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---------------------------------------------------------Abstract----------------------------------------------------------------- 

The identification of weak nodes and participation factors in branches have been analyzed with d ifferent 

technical of analysis as: sensitivities, modal and of the singular min imum value, leaving of the Jacobian matrix 

of load flows. In this work shows up the application of metric projections for the id entification of weak nodes 

and of the branches with more part icipation.  
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1. INTRODUCTION 
Identifying weak nodes in electric power systems is a problem of great interest because the electrical 

system can reach up voltage instability and voltage collapse [1]-[3], if no relevant action is taken. Hence the 

importance of identifying the nodes of the system before contingencies or demand growth. Identifying stress 

peaks of the system to different scenarios of power system. Knowing weak nodes and branches with strong 

participation can take action to improve the reactive power support, the margin of stability and capacity of 

transmission lines. This work involves the application of metric pro jections [4] to the proximity of the min imum 

and maximum distances from a given scenario with cutoff values thus identifying weak nodes and branches with 

the strong participation. Traditionally the identification of weak nodes or branches are included in techniques 

such as sensitivities analysis, modal analysis and the minimum singular value, based on the analysis of the 

Jacobian matrix [5]-[7].The proposed technique performs the Jacobian analysis but from metric distances, 

presenting a faster computer processing and identifying nodes weak and branches and participation.  The 

analysis of the distances in matrix form has been used to calculate the distances between cities, locating the 

distances in matrix form and the comparison between arrays  was performed. Where the measurement of 

distances is performed based on the Euclidean norm [8]. It has also been used to identify leverage points in the 

state estimation in electric power systems [4], [9], [10].  

 
 

It is observed that there is a relat ionship between leverage points and sensitive nodes and branches as 

they are generated by electrical parameters and topology of the electrical system, [4], [11], [12]. And their 

structural characteristics are related to the parameters of electrical system (transmission lines, transformers).On  

one side identifying atypical natures of suspicious points and on the other side weak node s and sensitive 

branches are sought. In both cases, the distance of each point with respect to the total points are calculated in an 

n-dimensional system. 

 

2. METRIC SPACES 

A metric space [13]-[16] is a pair  where  is a nonempty set and  is a nonreal function defined 

on , called distance or metric, and satisfies the following axioms: 

 

i. Non-negative: 

 
ii. Identity of indiscernibles:  
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iii. Symmetry:  

 
iv. Triangle inequality :  

 
 

For a given set  may define more than one metric. When the metric of the space is required, we simply speak 

about the metric space  although we know that it really  is a pair . The elements of the call point  metric  

space. 
 

 

2 .A   DISCRETE METRIC SPACE 

Given a nonempty set , we define any discrete metric  on  by 

 

 
 

It’s easily verified that  is a metric space. 

2.B   THE REAL LINE  

Let ,  for every . The metric axioms are true. The set of complex 

numbers  with the distance function  is also a metric space. 

 

2.C   EUCLIDEAN DISTANCE 

There are many different ways to define the distance between two points. The distance between two 

points is the length of the path connecting them. In the plane, the distance between two points  and 

 is given by the Pythagorean Theorem.  

 

Let , the set of all  of real numbers. If  and  are 

elements of , we define the distance: 

 

 
 

The above formula is known as the Euclidean Distance [25]-[28], it is the shortest distance between two points, 

and it’s also known as the “standard” distance between two vectors. The first three metric axioms are check and 

it can be easily verified. The triangular inequality is described as 

 

 
 

If we rep lace the earlier inequality  and , therefore , and the 

inequality is described as 

 

 
 

This last inequality is derived from the Cauchy-Schwarz-Buniakovsky inequality (CBS) 
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Indeed, using the inequality CBS we get 

 

 
 

                        

2.D   THE SPACE  

Let , the set of all the n-pairs of real numbers. If  and  are 

elements of , we define the distance  between  and  by 

 
 

where p is a fixed number greater or equal to 1. The metric axioms are true. To verify the  triangle inequality 

we make the same replacement, and then we show the Minkowski inequality.  

 

[Minkowski]  

 
 

For  the inequality is trivial, for  the proof is based on Hölder inequality, which is a generalized  

version of CBS: 

 

[Hölder] 

 
  

where the numbers  and  satisfy the condition 

 

 
 

To prove (8), consider the function  with . Since ,  is an increasing 

function for positive t. For those same  the inverse function  is defined. If we’ll chart the function , 

choosing two positive real numbers   y , and marking the corresponding points in  and  axes, respectively, 

and drawing straight parallel lines to the axes. 

 

We’ll obtain two "triangles", limited by the lines, the axes and the  curve, whose areas are 

 

        
        

            

Furthermore, it is clear that meets  . We write  and , then 
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Therefore, for any positive real  and , and conjugate pair  we have 

 

 
 

Substituting in (10) 

 

            
 

And summing over the index  have Hölder inequality(8). 

 

Now we show the Minkowski inequality. Consider the identity 

 

 
 

Replace  and add over the index  

 

 
 

Apply to each of the sums on the right of the Hölder inequality and we consider that , we find 

 

 
 

Div iding both sides by 

 
 

We get 

 

 
 

and from this it follows immediately Minkowski inequality. 

 

If in the equation (6)  we obtain the Euclidean distance.  

 

 

2.E   MANHATTAN DISTANCE 

The Manhattan distance [17]-[19] estimate the distance to be traveled to get from one point to another as if it  

were a grid map. The Manhattan distance between two points is the sum of the differences in these points. The 

formula for this distance between a point  and a point , it’s obtained from 

equation (6) if : 

 

 
 

The Manhattan distance is measured in "the streets" rather than a straight line. Instead of walking directly  

from point A to point B, with the Manhattan distance you cannot walk through the buildings, but you walk the 

streets. The Manhattan distance is also known as the distance "city-blocks" or distance "taxi-cab". It is named 
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because it is the shortest distance that a car would t ravel in a city moving through the streets , as the Manhattan’s 

streets (taking into account that in Manhattan there is only one-way streets and oblique streets  and the real 

streets only exist in the corners of the blocks). 

3.   LEAST-SQUARES STATE ESTIMATION 

The least-squares state estimator [20]-[23] for alternating current (AC) is based on a nonlinear model 

measurements 

 

 
 

where: 

: measurement vector of dimension , 

: state vector of dimension n, where , 

:vector of the nonlinear function that relates the measurements with state vector, 

: measurement error vector of dimension m, 

: number of measurements and state variables respectively. 

 

The elements of  are assumed to have mean equal to zero and the corresponding variance matrix is given by  

. The optimality conditions are applied to the performance of  , which is expressed by 

 

 
where: 

 

: Measurement residue. 

 

From equation (17) we’ll have to find the best estimate of the state vector  of the system, which it consist to 

resolve the weighted least squares problem, that is, min imize the amount of residuals squared measures, whose 

objective function can be rewritten as: 

 

 
 

where  is the element  of the covariance matrix, . The optimality condition of first order for this 

model can be written as: 

 

 
 

where 

 

 
 

It’s  the Jacobian matrix of vector , of dimension . It's about finding the value of  that satisfies the 

linear equation (19). The most effective way to solve this equation is using the iterative method of Newton -

Raphson. Neglecting terms where second derivatives appear from , the linear system of  equations to be 

solved at each iteration is the following: 

 

 
 

 
where: 
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where: 

the measurement error variance.  

 

The variance  provides the accuracy of a particular measurement. A larger variance indicates that the 

corresponding measurement is not very accurate, so it is desirable to  have small variance in measurements. 

 

4.RESULTS  
Consolidating the results from the implementation of metrics in the Jacobian matrix of the state 

estimator for a test system of 5 nodes [24], with the increase of reactive power. Voltage results. We present the 

results of the behavior of the voltage of each of the nodes or the nodes with higher voltage abatement present for 

each of the cases, for the increased inductive reactive power, until the last convergence point for each of the 

cases. At the end the most sensitive nodes for each case are shown. Metrics projections results. We present 

metrics projections results using the Jacobian matrix of the state estimator derived from power flows 

measurements and power injections measurements. They show the results using the elements  and  

from the Jacobian matrix of the state. In the last part, we present the minimum metrics projections (MMP) for 

each case. 

 

Fig. 1 shows the voltage behavior at each node as the increase of the inductive reactive power in node 3. 

Fig. 2 and 3 show the min imum metrics projections  by nodes of the elements   and  of the Jacobian 

matrix state estimator considering the power flow measurements. 

Fig. 4 and 5 show the min imum metrics projections by nodes of the elements   and  of the Jacobian 

matrix state estimator considering power injections measurements. 

The results that provide metrics projections should be noted that these values are normalized with the base case. 

For all cases voltage profile (VP) considered for cutoff values (CV) is 0.8. A ll metrics projections are obtained 

from the Jacobian matrix of the state estimator. 

 

 

4 .A VO LTAGE RESULTS  

It shows the variation of the magnitude of the voltage in the system with the increase of the inductive reactive 

power at node 3. 
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Figure 1   Voltage variation with the increase of the inductive reactive power inductive at node 3. 

 

4 .B METRICS PROJECTIO NS 

1. We present the results of the minimum metrics project ions by nodes of the elements  of the 

Jacobian matrix state estimator considering the active power flow measurements. 

 

 
Figure 2    Metrics projections by nodes behavior with the  

increase of the  reactive power considering active power flow measurements. 

 

2. We present the results of the min imum metrics project ions by nodes of the elements   of the 

Jacobian matrix state estimator considering the reactive power flow measurements. 
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Figure 3    Metrics projections by nodes behavior with the 

increase of the  reactive power considering reactive power flow measurements. 

 

3. We present the results of the minimum metrics project ions by nodes of the elements   of the 

Jacobian matrix state estimator considering the active power injections measurements. 

 

 
Figure 4    Metrics projections by nodes behavior with the 

increase of the  reactive power considering active power injections measurements. 

 

4. We present the results of the min imum metrics project ions by nodes of the elements   of the 

Jacobian matrix state estimator considering the reactive power inject ions measurements. 
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Figure 5    Metrics projections by nodes behavior with the 

increase of the  reactive power considering reactive power in jections measurements. 

 

4 .C   ANALYSIS 

Fig. 1 shows the voltage behavior at the five nodes of the system with the increase of the inductive 

reactive power in the node 3, where the point of maximum power transfer is 280 MVAR, beyond this value the 

system does not converge and hence, the program gives incorrect estimates. In this figure we can identify nodes 

3 and 4 as the nodes that have higher voltage depression, being near 0.6 PU at node 4, while node 3 is the most 

affected reaching a value of 0.5706 PU. 

Fig. 2 shows the behavior of the minimum metrics projections by nodes using flow measurements  

considering the elements  of the Jacobian matrix. The CV is exceeded by all metrics project ions, the 

minimum metrics projections are regarding nodes 4 and 5 with a value of 0.4410 for both cases, performing 

these projections in line 4-5 in both nodes. 

Fig.3 shows the behavior of the minimum metrics projections by nodes using flow measurements 

considering the elements   of the Jacobian matrix. The VC is exceeded at 200 MVAR, the min imum 

metrics projections are regarding nodes 1 and 2 with a value of 0.5443, performing these projections in line 1-3 

in node 1 and a value of 0.5510 in line 2-3.  

Fig.4 shows the behavior of the minimum metrics projections by nodes using power inject ions 

measurements considering the elements   of the Jacobian matrix. The CV is 0.6214 with a VP of 0.8, the 

CV is exceeded at 250 MVAR, and the minimum metrics projections are regarding nodes 2, 3 and 5 with a 

value of 0.4886 in line 5-4 at node 2 and with a value of 0.5151 in line 5-4 at nodes 3 and 5. 

Fig.5 shows the behavior of the minimum metrics projections by nodes using power inject ions 

measurements considering the elements   of the Jacobian matrix. The VC is exceeded at 250 MVAR, the 

minimum metric projection is regarding node 3 with a value of 0.7203, performing these projection in line 5-4. 

 

1. CONCLUSIONS 
Metric projections have a similar behavior to voltage with the increasing of reactive power in one or 

more nodes; it allows us to identify weak nodes of the system in a fast and reliable way, including the branches 

involved. Because of the metric project ions are obtained from the Jacobian matrix of the state estimator, this 

allows us to take into account all the parameters  of the system when metrics are calculated. The metric 

projections, as the state estimator, can be calculated in real time as the computational requirements  by the 

metrics are min imal and therefore their calcu lation is fast.  

 

As metric pro jections are calculated between the rows of the Jacobian matrix of the state estimator 

including compensator node, it let us analyse all the nodes in the system and they may alarm us in case of a 

disturbance. 
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