputations. Thus the work stealing approach adopted in commercial and open source software and libraries. 

Work stealing has fixed number of workers means one per core. Double ended queue (deque) to store ready 

tasks. Deque acts as a stack push and pop the contents or tasks from the bottom of the stack, but treat the deque 

of another randomly chosen busy worker as a queue, stealing tasks only from the top whenever they have no 

local task to execute. The queue tasks are executed in a constant time independently work stealing support to 

execute the number of tasks basically, but main problem is tasks waiting for execution in a deque may be 

repressed by new tasks which are enqued at bottom of the deque.  
 

A task at the tail of deque might never be executed if all processors are busy. There is no controlling for 

multi task execution. Task priorit ies and deque per core (SDPC) would require during stealing, the processor 

execute the tasks repeatedly in all deques until the highest priority task to be selected. This proposal gives  valid 

solution to decrease the theft time. Work stealing load balancing policy used to allow parallel tasks to execute 

more than 1 processor at the same time instant.Each processor has a local deque to store tasks. Processor will try 

to select or select a task from the top of the other busy processor’s deque while processor has no local tasks to 

execute. Here main important issue is which processor task will be selected. These choices bad to variations of 

the work stealing algorithm. Here more in formation not required about all processors due to the processor 

randomly select this is one of the benefits. Work stealing algorithm does not take deadlines in to account when 

task stealing from another processor. a task must block before another task can be scheduled on the same cpu or 

it will run to completion . Here more than task executed on multi processors. The local deques are performed in 

a last in first out order. The job is executed sequentially if due to not support parallel execution of jobs. Work 

stealing algorithm allows an idle processor execute task of another busy processor queue. Processor has no 

pending jobs in local deque and global EDF queue first job has a greatest dead line than other processors have at 

least one job at the top. Processor task should steal the earliest dead line from the topmost jobs on the other 

workers deque. Probably dead line based work stealing policy will positively increase the speedup of Parallel 

applications without affecting the schedulability of the other sequential jobs scheduled by global EDF.  
 

Mainly Common method for real-t ime scheduling on Multiprocessor systems is to partition the tasks to 

be scheduled among the available processors. While simple to implement, this approach has several drawbacks 

when implementing .Further, part itioning is inflexible in that spare capacities cannot be reused on different 

processors.  For these reasons, prior efforts on implementing servers on multiprocessors have focused on the 

usage of global scheduling algorithms.  Two different types of global algorithms have been considered: job level 

fixed-priority algorithms and Pfair algorithms. In a  job level fixe d- priori ty algorithm, a job’s priority, once 

assigned, does not change.  E xample for such an algorithm is global EDF. In contrast, Pfair algorithms break 

each job to be scheduled into quantum-length pieces of work, called subtasks, which are then scheduled. Pfair 

algorithms, in theory, have the advantage that a system’s full capacity can be utilized: any sporadic real-time 

task system with total utilization at most m can be scheduled using Pfair algorithms with no deadline misses on 

an m-processor system [5]. In contrast, as with partitioning, caps on overall utilizat ion must be used when using 

job level fixed-priority algorithms if every deadline must be met. 
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III. Proposed Approach 
There Are No Boundaries  f o r  taking number of hard  real t ime tasks i n  E xtension of EDF- h l. 

Extension of this we call it as EDF-HSB, creates up to m non- migratory servers to execute Hard Real Time 

(HRT) tasks with zero tardiness. These servers are statically prioritized over the other servers in the system and 

can be provisioned independently of the periods of their clients. Each SRT task is serviced by a single server 

Queued BE jobs are scheduled by additional SRT servers. The SRT servers may miss their deadlines, but by 

bounded amounts only. M-CASH (10), which extends M-CBS by adding reclaiming techniques for reallocating 

processing capacity that, becomes available when a server completes early.  In this work, global EDF is assumed 

to be the top-level scheduler. Solve the problem of integrating aperiodic jobs and HRT tasks by using Pfair-

based algorithms as the top-level scheduler. To make best use of dynamic slack when servers complete execution 

early, EDF- HSB uses a spare capacity redistribution method similar to M-CASH [6]. Jobs that finish early 

donate their unused capacity to a global capacity queue. Both SRT tasks that are likely to be tardy and BE jobs 

can receive such capacities to improve performance. 

 

IV. System Model 
We consider the problem of scheduling a set τ of n fully pre-emptive, independent, sporadic real-time 

tasks concurrently with independent BE aperiodic jobs on a set of m identical mult iprocessors with unit 

capacity.  Each sporadic task Ti  = (ei , pi ) is characterized by its worst-case ex e cut io n requirement, e i , its 

minimum inter-arrival time, or period, pi , and its utilization, ui =e i /p i .Each such task generates a sequence 

of jobs Ti,j , where j≥1.We denote the instant that a job becomes ready for execution as ri,j , and require 

ri,j+ pi ≤ ri,j+1 . If the jobs of a sporadic task Ti  are always released pi  time units apart, starting at time 0, 

then Ti  i s  called a periodic task. If a job Ti,j  of a sporadic task executes for ei,j  < ei time units, then the 

resulting unused ca p aci ty, e i− ei,j ,is referred to as dynamic slack . If such a job does not receive an allocation 

of ei,j  time units before its implicit deadline di,j = ri,j+ pi ,then it is tardy. Note that, if a job o f a sporadic 

task is tardy, then the release time of the next job of that task is not delayed.All tasks and jobs are sequential, 

i.e., the jobs of a sporadic task must execute in sequence, and each job can only execute on one processor at a 

time.  We require all periods and deadlines to be some integral number of quanta (though execution costs can be 

non-integral). We assume this because actual hardware has inherent limits on timer resolution and reasonable 

overhead costs.  For the purpose of the analysis, we consider preemption and migrat ion costs to be negligible. 

However, we address these costs when discussing the issue of reclaiming spare capacities. EDF-HSB allows the 

system to be fully utilized and can flexibly deal with dynamic slack which meets the above requirements. The 

various mechanisms used in EDF-HSB are described in detail in later subsections. We begin with a general 

description of some of the underlying design choices.  

 

EDF-HSB ensures the temporal correctness of HRT tasks by statically partitioning them among the 

available     processors, and by encapsulating those assigned to each processor within a periodic  HRT server, 

which executes only on that processor. These HRT servers offer three distinct advantages. 1. Due to HRT tasks do 

not migrate, the analysis of their worst-case execution times is simplified.  2. HRT servers require no over-

provisioning, i.e., such a server’s utilization is simply the sum of the utilizations of its clients.  3. HRT server’s 

period can be sized independently of its client tasks, and thus its impact on SRT tasks and BE jobs can be adjusted 

freely. In contrast to our approach, in most (if not all) prior server approaches,  

 

the server must be over-provisioned in order to avoid client deadline misses .In EDF-HSB, the top-level 

scheduler schedules the HRT servers just described along with the other tasks in the system. These other tasks 

are priorit ized against each other using a global EDF policy. Hence, they may migrate among the processors in 

the system. In addit ion, these other tasks may experience bounded deadline tardiness.  Such tasks include both 

the SRT tasks that are part of the system to be scheduled and also a collection of sporadic BE servers, which are    

responsible for scheduling BE jobs. We will use the term “non- HRT task” when collectively referring to the set of 

SRT tasks and BE servers. When we use the term “job” in reference to a non-HRT task, and that task is a BE 

server, we are referring to an invocation of the server as scheduled by the top-level scheduler, and not a job that 

the server itself schedules. Although EDF-HSB prioritizes HRT servers over other tasks, such servers may be 

considered inelig ible for    execution even when they have client tasks with unfinished jobs. The eligibility 

rules for these servers, given later, are defined so that non-HRT tasks can be given preference in scheduling 

when doing so would not cause HRT tasks to miss their deadlines. 
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Idle         EDF-HSB      EDF-HSB   Global EDF    Global EDF 

(no cap)            (BE) 

Fig  4: Average and worst-case Best Effort(BE) job response times   under each tested scheme. 

 
Average           worst 

 

Arriving aperiodic jobs are placed in a  single global FIFO queue. When a BE server is scheduled for 

execution, it services jobs from this queue until either the queue empties. We assume that there are a total of m 

BE servers, so that arriving BE jobs can be scheduled in parallel to the extent possible. If the system 

experiences intervals of under utilization, then the BE servers double as background servers. At runtime, the 

performance of the system is further enhanced through a novel use of spare capacity redistribution to lessen 

tardiness for non-HRT tasks and to adapt quickly to load changes. For example, even if one processor is fully 

committed to serving HRT tasks, EDF-HSB can still use dynamic slack released on that processor to improve 

the performance of non-HRT tasks.  The redistribution of slack is controlled by a heuristic. By using different 

heuristics, it is possible to tune EDF-HSB for various task loads. Different heuristics can be defined depending 

on whether it is more important to lower BE job response times or to lower SRT task tardiness. 

 

 
 

Fig  5: Comparison of Efficiency Vs Number of  Processors 

 

V.  C o nc lus io n A nd Fut ure  Sc o pe  
Support Dynamic Task Level Parallelis m In Real Time Systems And Now Proposed Approach Is That 

Combines A Work Stealing Load Balancing Po licy With Mult icore Reservation Based Approach. Work 

Stealing Will Increase The Speedup Of Parallel Applications Without Affecting The Schedulability Of The 

Other Jobs Scheduled By EDF-HSB In Place Of Global EDF (8). Here Involve Of The Scheduling Of Periodic 

Tasks With Implicit Deadlines. It Was Claimed That U-EDF (9)Is Optimal For Periodic Tasks (I.E., It Can Meet 

All Deadlines Of Every Schedulable Task Set) And Extensive Simulations Showed A Drastic Improvement In 

The Number Of Task Preemptions And Migrations In Comparison To State-Of-The-Art Optimal Algorithms. 

However, There Was No Proof Of Its Optimality And U-EDF Was Not Designed To Schedule Sporadic Tasks. 
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