Fixed Point Theorem in Fuzzy Metric Space by Using New Implicit Relation

M S Chauhan¹, Manoj Kumar Khanduja², Bharat Singh³
¹Asst. Professor Govt. Mandideep Collge Raisen (M.P.)
², ³Lecturer SOC. and E. IPS Academy Indore (M.P.)

Abstract
In this paper we give a fixed point theorem on fuzzy metric space with a new implicit relation. Our results extend and generalize the result of Mishra and Chaudhary [10]

Date of Submission: 06, December, 2012 Date of Publication: 25, December 2012

I. Introduction

II. Preliminaries

Definition 2.1 [1] A binary operation * : [0,1] × [0,1] → [0,1] is continuous t-norm if satisfies the following conditions:

(1) * is commutative and associative,
(2) * is continuous,
(3) a*1 = a for all a є [0,1],
(4) a*b ≤ c*d whenever a ≤ c and b ≤ d for all a, b, c, d є [0,1].

Examples of t-norm are a * b = min{a, b} and a * b = ab

Definition 2.3 [3] A 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set,* is a continuous t-norm and M is a fuzzy set on X satisfying the following conditions:

The functions M(x, y, t) denote the degree of nearness between x and y with respect to t, respectively.

1) M(x, y, 0) = 0 for all x, y є X
2) M(x, y, t) = 1 for all x, y є X and t > 0 if and only if x = y
3) M(x, y, t) = M(y, x, t) for all x, y є X and t > 0
4) M(x, y, t) * M(y, z, s) ≤ M(x, z, t+s) for all x, y, z є X and s, t > 0,
5) for all x, y є X, M(x, y, .) : [0, ∞) → [0,1] is left continuous,

Remark 2.1 In a FM (X, M, *) M(x, y, .) is non-decreasing for all x, y є X.

Definition 2.4 Let (X, M, *) be a FM - space. Then
(i) A sequence {xₙ} in X is said to be a Cauchy Sequence if for all t > 0 and p > 0,
 \[\lim_{n→∞} M(x_ₙ⁺p, xₙ, t) = 1 \]
(ii) A sequence {xₙ} in X is said to be convergent to a point x є X if for all t > 0,
 \[\lim_{n→∞} M(xₙ, x, t) = 1 \]
Since * is continuous, the limit is uniquely determined from (5) and (11) respectively.

Definition 2.5 [11] A FM-Space (X, M, *) is said to be complete if and only if every Cauchy sequence in X is convergent.
Definition 2.6 [4] Let A and S be maps from a fuzzy metric space $(X, M, *)$ into itself. The maps A and S are said to be weakly commuting if

$$M(ASx, SAx, t) \geq M(Ax, Sz, t) \quad \text{for all } x \in X \text{ and } t > 0$$

Definition 2.7 [6] Let A and S be maps from an FM-space $(X, M, *)$ into itself. The maps A and S are said to be compatible if for all $t > 0 \lim_{n \to \infty} M(ASx_n, SAx_n, t) = 1$ whenever (x_n) is a sequence in X such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z$ for some $z \in X$.

Definition 2.8 [8] Two mappings A and S of a fuzzy metric space $(X, M, *)$ will be called reciprocally continuous if $ASu_n \to Az$, and $SAu_n \to Sz$, whenever (u_n) is a sequence such that for some $u_n, Su_n \to z$ for some $z \in X$.

Definition 2.9 Let $(X, M, *)$ be a fuzzy metric space. A and S be self maps on X. A point x in X is called a coincidence point of A and S if $Ax = Sx$. In this case $w = Ax = Sx$ is called a point of coincidence of A and S.

Definition 2.10 A pair of mappings (A, S) of a fuzzy metric space $(X, M, *)$ is said to be weakly compatible if they commute at the coincident points i.e., if $Au = Su$ for some u in X then $ASu = SAu$.

Definition 2.11 [7] Two self maps A and S of a fuzzy metric space $(X, M, *)$ are said to be occasionally weakly compatible (owc) iff there is a point x in X which is coincidence point of A and S at which A and S commute.

Definition 2.12 (Implicit Relation) Let \varnothing be the set of all real and continuous function from $(\mathbb{R}^+)^5 \to \mathbb{R}$ and such that

2.12 (i) \varnothing is non increasing in 2nd, 3rd and 4th argument and

2.12 (ii) for $u, v \geq 0$, $\varnothing(u, v, v, v, v) \geq 0 \Rightarrow u \geq v$

Example $\varnothing(t_1, t_2, t_3, t_4, t_5) = t_1 - \max\{t_1, t_2, t_3, t_4\}$

Lemma 2.1 Let (u_n) be a sequence in a fuzzy metric space $(X, M, *)$. If there exist a constant $k \in (0, 1)$ such that

$$M(u_{n+1}, u_{n}, t) \geq M(u_{n-1}, u_{n}, t)$$

for all $t > 0$ and $n = 1, 2, 3, ...$. Then (u_n) is a Cauchy sequence in X.

Lemma 2.2 Let $(X, M, *)$ be a FM space and for all $x, y \in X$, $t > 0$ and if for a number $k \in (0, 1)$, $M(x, y, kt) \geq M(x, y, t)$ then $x = y$.

Lemma 2.3 [9] Let X be a set, f and g be owc self maps of X. If f and g have a unique point of coincidence, $w = fx = gx$, then w is the unique common fixed point of f and g.

3. Main Result

Theorem 3.1 Let $(X, M, *)$ be a complete fuzzy metric space and let A, B, S and T be self mappings of X. Let the pairs (A, S) and (B, T) be owc. If for $\varnothing \in \varnothing$ there exist $q \in (0, 1)$ such that

$$\varnothing\left(\frac{M(Ax, By, qt), M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t),}{1 + M(Ax, Sx, t), M(By, Ty, t)} \cdot \frac{M(Ax, Ty, t) + M(By, Sx, t)}{2} \right) \geq 0$$

for all $x, y \in X$ and $t > 0$, then there exist a unique point $w \in X$ such that $Aw = Sw = w$ and a unique point $z \in X$ such that $Bz = Tz = z$. Moreover $z = w$, so that there is a unique common fixed point of A, B, S and T.
Proof Let the pairs \(\{A, S\} \) and \(\{B, T\} \) be owc, so there are points \(x, y \in X \) such that \(Ax = Sy \) and \(By = Ty \). We claim that \(Ax = By \). If not by inequality (1)

\[
\begin{align*}
\phi \left(\frac{M(Ax, By, qt), M(Ax, By, t), M(Sx, Ax, t), M(By, Ty, t)}{1 + M(Ax, Sx, t)} \cdot \frac{M(Ax, Ty, t) + M(By, Sx, t)}{2} \right) &\geq 0 \\
\phi \left(\frac{M(Ax, By, qt), M(Ax, By, t), M(Ax, Ax, t), M(By, By, t)}{1 + M(Ax, By, t)} \cdot \frac{M(Ax, By, t) + M(By, Ax, t)}{2} \right) &\geq 0 \\
\phi [M(Ax, By, qt), M(Ax, By, t), 1.1, M(Ax, By, t)] &\geq 0 \\
\phi [M(Ax, By, qt), M(Ax, By, t), M(Ax, By, t), M(Ax, By, t), M(Ax, By, t)] &\geq 0
\end{align*}
\]

\(\phi \) is non-increasing in 3rd and 4th argument therefore 2.12 (i) and 2.12 (ii)

\[M(Ax, By, qt) \geq M(Ax, By, t) \]

Therefore \(Ax = By \) i.e. \(Ax = Sx = By = Ty \). Suppose that there is a unique point \(z \) such that \(Az = Sz \) then by (1) we have

\[
\begin{align*}
\phi \left(\frac{M(Az, By, qt), M(Az, By, t), M(Sz, Az, t), M(By, Ty, t)}{1 + M(Az, Sz, t)} \cdot \frac{M(Az, Ty, t) + M(By, Sz, t)}{2} \right) &\geq 0 \\
\phi [M(Az, By, qt), M(Az, By, t), 1.1, M(Az, By, t)] &\geq 0 \\
\phi [M(Az, By, qt), M(Az, By, t), M(Az, By, t), M(Az, By, t), M(Az, By, t)] &\geq 0
\end{align*}
\]

\(\phi \) is non-increasing in 3rd and 4th argument therefore 2.12 (i) and 2.12 (ii)

\[M(Az, By, qt) \geq M(Az, By, t) \]

\(Az = By \Rightarrow Sx = Ty \). So \(Ax = Az \) and \(w = Ax = 5x \) the unique point of coincidence of \(A \) and \(S \). By lemma (2.3) \(w \) is the only common fixed point of \(A \) and \(S \). Similarly there is a unique point \(z \in X \) such that \(z = Bz = Tz \).

Assume that \(w \neq z \), we have

\[
\begin{align*}
\phi \left(\frac{M(Aw, Bz, qt), M(Aw, Bz, t), M(Sw, Aw, t), M(Bz, Tz, t)}{1 + M(Aw, Bz, t)} \cdot \frac{M(Aw, Tz, t) + M(Bz, Sw, t)}{2} \right) &\geq 0 \\
\phi \left(\frac{M(Aw, Bz, qt), M(Aw, Bz, t), M(w, z, t), M(z, z, t), M(z, z, t)}{1 + M(w, z, t)} \cdot \frac{M(w, z, t) + M(z, z, t)}{2} \right) &\geq 0 \\
\phi [M(Aw, z, qt), M(w, z, t), M(w, z, t), M(z, z, t), M(z, z, t)] &\geq 0 \\
\phi [M(Aw, z, qt), M(w, z, t), 1.1, M(w, z, t)] &\geq 0 \\
\phi [M(Aw, z, qt), M(w, z, t), M(w, z, t), M(w, z, t), M(w, z, t)] &\geq 0
\end{align*}
\]

\(\phi \) is non-increasing in 3rd and 4th argument

\[M(Aw, Bz, qt) \geq M(w, z, t) \]
We have $z = w$ by Lemma (2.2) and z is a common fixed point of A, B, S and T. The uniqueness of the fixed point holds from (1).

Definition 3.11 (Implicit Relation) Let φ_θ be the set of all real and continuous function from $(\mathbb{R}^+)^6 \to \mathbb{R}$ and such that

3.11 (i) φ_θ is non increasing in 2^{nd}, 3^{rd}, 4^{th} and 5^{th} argument and

3.11 (ii) for $u, v \geq 0 \, \varphi(u, v, v, v, v, v) \geq 0 \Rightarrow u \geq v$ and $\varphi(u, v, v, v, v, v) \geq 0 \Rightarrow u = v$

Theorem 3.2 Let $(X, M, *)$ be a complete fuzzy metric space and let A, B, S and T be self mappings of X. Let the pairs $\{A,S\}$ and $\{B,T\}$ be owc. If there exist $q \in (0,1)$ such that

\[
\varphi \left(\frac{M(Ax, By, qt), M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t),}{1 + M(By, Ty, t)} \cdot \frac{M(Ax, Ty, t) + M(By, Sx, t)}{2} \right) \geq 0
\]

\[
\varphi \left(\frac{M(Ax, By, qt), M(Ax, By, t), M(Ax, Ax, t), M(By, By, t),}{1 + M(By, Ty, t)} \cdot \frac{M(Ax, By, t) + M(By, Ax, t)}{2} \right) \geq 0
\]

\[
\varphi \left(\frac{M(Ax, By, qt), M(Ax, By, t), M(Ax, By, t), M(Ax, By, t),}{1 + M(By, Ty, t)} \cdot \frac{M(Ax, By, t) + M(By, Ax, t)}{2} \right) \geq 0
\]

\[
\varphi \left(\frac{M(Ax, By, qt), M(Ax, By, t), M(Ax, By, t), M(Ax, By, t),}{1 + M(By, Ty, t)} \cdot \frac{M(Ax, By, t) + M(By, Ax, t)}{2} \right) \geq 0
\]

$\varphi \, \varphi \, \varphi$ is non-increasing in 3^{rd} and 4^{th} argument therefore by 3.11(i) and 3.11(ii)

\[
M(Ax, By, qt) \geq M(Ax, By, t)
\]

Therefore $Ax = By$ i.e. $Ax = Sx = By = Ty$. Suppose that there is another point z such that $A \cdot z = S \cdot z$ then by (2) we have $A \cdot z = S \cdot z = Ty$, So $Ax = A \cdot z$ and $w = Ax = Tz$ is the unique point of coincidence of A and T. By lemma (2.2) w is a unique point $z \in X$ such that $z = Bz = Tz$. Thus z is a common fixed point of A, B, S and T. The uniqueness of fixed point follows by (2).

References

Fixed Point Theorem in Fuzzy Metric Space by Using New Implicit Relation